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Gravity-induced phase phenomena in plate-rod
colloidal mixtures
Tobias Eckert 1, Matthias Schmidt 1✉ & Daniel de las Heras 1✉

Gravity can affect colloidal suspensions since for micrometer-sized particles gravitational and

thermal energies can be comparable over vertical length scales of a few millimeters. In

mixtures, each species possesses a different buoyant mass, which can make experimental

results counter-intuitive and difficult to interpret. Here, we revisit from a theoretical per-

spective iconic sedimentation-diffusion-equilibrium experiments on colloidal plate-rod mix-

tures by van der Kooij and Lekkerkerker. We reproduce their findings, including the

observation of five different mesophases in a single cuvette. Using sedimentation path theory,

we incorporate gravity into a microscopic theory for the bulk of a plate-rod mixture. We also

show how to disentangle the effects of gravity from sedimentation experiments to obtain the

bulk behavior and make predictions that can be experimentally tested. These include changes

in the sequence by altering the sample height. We demonstrate that both buoyant mass ratio

and sample height form control parameters to study bulk phase behavior.
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Colloids, i.e., nano- to micrometer-sized particles suspended
in a liquid, behave under some circumstances as big
atoms1–5. Despite their size disparity, molecular and col-

loidal systems exhibit analogous bulk phases and similar surface
phenomena such as wetting6, capillary waves at the free fluid-
fluid interface7, and the occurrence of topological defects due to
frustration8. Beyond intrinsic fundamental interest, under-
standing bulk phase behavior is a prerequisite for the design of
new materials. Sedimentation experiments, in which a colloidal
suspension is placed in a cuvette under the influence of gravity,
are ideal candidates to study the bulk behavior of colloidal sys-
tems. One famous example are the experiments on suspensions of
nearly hard colloidal spheres9 that confirmed the fluid-crystal
transition predicted decades earlier10. Sedimentation experiments
also confirmed the entropy-driven formation of liquid crystalline
phases in systems of anisotropic particles11,12, the existence of
empty liquids and equilibrium gels13, and the hexatic phase in
two-dimensional colloidal discs14. Gravity can play a major role
in the colloidal realm and can only be neglected if the relevant
length scales of the experiment (e.g., the height of the sample
inside the cuvette) are much smaller than the colloidal gravita-
tional length; the latter is the ratio between the thermal energy
and the buoyant force acting on a single particle. For typical
colloidal systems, the gravitational length is of the order of mil-
limeters, and hence it is smaller or comparable to the sample
height.

Depending on the sign of the buoyant mass the colloidal particles
sediment towards the bottom or they cream up. In both cases,
gravity creates a particle density gradient in the vertical direction.
Sedimentation-diffusion-equilibrium is reached once the gravity-
induced particle flow is balanced by the diffusive flow originated by
the density gradient and the interparticle interactions. As already
shown in Perrin’s pioneering experiments15, the resulting height-
dependent colloidal density distribution provides direct access to
the full equation of state for monocomponent systems of both
isotropic16,17 and anisotropic18,19 colloidal particles.

It is often an excellent approximation to consider that at each
height inside the cuvette, the system is well reproduced by a
corresponding homogeneous equilibrium system with a bulk
density that is identical to the local density of the inhomogeneous
system20,21. This local density approximation can be imple-
mented by considering that the chemical potential of the sample
varies linearly with the vertical coordinate. The strength of
sedimentation-diffusion-equilibrium experiments is that instead
of looking at a single state point of a bulk system (i.e., at a fixed
chemical potential), one is able to consider set of states with
varying chemical potential along the vertical axis. This result is
due to the gravity-induced varying density (or equivalently che-
mical potential) along the vertical axis. Since in many colloidal
systems the gravitational length is smaller than the typical height
of a cuvette, even sedimentation experiments with samples of few
millimeters in height provide in-depth insight into the equation
of state and bulk phase phenomenology.

In binary colloidal mixtures, gravity has stronger impact since
two, in general distinct, gravitational lengths exist. Counter-
intuitive and complex phenomenology arises, making it difficult to
draw conclusions about bulk behavior. For example, in their iconic
experiments on plate-rod mixtures, van der Kooij and
Lekkerkerker22,23, found hitherto unexpected and rich phenom-
enology of colloidal mixtures. By changing the colloidal con-
centrations the authors observed the formation of different
stacking sequences, including samples with the sequence: iso-
tropic-nematic-smectic-nematic-columnar, when scanned from
top to bottom of the sample. The two nematic layers correspond to
different bulk phases rich in either rods (top) or plates (bottom).

In mixtures, it is frequent to observe more than three layers of
different bulk phases in a cuvette at different altitudes: Up to six
different layers occur in mixtures of positively charged colloidal
plates and nonadsorbing polymers24. Even the same layer can
reenter the stacking sequence, such as e.g., a nematic sandwiched
between two isotropic layers in sphere-plate colloidal mixtures25.
Further experimental studies were aimed at colloidal rod-
plate26,27, plate-sphere28,29, rod-sphere30, and sphere-sphere31,32

mixtures, liquid crystalline binary nanosheet colloids33, mixtures
of thin and thick colloidal rods34, as well as attractive nanosized
spheres and plates35. Gravitational effects can be relevant even if
the system contains only a few colloidal layers36, as e.g in the
stratification found in drying films of colloidal mixtures37.

To draw conclusions about bulk phenomena from sedi-
mentation experiments (and vice versa), gravity needs to be
considered. However, in mixtures the dimensionality of the phase
diagram increases by one unit for each added species. Gravity
induces a height-dependent density profile for each component.
Therefore the gravity-induced one-dimensional scan along the
vertical axis of the sample gives only a one-dimensional slice of
the complete phase diagram. The full equation of state and the
phase diagram can not be extracted from a single sedimentation
profile. Wensink and Lekkerkerker20 incorporated gravity in a
mixture of plates and polymers by treating the mixture as an
effective mono-component system with the chemical potential of
the polymer fixed. This approach is limited to systems in which
the gravitational length of one species (the polymer) is much
larger than the sample height. A generalized Archimedes
principle38,39 appropriately describes the behavior a mixture in
which both species are colloidal particles and one of them is very
diluted.

An alternative approach, valid for any mixture and any col-
loidal concentration, was formally given by de las Heras and
Schmidt21. The theory is formulated in terms of sedimentation
paths, which represent how the chemical potentials of both spe-
cies vary linearly with the vertical coordinate due to gravity. The
sedimentation paths are straight lines in the plane of chemical
potentials, and the crossing between a path and a binodal indi-
cates the formation of an interface in the sample. Different
stacking sequences appear depending on which binodals are
crossed by the path. The stacking sequences are grouped in a
stacking diagram, which is the analog of the bulk phase diagram
for systems subject to gravity. So far, the stacking diagrams have
been used to theoretically study sedimentation of model colloidal
mixtures21,40–42.

We demonstrate here that this formal approach also opens the
door for the rigorous interpretation and the prediction of
sedimentation-diffusion-equilibrium experiments in colloidal
mixtures. We reinterpret the findings of the arguably best known
experimental study in the field, conducted by van der Kooij and
Lekkerkerker22,23, on plate-rod colloidal mixtures. By incorpor-
ating gravity into a microscopic theory for the bulk behavior of
the mixture we reproduce quantitatively their experimental
findings. Furthermore we address the (experimentally relevant)
inverse problem. That is, we demonstrate how to infer the bulk
phase diagram using the experimentally obtained stacking
sequences and the individual heights of their constituent layers.
We also make predictions that can be tested experimentally: a
different set of stacking sequences emerges by altering the ratio of
the buoyant masses of the colloidal particles and complex changes
in the stacking sequence occur by simply varying the height of the
sample. Both variables, the buoyant mass ratio and the sample
height, can be systematically controlled in both experimental and
theoretical work. Our demonstration of the important role played
by both the buoyant mass ratio and the sample height allows to
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design experimental and theoretical studies that exploit these
(hitherto largely unexplored) control parameters.

Results
Particle model. To model the experiments22,23 we consider a
mixture of hard rods and hard plates. Depending on composition
and packing fraction, the bulk phase is either isotropic (I),
nematic rich in plates (Np), or nematic rich in rods (Nr), see
Fig. 1. We use subscripts p and r to designate the plates and the
rods, respectively.

The gravitational lengths are ξi= kBT/(mig) with mi the
buoyant mass of species i, g the gravitational acceleration, kB
the Boltzmann constant, and T absolute temperature. The rods
are made of boehmite (mass density 3.03 g/cm3) and the plates of
gibbsite (2.35 g/cm3). The particles are sterically stabilized with a
polymer coating of a few nanometer thickness and suspended in
toluene (0.87 g/cm3). We use cylinders of lengths 200 nm and
10 nm, and diameters 20 nm and 150 nm to model the rods and
the plates, respectively. The particles match both the length-to-
width aspect ratio and the dimensions of the particles used in the
experiments22,23 within the experimental uncertainty. We sub-
tract the volume of the polymer coating from the total particle
volume to estimate the buoyant masses. Using a diameter of
15 nm for the rod’s core and a length of 8.7 nm for the plates’
core, we obtain ξr= 5.5 mm, ξp= 1.8 mm. Hence the buoyant
mass ratio is

s ¼ mp

mr
¼ ξr

ξp
� 3: ð1Þ

The values of the gravitational lengths and hence that of the
buoyant mass ratio are only rough estimates since there is a large
uncertainty in the particle dimensions (up to 25%) and in
the thickness of the polymer layer43,44. Given this uncertainty, the
buoyant mass ratio is likely between a minimum value of ~2 and
a maximum value of ~5.

Bulk. We use an Onsager-like density functional theory to study
the bulk, see Methods. To characterize the phases we use the
uniaxial order parameters Si of each species (see Methods) that
take values between−0.5 and 1. The order parameters measure
the orientational order with respect to the direction given by the
director of the dominant species, see Fig. 1. A positive (negative)
value indicates that the alignment of the particles is parallel
(perpendicular) to the director. In the isotropic phase both order
parameters vanish.

Sedimentation path theory. Gravity is incorporated by approx-
imating each horizontal slice of the system at height z by a bulk
equilibrium system with local chemical potentials μi(z) given by21

μiðzÞ ¼ �μi �mig z � h
2

� �
; i ¼ r; p; ð2Þ

with 0 ≤ z ≤ h the vertical coordinate and h the height of the
sample. This constitutes a local density approximation (LDA),
which is justified if all correlation lengths are small compared to
both gravitational lengths. The LDA is used only to incorporate
gravity and it does not affect therefore the description of the bulk.
Sophisticated bulk theories, such as fundamental measure
theory45, can be used together with sedimentation path theory to
study sedimentation of e.g., crystalline phases.

Due to the gravitational potential, the local chemical potentials
depend linearly on the vertical coordinate z. Equation (2)
formalizes the concept that a sample subject to gravity can be
understood as a set of bulk states at different chemical potentials
and distributed along the vertical axis. Geometrically, Eq. (2)
describes a line segment parametrized by z in the plane of
chemical potentials. We refer to such lines as sedimentation
paths21,41. The constant terms migh/2 in Eq. (2) conveniently
translate the origin of chemical potentials such that the values of
the midpoint of the path are ð�μr; �μpÞ. Eliminating z for the
mixture in Eq. (2) yields

μpðμrÞ ¼ sμr þ a; ð3Þ
which constitutes the equation of a line segment with a slope
given by the buoyant mass ratio s=mp/mr= ξr/ξp and intercept
a ¼ �μp � s�μr. The buoyant masses play therefore a vital role since
they determine both the slope s (buoyant mass ratio) and,
together with h, the length of the sedimentation path in the plane
of chemical potentials. The latter is given by βΔμi= h/ξi, with
Δμi= μi(0)− μi(h) being the differences in local chemical
potentials between the bottom and the top of the sample.

The sedimentation path provides direct information of the
sequence of layers in the sample, i.e., the stacking sequence. An
interface between two layers of different bulk phases appears in
the sample whenever a sedimentation path crosses a bulk binodal
in the plane of chemical potentials, see Fig. 2a. The crossing point
between the path and the binodal gives the z position of the
interface in the sample via Eq. (2).

Stacking diagram. Different stacking sequences occur by varying
e.g., the position, the slope, and the length of the sedimentation
path. The sequences can be grouped in a stacking diagram. The
stacking diagram admits several representations depending on
which variables are kept constant. To connect with the experi-
ments we fix the buoyant masses and the sample height h. Hence,
we work at constant sedimentation path length and fixed buoyant
mass ratio s.

From the bulk phase diagram we construct the stacking
diagram by finding the boundaries between two stacking
sequences in the stacking diagram. There exist three types of
boundaries formed by three sets of special sedimentation paths41,

Fig. 1 Model. Schematics of colloidal rods (blue) and plates (red), together
with schematics of the particles in the isotropic (I), the nematic rod-rich
(Nr) and the nematic plate-rich (Np) layers that appear in a cuvette of
height h under the gravitational field g. The blue and red arrows indicate the
nematic director for rods and plates, respectively. The sign of the uniaxial
order parameter of plates Sp and rods Sr in each phase is also indicated (the
order parameter is calculated with respect to the director of the dominant
species in each phase).
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see Fig. 2a. The first type corresponds to sedimentation paths that
either start or end at a bulk binodal (red and yellow paths in
Fig. 2). These paths represent boundaries, so-called sedimentation
binodals of type I, between stacking sequences since an
infinitesimal displacement of the path in the μ1− μ2 plane can
alter the stacking sequence by crossing the binodal. Paths that
cross an ending point of a binodal, e.g., a triple point or a critical
point (orange path in Fig. 2), also form a boundary in the stacking
diagram, known as a terminal line. Finally, paths tangent to a
binodal (blue path in Fig. 2) form the so-called sedimentation
binodal of type II which is also a boundary between different
stacking sequences. In each of the three cases, an infinitesimal
displacement of the path can alter the stacking sequence.

The coordinates of the midpoint ð�μr; �μpÞ for each special path
are then represented in the �μr � �μp plane to generate the
stacking diagram, see Fig. 2b. The experimentally relevant
variables are the colloidal packing fractions. Therefore, we
transform the stacking diagram from the �μ1 � �μ2 to the �η1 � �η2
plane of average colloidal packing fractions (percentage of the
total volume occupied by each species). To this end we average
the packing fraction of each species, i.e., ηi= ρivi, along the
sedimentation path. Here vi is the particle volume of species i.
We compute ηi for each set of μi along the path (see Methods)
and transform the stacking diagram from the �μr � �μp to the
�ηr � �ηp plane. In both planes each point of the stacking diagram

represents a sedimentation path and therefore directly

corresponds to an experimental sample in sedimentation-
diffusion-equilibrium.

Comparison with experiments. In the experiments22, stacking
sequences with isotropic (I), nematic rod-rich (Nr), and nematic
plate-rich (Np) layers are reported. The samples, reproduced in
Fig. 3, were initially prepared with packing fractions ð�ηr; �ηpÞ =
(0.02,0.18) (a), (0.10,0.08) (b), and (0.10,0.01) (c).

To compare with the experiments, we find the paths for which
the average packing fractions ð�ηr; �ηpÞ and sample height match
the experimental values. The height is measured form the pictures
knowing that the width of the cuvettes is 10 mm. The buoyant
mass ratio, and hence the slope of the path, is the same for all
samples. There is an uncertainty of ~25% in the experimental
particle dimensions22,23,44 (note small deviations in the diameter
of the rods and the height of the plates greatly affect the particle
volumes and therefore the packing fractions). Also, solvent
evaporation can occur experimentally, affecting the packing
fractions25. Hence, to find the paths we fix the composition of the
mixture to the experimentally reported value and allow a
variation in the total packing fraction. This is equivalent to
assuming that an unknown percentage of the solvent has been
evaporated (alternatively we could allow a variation in the particle
sizes). The best agreement between theory and experiment occurs
assuming that 25%(a), 50%(b) and 60%(c) of the solvent
evaporated during the long equilibration times. These values are
consistent with the position of the meniscus in Fig. 3 (the sample
heights are (a) 23 mm, (b) 18 mm, and (c) 17 mm) if the samples
were filled to the same height initially. The density and nematic
order parameter profiles along the sedimentation paths are shown
in Fig. 3. Due to gravity the profiles are inhomogeneous (also
within a layer of a given mesophase) in contrast to what happens
in a bulk state in absence of gravity. The stacking sequence can be
read off directly from the nematic order parameter profiles. In
the isotropic layers both order parameter vanish, Sr= Sp= 0. In
the nematic layers rods and plates orient themselves perpendi-
cular to each other (see schematics in Fig. 1): the dominant
species has a positive order parameter Si > 0 (particles aligned
along the director) and the minority species has a negative order
parameter Sj < 0 (particles perpendicular to the director).

Despite the complexity of the experiments and the simplicity of
the theory, the agreement of the respective results is excellent. All
three stacking sequences, namely (from top to bottom) INp

Fig. 3a, INrNp Fig. 3b and INr Fig. 3c are reproduced. Both the
phase identity of each layer and their order in the sequence are
correctly predicted. Even the vertical positions of the interfaces
between layers agree semi-quantitatively. The density profiles
show that the Np and Nr phases are rich in plates and rods,
respectively. Interestingly, the isotropic phase can be either
dominated by plates, Fig. 3a, or by rods, Fig. 3b, c. This affects the
order that the isotropic layer occupies in the stacking sequence
for other values of the buoyant mass ratio as we will see below.
The experimental results and the theoretical predictions differ in
two aspects. In Fig. 3b the theory overestimates the thickness of
the Nr layer. The experimentally reported packing fraction of rods
is larger than that of plates and the theory predicts almost perfect
demixing between the species, see the packing fraction profiles in
Fig. 3b. As a result the predicted Nr layer is thicker than the Np

layer. The opposite, however, is observed in the experiments. The
other discrepancy between theory and experiments is the
prediction of a thin Np layer at the bottom of sample 3 which
is not observed experimentally, see Fig. 3c. This could be due to
interfacial effects that are not considered in the sedimentation
path theory approximation. The surface tension associated with
the emergence of the new interface might prevent such slim layer

Fig. 2 Sedimentation path theory. aModel bulk phase diagram in the plane
of chemical potentials μ1− μ2. Phases A and B coexist along a binodal (solid
line) that ends at a critical point (empty circle). The line segments are
sedimentation paths. The gray path that crosses the binodal corresponds to
a stacking sequence AB (from top to bottom), as schematically
represented. The gray arrow indicates the direction of the paths from top to
bottom of the sample. Examples of all types of paths that form the
boundaries between different stacking sequences are shown: (i) paths that
either start (red) or end (yellow) at the binodal, (ii) paths tangent (blue) to
the binodal, and (iii) paths crossing (orange) the critical point. An
infinitesimal displacement of any of such paths can alter the stacking
sequence. b Corresponding stacking diagram in the plane of average
chemical potentials �μ1 � �μ2. Each colored region is a different stacking
sequence, as indicated. The boundary lines between sequences are
sedimentation binodals of type I (solid lines) or type II (dotted-blue line),
and terminal lines (dashed-orange line).
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to appear in the experiments. Also, for other values of the
buoyant mass ratio within the experimental uncertainty, the
bottom Np layer is not present (see Supplementary Fig. 1).
Nevertheless, the discrepancies found are certainly not surprising
given the simple microscopic theory we use to describe the bulk,
the experimental uncertainties in both particle dimensions and
masses, as well as other bulk factors not taken into account such
as polydispersity.

Recall that we adjust only the amount of solvent evaporated to
find the best agreement between theory and experiment. Any
value of the buoyant mass ratio within the experimental
uncertainties reproduces the experimental stacking sequences
using only the evaporation as a free parameter in the theory (see
Supplementary Fig. 1).

Bulk and stacking diagrams. We discuss now the intricate
connection between the stacking sequences under gravity and the
bulk phase diagram of the mixture. The bulk phase diagram
according to our microscopic theory is shown in Fig. 4a, b in the
planes of chemical potentials and packing fractions, respectively.
To reassure the validity of the theory, we compare the chemical
potentials of the I−Np and I−Nr transitions in mono-
component systems (i.e., μr→−∞ or μp→−∞) with those of
parallel hard spherocylinders46,47 and hard cut spheres48

according to simulations, see the violet arrows in Fig. 4a. We
expect that both spherocylinders and cut spheres behave similarly
to our cylindrical particles at the relatively low density of the
isotropic-nematic transition and large particle anisotropies con-
sidered here.

The sedimentation paths of the samples in Fig. 3 are depicted
in Fig. 4a. The stacking sequences can be read off by simply
following the direction, and observing the binodals or the phase
regions crossed by each path. For example, the stacking sequence
of sample 1 is INp from top to bottom since the path crosses only
the I−Np binodal.

The experimentally observed layers in a stacking sequence do
not represent coexisting phases in bulk21. For example, the
sequence INrNp shown in Fig. 3b should not be interpreted as a
triple thermodynamic coexistence between I, Nr, and Np bulk
phases. In reality the three phases might or might not coexist in
bulk, i.e., in the absence of gravity. This is because due to gravity,
the sample does not represent a state point in bulk but a set of
state points along the sedimentation path. Note also that for
typical colloidal particles and sample heights, the paths cover a
large region of the bulk phase diagram, see e.g., the paths in
Fig. 4a. Therefore, the observation of more than three layers in a
stacking sequence does not imply violation of the Gibbs phase
rule. Observing a single sample, we can conclude that any two
consecutive phases in the sample (e.g., INr and NrNp in the
sequence INrNp) coexist in bulk since the path crosses a bulk
binodal at the position of the interfaces between two consecutive
layers. However, one cannot conclude whether or not two non-
consecutive layers (e.g., I and Np in the sequence INrNp) coexist
in bulk.

As discussed above, it is useful to group the stacking
sequences in a finite height stacking diagram41. Figure 4 shows
the stacking diagrams for samples with heights h= 5 mm (c,d)
and 18 mm (e,f) in the plane of average chemical potentials
(c,e) and average packing fractions (d,f) along the path. In bulk
three binodals meet at a triple point, see Fig. 4a. The stacking
diagrams contain sedimentation binodals of type I due to paths
that either start or end at a bulk binodal plus one terminal line
due to paths crossing the bulk triple point. Six different

Fig. 3 Comparison with experiments. Vertical profiles of the packing
fractions ηi and the nematic order parameters Si with i= r, p for rods
(solid-blue lines) and plates (dashed-red lines), respectively. Three
different samples labeled as 1, 2, and 3 (indicated by the colored circles)
are shown. Schematics of the samples showing the isotropic (I), nematic
rod-rich (Np) and nematic plate-rich (Np) layers are represented in the
insets. The average packing fractions (�ηr; �ηp) are (0.027, 0.24) (a),
(0.20, 0.16) (b), and (0.25, 0.025) (c). The corresponding experimental
samples (pictures taken between crossed polarizers) by van der Kooij
and Lekkerkerker22,23 are also shown (adapted with permission23,
Copyright 2000 American Chemical Society). The meniscus is
highlighted with a white line. The bright areas are due to light being
polarized in layers with orientational order. The scale bar (green)
is 5 mm.
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sequences occur: I, Np, Nr, INp, INr, and INrNp. If present in the
sequence, the Np layer is always the bottom layer due to
the slope of the path (buoyant mass ratio) being steeper than
the slope of each bulk binodal. This behavior is not surprising
since the plates are heavier than the rods and hence dominate
the bottom phases. The total mass density profile, i.e., the sum
of the mass density of the particles and the solvent (see
Methods), monotonically increases towards the bottom of the
sample in all cases (also if the buoyant masses are negative in
which case the particles cream up). This is consistent with
Archimedes’ principle, although it should be noticed that
denser particles can also float on top of a lighter fluid38,39.
Analog to bulk points at which several phases coexists, such as
triple points, there exist points in the stacking diagram at which
several stacking sequences meet (due to e.g., the crossing of two
sedimentation binodals). A discussion about these points is
provided in Supplementary Note 1.

The length of the path in the μr− μp plane is relevant to
determine the stacking sequence. For example, varying the length

of path 2 in Fig. 4a can alter the stacking sequence from INrNp to
I, INr, Nr, NrNp, or Np. Therefore the stacking diagrams are
calculated at fixed sample height since the length of the path is
proportional to h. It is worth noting that for infinitely small
sample height the sedimentation path has vanishing length and it
is a point in the plane of chemical potentials. Hence, the stacking
diagram for h→ 0 coincides with the bulk phase diagram. In
Fig. 4 it is apparent how the stacking diagram tend to the bulk
diagram by decreasing h. By increasing h the regions with a single
layer sequence shrink in size at the expenses of the regions with
multiple layer sequences that are enlarged. This reflects that the
longer the path is the more likely it crosses additional binodals.
To highlight the importance of the sample height, we indicate by
colored circles pairs of illustrative samples with the same colloidal
packing fractions but different heights in Fig. 4d and f. In all cases
the stacking sequences change upon changing the sample height.
For example, for packing fractions ð�ηr; �ηpÞ ¼ ð0:225; 0:05Þ the
stacking sequence changes from INp if h= 5 mm to INrNp if
h= 18 mm. Therefore, the stacking sequence is not only

Fig. 4 Bulk and stacking diagrams. Bulk phase diagram in the plane of chemical potentials of rods μr and plates μp (a) and also in the plane of packing
fractions of rods ηr and plates ηp (b). The chemical potentials are scaled with the inverse temperature β= 1/(kBT). Solid lines are the binodals. The stable
phases are isotropic (I), nematic plate-rich (Np), and nematic rod-rich (Nr). The violet arrows in (a) mark the I− Np and I−Nr transitions of pure systems
of plates (horizontal arrow) and rods (vertical) obtained by simulations46–48. The line segments are the sedimentation paths of samples 1, 2, and 3. The
green arrow illustrates the direction of the paths from top to bottom. The shadow region in (b) is the two phase region and the dashed lines are the tie lines
of the triple point. Stacking diagrams for heights h= 5 mm (c, d) and 18mm (e, f) in the plane of average chemical potentials of the sedimentation paths for
rods �μr and plates �μp (c, e) and average packing fractions of rods �ηr and of plates �ηp in the samples (d, f). Black solid (white dashed) lines are sedimentation
binodals (terminal lines). Each stacking sequence is denoted from top to bottom and colored differently (except for the white regions that represent
sequences with only one layer). The midpoint of the path for sample 2 is marked with a black cross in (a). The position of this sample is also marked in the
stacking diagrams with crosses in (e) and (f). The colored squares indicate the points at which four stacking sequences meet due to the crossing between
two sedimentation binodals (violet squares) or the intersection of sedimentation binodals and a terminal line (yellow squares). The colored circles in (d)
and (f) mark samples with the same colloidal packing fractions in both stacking diagrams.
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determined by the colloidal concentration since the occurring
layers also depend on the sample height.

For this buoyant mass ratio (s=mp/mr= 3) the topologies of
the stacking and the bulk diagrams are the same in the sense that
there is a one-to-one correspondence between bulk regions and
stacking sequences for any sample height. For example, the triple
point region I+Np+Nr in Fig. 4b and the region of the stacking
sequence INrNp in Fig. 4d, f correspond to each other, although
they are different objects. Recall that bulk phases and stacking
sequences differ substantially since (i) the order of the layers plays
a role in the stacking diagram but not in bulk, and (ii) bulk phases
are homogeneous while layers in a stacking diagram are not, see
density profiles in Fig. 3. This one-to-one correspondence is not a
general feature since the topology of the stacking diagram
changes with the buoyant mass ratio.

Inferring bulk behavior from sedimentation experiments.
Above we have incorporated gravity into a theoretical calculation
of bulk phase behavior and compared with experimental samples.
Here, we address the experimentally relevant inverse problem.
van der Kooij and Lekkerkerker reported also four samples
containing layers with liquid-crystalline positional order23. These
stacking sequences, reproduced in Fig. 5a, contain plate-rich
columnar (C) and (most likely23) rod-rich smectic (X) layers. In
addition to the orientational order, in the columnar (smectic)
mesophase the particles are positionally ordered along two (one)
spatial directions. Complex stacking sequences with five distinct
layers such as INrXNpC occur. The experimental particles are
highly polydisperse which heavily alters the bulk transition den-
sities of phases with positional order49,50. Therefore, attempting
to extend the density functional to incorporate smectic and
columnar phases51,52 is not a promising route to reproduce the
experimental results involving phases with positional order.
Instead, we use the experimental sequences to construct the bulk
binodals of phases with positional order. Roughly speaking, we
disentangle the effects that gravity has on the samples to find the
bulk behavior (in absence of gravity).

The slope of the paths remains unchanged and their lengths are
obtained by measuring the sample height from the experimental
pictures, Fig. 5a. We then construct a bulk phase diagram, see
Fig. 5b, with the approximated location of two new binodals,
Np− C and Nr− X. We assume the simplest form for the
binodals, i.e., horizontal or vertical lines, which is justified since
(i) the binodals connect pure transitions in the monocomponent
systems to other binodals and (ii) at high density the mixture is
expected to be completely segregated. Then, we find the binodal
location in the bulk phase diagram together with the position of
the sedimentation paths such that both the experimental stacking
sequences and the thicknesses of the individual layers are best
reproduced. The resulting theoretical stacking sequences are
depicted in Fig. 5a for direct comparison with the experiments.
All the experimental sequences are reproduced and we can infer
the topology of the bulk phase diagram from the given set of
sedimentation experiments. Note that any change in the bulk
topology (e.g., interchanging the position of the predicted
Nr−Np− X and Np− X− C triple points) produces a different
set of stacking sequences. The thicknesses of the individual layers
can be also reproduced quantitatively in most cases. Small
deviations occur, especially if the sedimentation path is close to a
bulk triple point, due to the simple approximation we use for the
binodals. Near triple points the curvatures of the binodals can be
large, c.f. the I−Np−Nr triple point in Fig. 5b, and a straight line
is a crude approximation. Nevertheless, with a larger number of
samples it might be possible to reproduce the curvature of the
bulk binodals and gain further insight into the phase transition.

Note that the curvature of a binodal in the μr− μp plane is given
by the ratio between the density jumps of each species at the
phase transition.

Isotropic and columnar phases do not coexist in bulk,
Fig. 5b. However, in samples 5 and 6 in Fig. 5a (sequences

Fig. 5 Positionally ordered phases. a Experimental samples and
corresponding theoretical predictions of sequences containing isotropic (I),
nematic plate-rich (Np), and nematic rod-rich (Nr) fluid layers as well as
layers with positional order: C (columnar plate-rich) and X (smectic rod-
rich). The white line indicates the position of the meniscus. The
photographs of the experimental samples (adapted with permission23,
Copyright 2000 American Chemical Society) were taken from crossed
polarizers. The scale bar (green) is 5 mm. b Bulk phase diagram in the plane
of chemical potential of rods μr and plates μp for the region next to the triple
point. The chemical potentials are scaled with the inverse temperature
β= 1/(kBT). Solid lines are the binodals involving isotropic and nematic
phases obtained with density functional theory. Dotted lines are the
inferred location of the Np− C (horizontal line) and Nr− X binodals.
Schematics of particle arrangement in the C and X phases are shown. The
sedimentation paths correspond to the samples shown in (a). The orange
arrow in sample 8 indicates the direction of the paths from top to bottom.
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INrNpC and INrXNpC, respectively) both an isotropic and a
(non-adjacent) columnar layer are present. This illustrates
that simultaneously occurring layers in a stacking sequence do
not need to imply bulk coexistence between the respective
phases.

Changing the buoyant mass ratio. The topologies of the bulk
and the stacking diagrams in Fig. 4b and d are the same (there is a
one-to-one correspondence between bulk regions and stacking
sequences) for the particular value of the buoyant mass ratio
s=mp/mr= 3. Changing the buoyant mass ratio does not alter
the bulk phase diagram but it can modify the topology of the
stacking diagram. A change in the buoyant masses can be
achieved experimentally by changing the material (inner core53,
coating54) of the colloidal particles, and also by changing the
solvent density.

To illustrate the effect of changing the buoyant mass ratio, we
calculate first the stacking diagram for the idealized case of

samples with infinite height21. In this limit a sedimentation
path is a straight line (not a segment) that can be described with
two variables: slope s and intercept a in Eq. (3). A stacking
diagram in the s− a plane can be calculated, see Fig. 6a, by
locating the paths that form the boundaries between different
stacking sequences21. These are: paths tangent to bulk binodals,
paths that cross triple points, and paths that are parallel to the
binodals in the limits μi→ ±∞. The stacking sequences for
finite samples are then given by those in the infinite sample
height limit and also by their subsequences formed by removing
layers at the top/bottom of the sequence. It becomes apparent
from the case of infinite height that the precise value of s is not
critical in the sense that it is possible to vary s in a certain range
without altering the sequences qualitatively. For example, no
qualitative change occurs for buoyant mass ratios s ≳ 2, see
Fig. 6a. This is particularly relevant considering that due to the
experimental uncertainties22, we estimate that the buoyant
mass ratio lies within the confidence interval s ∈ [2, 5] (see
Supplementary Fig. 1).

Fig. 6 Changing the buoyant mass ratio. a Stacking diagram for samples in the limit of infinite height and positive buoyant mass of rods (mr > 0) in the
plane of slope s=mp/mr and intercept a of the sedimentation paths. Each region represents a sequence, labeled from top to bottom (the reverse
sequences appear if mr < 0). The white arrows highlight the slopes s= 0.5 and 3 used here. Bulk phase diagram if the plane of chemical potential of rods μr
and plates μp (b) with the paths of samples 1 to 5 with s= 0.5 and height h= 20mm (solid lines). The chemical potentials are scaled with the inverse
temperature β= 1/(kBT). The stable phases are isotropic (I), nematic rod-rich (Nr), and nematic plate-rich (Np). The green arrow in sample 5 indicates the
direction of all paths from top to bottom. Stacking diagrams for heights h= 20 mm (c, d) and 50 mm (d, e) in the plane of average packing fractions of rods
�ηr and plates �ηp (c, e) and average chemical potentials of rods �μr and plates �μp (d, f). Black solid lines are sedimentation binodals of type I (paths that either
end or start at a binodal), black-dashed lines are terminal lines (paths crossing the triple point), and black-dotted lines are sedimentation binodals of type II
(paths tangent to binodals). Each sequence is denoted from top to bottom and colored differently (except for the white regions that represent sequences
with only one layer). The inset in (f) is a close view of a small region. The samples 1 to 5 in (b) are also shown in (c) and (d), as indicated. The blue
triangles indicate points at which three stacking sequences meet due to the bifurcation of a sedimentation binodal of type II from one of type I. The colored
squares in panels (c, d, e, f) indicate the points at which four stacking sequences meet due to the crossing between two sedimentation binodals (violet
squares) or the intersection of sedimentation binodals and a terminal line (yellow squares). Two sedimentation binodals cross (violet squares) whenever a
sedimentation path in bulk simultaneously start and end at a binodal, as illustrated by two gray-dashed paths in (b).
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The value s=mp/mr= 1 corresponds to the equality of
buoyant masses of plates and rods and hence delimits which
species is heavier: rods (s < 1) or plates (s > 1). Interestingly, the
stacking diagram for infinite height, Fig. 6a, reveals that which
species is the heavier does not play a decisive role since no
qualitative change occurs at s= 1.

A buoyant mass ratio in the interval s∈ [0, 1.75] produces
richer phenomenology than s= 3 (three vs. two distinct stacking
sequences). We select a value in that interval, s= 0.5, and
calculate the experimentally relevant stacking diagrams for finite
height. Selected paths with slope s= 0.5 are represented in
Fig. 6b. The paths correspond to a suspension in toluene of the
same rods as before but lighter plates with gravitational length
ξp= 11 mm. The slope is such that there are paths tangent to the
I−Np bulk binodal. Those paths create a new boundary in the
stacking diagram that increases significantly the number of
stacking sequences. We show stacking diagrams in Fig. 6c, d for
samples with h= 20 mm and in Fig. 6e, f for samples with
h= 50 mm. Both cases are much richer than the stacking
diagrams for s= 3.0, cf. Fig. 4. The one-to-one correspondence
between bulk regions, Fig. 4b, and stacking sequences, Fig. 6c, e, is
lost, emphasizing that bulk and stacking diagrams are fundamen-
tally different objects.

Moreover, the topology of the stacking diagram changes by
increasing the sample height due to the occurrence of the
complex stacking sequence INpINr in samples with h= 50 mm,
Fig. 6e, f. Such a four-layer sequence only occurs for significantly
long paths. The path needs to cross the bulk I−Np binodal twice
(only possible if s∈ [0, 1.64]) and the I−Nr binodal, see the bulk
diagram in Fig. 6b. This gives a lower limit of h≳ 48 mm for the
occurrence of the four-layer sequence if s= 0.5. The topological
change of the stacking diagram is driven by a change in the
sample height. The complex sequence INpINr illustrates that the
same phase (I) can reenter the sequence25 even though there is no
I− I demixing in bulk. Instead, the path crosses the I−Np

binodal twice.

Parametric study of stacking sequences and different repre-
sentations of the stacking diagram. We investigate five selected
samples with the same height, h= 20 mm, and packing fraction
of plates, �ηp ¼ 0:23, but different packing fraction of rods. Their
paths are depicted in Fig. 6b and the corresponding state points in
the stacking diagram are indicated in Fig. 6c, d. The density and
uniaxial profiles are shown in Fig. 7 together with schematics of
the stacking sequences.

By increasing �ηr we observe five different stacking sequences
INp, INpI, NpI, NpINr and NpNr. These sequences include the
formation of bottom isotropic layers, Fig. 7a, b, a floating
isotropic layer between two nematic layers, Fig. 7d, and a floating
nematic between two isotropic layers, Fig. 7b. The inversion of
the sequence INp to NpI, see Fig. 7a, c, also occurs by increasing
�ηr. Such inversion was experimentally observed in a polydisperse
suspension of plates55 by changing the colloidal concentration,
and attributed to a pronounced fractionation with respect to plate
thickness. The total colloidal packing fraction (or number
density) in the isotropic layers is always smaller than it is in
the nematic layers, see the density profiles of Fig. 7. However,
depending on the bulk region covered by the path, the mass

Fig. 7 Changing the concentration of rods. Packing fraction ηi (i= r, p for
rods and plates, respectively) and total mass density ρm profiles, uniaxial
order parameter Si, i= r, p profiles, and schematics as a function of the
vertical coordinate z for samples of height h= 20mm, fixed concentration
of plates �ηp ¼ 0:23 and varying concentration of rods �ηr ¼ 0:006 (a),
0.025 (b), 0.075 (c), 0.12 (d), and 0.20 (e). The slope of the sedimentation
path is s= 0.5. The corresponding sedimentation paths are depicted in
Fig. 6b. The samples are also marked in the stacking diagrams of Fig. 6c, d
using the same labels as here (colored squares with a number from 1 to 5).
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density can be greater in the isotropic layer than in the nematic
layer which facilitates the occurrence of bottom isotropic layers.
In all cases the total mass density (see Methods) increases
monotonically towards the bottom of the sample, see Fig. 7.

A detailed investigation of this complex evolution of sequences
can be performed with a representation of the stacking diagram in
the plane of packing fraction of rods and vertical coordinate, see
Fig. 8a. The diagram indicates the occurrent layer at a given
vertical position and concentration of rods. Both the height
h= 20 mm and the plate concentration ηp= 0.23 are fixed.
Figure 8a shows the introduction of the bottom isotropic layer
closely followed by the elimination of the top isotropic layer by
increasing �ηr. Then, an Nr layer is introduced which eventually
replaces the I layer at the bottom entirely. At high packing
fraction of rods, only nematic layers appear and the thickness of
the Nr layer increases by increasing �ηr, as expected.

The stacking diagram in the plane of sample height and vertical
coordinate at fixed concentrations, �ηr � 0:18 and �ηp � 0:05, is
shown in Fig. 8b. This stacking diagram is relevant for
experimental realizations since it represents the creation of
several samples that differ only in the sample height. For
h= 47 mm we observe the sequence NpI which upon increasing h
transforms first into a floating isotropic NpINr, followed by the
four-layer sequence INpINr. Finally at h= 53.7 mm the two
isotropic layers merge into a single layer due to the elimination of
the Np layer, which gives rise to the sequence INr. See schematics
of the evolution in Fig. 8c. Such complex behavior involving four
different sequences is observed by varying the sample height only
by 17%, from 47mm to 55 mm. Interestingly, in the h− z plane,
Fig. 8b, the lower I−Np boundary is parallel to the top sample-
air boundary, whereas the upper I−Np boundary is horizontal.

It is worth pointing out that varying the sample height at fixed
concentrations not only changes the length of the sedimentation
path but also its position in the μr− μp plane. This change gives
rise to the observed nontrivial dependence of the stacking
sequence on the sample height.

Discussion
To demonstrate the validity of the concept of sedimentation
paths21 we have studied sedimentation-diffusion-equilibrium of a
colloidal plate-rod mixture and found excellent quantitative
agreement with the well-known experiments conducted by van

der Kooij and Lekkerkerker22,23. We have shown how to sys-
tematically analyze and interpret the stacking sequences observed
experimentally, group these sequences in a stacking diagram, and
predict the stacking diagram from the bulk phase diagram of the
system. Moreover, we have also shown how to infer the bulk
phase behavior of the mixture from the experimental results
under gravity and have also predicted both a different set of
stacking sequences and a complex evolution of the sequences by
simply changing the height of the samples. All predictions can be
verified experimentally by altering the buoyant masses of the
particles and systematically varying the height of the samples.

Some gravity-induced effects, like the formation of a sequence
with five layers, were attributed to polydispersity22 since the
occurrence of more than three layers was understood as an
apparent violation of the Gibbs phase rule. However, due to
gravity it can only be guaranteed that any two consecutive layers
that share an interface in the sample coexist in bulk. Hence, as
pointed out in other works21,40, the occurrence of say five layers
in a stacking sequence does not imply the existence of a quintuple
point in the bulk phase diagram. Such multi-phase bulk coex-
isting points can exist in binary mixtures56,57 for specific inter-
particle interactions but are unrelated to the occurrence of several
layers in sedimentation.

Even though polydispersity is almost unavoidable in experi-
ments, our theory reproduces here the observed stacking
sequences semi-quantitatively. Adding polydispersity to sedi-
mentation path theory is, in principle, possible provided that the
theoretical description of the bulk also incorporates poly-
dispersity, e.g., via a distribution of particle sizes49,58.

Our results indicate a nontrivial dependence of the stacking
sequences on the sample height. Controlling and varying the
sample height is, in principle, simple in experimental realizations
and it opens a route to find interesting phenomenology and
gain insight into the bulk phase behavior. Analytical
ultracentrifugation59, in which centrifugal forces change the
strength of gravity, can be also described with our theory.
Changing the strength of gravity is an alternative method to vary
the length of the sedimentation path leaving the buoyant mass
ratio unaltered.

The topology of the stacking diagrams can change with the
buoyant mass ratio. However no qualitative change occurs here
around a buoyant mass ratio s of unity (which delimits which
species is the heavier). This is likely the case in other asymmetric

Fig. 8 Effect of sample height. a Stable layer at elevation z as a function of the packing fraction of rods �ηr for samples with fixed height h= 20mm and
packing fraction of plates �ηp ¼ 0:23. b Stable layer at elevation z as a function of the total sample height h for samples with fixed concentrations
ð�ηr; �ηpÞ ¼ ð0:177;0:051Þ. The vertical dotted white lines indicate the position in the diagrams of selected samples, labeled by colored squares. c Schematics
of four selected samples of different heights but identical colloidal concentrations that develop qualitatively different stacking sequences. The layers are
isotropic (I), nematic plate-rich (Np), and nematic rod-rich (Nr).

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00706-0

10 COMMUNICATIONS PHYSICS |           (2021) 4:202 | https://doi.org/10.1038/s42005-021-00706-0 | www.nature.com/commsphys

www.nature.com/commsphys


mixtures. Symmetric mixtures are a special case where s= 1 can
play a special role.

The stacking diagram admits several representations. We have
shown two experimentally relevant representations in the plane of
vertical interface position between layers, z, and either average
packing fraction, �η, or the overall sample height, h. Although
these axes are motivated by sedimentation experiments, the z− h
plane can be also conceived as a transformation of the bulk phase
diagram in the plane of chemical potentials: The vertical position
is a linear parameterization of the chemical potential, Eq. (2), and
the change in overall height moves nontrivially the path in the
plane of chemical potentials implicitly via the constraint of fixed
average packing fractions. The inversion of this non-linear inte-
gral relationship between average chemical potentials, i.e., the
position of the sedimentation path, and the average packing
fraction might be another route to obtain the bulk phase diagram
from sedimentation experiments.

We expect similar gravity-induced phenomena to occur in
other types of mixtures over length scales of a few centimeters
provided that the size of at least one species is of the order of
100 nm or larger and there is a significant density difference
between the solvent and the particles. For colloidal particles of a
few nanometer and micro-emulsions, gravitational effects will be
apparent at lengths scales comparable to the gravitational length,
which can be of the order of meters. Gravity-induced density
gradients also occur in sufficiently large molecular systems and
can be also described with sedimentation path theory.

The sedimentation path theory excludes surface effects that
occur at the interfaces between two layers and also between the
suspension and the bottom/top of the cuvette. Surface effects can
be incorporated via a full, spatially resolved, density functional
minimization of the inhomogeneous mixture in a gravitational
field (see Methods) and might introduce small changes in the
position of the boundary lines in the stacking diagram.

The sedimentation path theory and the methodology presented
here are general and constitute the basis for carrying out and
interpreting sedimentation experiments on both colloid-colloid
and polymer-colloid mixtures60. Carrying out new experiments to
investigate the role of the sample height and that of the buoyant
mass ratio would be particularly valuable and enlightening.

Methods
Bulk phase behavior. We use classical density functional theory (DFT)61 to obtain
the bulk phase diagram of the plate-rod mixture. The total free energy F is the sum
of the ideal and the excess part (F= Fid+ Fexc). The ideal contribution to the
intrinsic Helmholtz free energy at temperature T for a mixture is given exactly by

βFid ¼ ∑
i

Z
dr

Z
dωρiðr;ωÞ ln ρiðr;ωÞΛ3

i

� �� 1
� �

; ð4Þ

where β= 1/(kBT) with Boltzmann’s constant kB, the sum runs over both species,
Λi is the thermal wavelength of species i= r, p, and ρi(r, ω) is the one-body density
profile of species i at position r and orientation specified by the unit vector ω. Since
we consider only phases without positional order we average out all positions r and
introduce the angular distribution function ψi of species i via ρi(r, ω)= ρiψi(ω) and
normalization ∫dωψi(ω)= 1. Hence, ρi is the number density of species i and we
obtain

βF id

N
¼ ∑

i
xi

Z
dωψiðωÞ ln ψiðωÞρiΛ3

i

� �� 1
� �

; ð5Þ

where N is the total number of particles in the system and xi is the composition of
species i.

We use an extended Onsager approximation for the excess (over ideal)
contribution to the free energy

βFexc

N
¼ ΨðηÞρ∑

i;j
xixj

Z
dω

Z
dω0ψiðωÞψjðω0ÞVex

i;j ðω;ω0Þ; ð6Þ

with total density ρ=∑iρi and Vex
i;j ðω;ω0Þ being the excluded volume (i.e., the

volume inaccessible to one particle due to the presence of another particle) between
particles of species i and j with orientations ω and ω0 , respectively. Both rods and
plates are modeled as hard cylinders (see Fig. 1) for which analytical expressions for

the excluded volume exists62,63. To speed up the computation, the azimuthal angle
φ of both species is averaged over in advance and only the polar dependence,
Vex

i;j ðθ; θ0Þ, is retained. Accordingly, we consider only the polar dependence of the

angular distribution function
R 2π
0 dφψiðωÞ ¼ 2πψiðθÞ. This prevents the study of

biaxial phases that, on the other hand, are not stable for the particle aspect ratios
considered here64 and are also not observed in the experiments22,23.

Following Parsons65 and Lee66, we replace the prefactor 1/2 in front of the
second virial coefficient in Onsager’s original expression62 by

ΨðηÞ ¼ 4� 3η

8 1� η
� �2 ; ð7Þ

in Eq. (6), which corresponds to the excess free energy per particle of a system of
hard spheres according to the Carnahan-Starling equation of state67. Here
η= ρ∑ixivi=∑iηi is the total packing fraction across all species with vi being the
particle volume of species i. The scaling, Eq. (7), does not alter the topology of the
phase diagram and serves to improve substantially the agreement of the transition
densities compared to computer simulations64. In the low density limit (η→ 0) the
original Onsager expression, based on the second virial coefficient, is recovered
since Ψ(η→ 0)= 1/2.

Minimization. We perform a free minimization of the functional discretizing ψi(θ)
on a one dimensional grid with 160 bins and calculate the uniaxial order parameter
of species i according to

Si ¼
Z

dθ
3cos2ðθÞ � 1

2
ψiðθÞ; ð8Þ

where the angle θ is measured with respect to the director of one of the species.

Bulk coexistence. The bulk phase diagram is obtained via numerical minimization
of the Gibbs free energy per particle

gb ¼
F
N
þ P

ρ
; ð9Þ

where P is the osmotic pressure and the total number density is ρ= ρr+ ρp with ρi
the number density of species i= r, p. Mechanical and thermal phase equilibria are
fulfilled in the Gibbs ensemble by construction (P and T are fixed). To find che-
mical equilibrium and hence phase coexistence we search for a common-tangent
construction on gb(xr), with xi= ρi/ρ the composition of species i. The common
tangent is equivalent to the equality of chemical potentials of both species in the
coexisting phases since gb= μrxr+ μpxp, with μi the chemical potential species i.
Hence, for fixed values of P, T, and xr (which also fixes xp since xp= 1− xr), we
numerically minimize the Gibbs free energy per particle with respect to the total
density and the orientational distribution functions of both species and then search
for a common tangent.

Average packing fractions along a path. To obtain ηi along a sedimentation path
we minimize the grand canonical potential Ω per unit of volume

Ω

V
¼ F

V
� ρ∑

i
μixi; ð10Þ

at fixed chemical potentials, μi, with respect to the variables ψi, xi and ρ.
Given the coordinates �μi of a path, it is straight forward to obtain the

corresponding �ηi. The opposite procedure, which we use to find the paths that
correspond to the experimental samples in Fig. 3, is however involved. Provided
with the average packing fractions of a given sample, �ηi we numerically solve a set
of non-linear equations to find the corresponding sedimentation path in the plane
of chemical potentials.

Full minimization of the grand potential. As an alternative to the sedimentation
path theory, it would be possible find the solution to the full inhomogeneous
system by minimizing the grand potential functional

Ω½fρig� ¼ F½fρig� �∑
i

Z
dr

Z
dωρiðr;ωÞðVext

i ðr;ωÞ � μiÞ; ð11Þ

with respect to the density profiles of both species ρp(r, ω) and ρr(r, ω). Here,
F[{ρi}] is the intrinsic free energy functional of the inhomogeneous system. For a
gravitational field, the external field is simply Vext

i ¼ migz.
Within the sedimentation path theory, instead of minimizing Eq. (11), we

minimize at each value of z along the sedimentation path a corresponding bulk
system, Eq. (10), with a height dependent chemical potential given by Eq. (2). The
linear dependence of the local chemical potential with the vertical coordinate, Eq.
(2), is a direct consequence of the linear dependency of the external potential on z.
Note, however, that the dependence of the local chemical potentials on other
variables such as the composition is more complex since it ultimately depends on
the interparticle interactions via the free energy F.
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Total mass density. The total mass density profile, ρm(z) is the sum of the mass
density of each species plus the density of the solvent. Using the buoyant masses
mi, the total mass density is simply68

ρmðzÞ ¼ ∑
i
miρiðzÞ þ ρs; ð12Þ

where ρi(z) is the number density of species i at position z and ρs is the mass
density of the solvent.

Data availability
All the data supporting the findings are available from the corresponding author upon
reasonable request.
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