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The rich and diverse dynamics of particle-based systems ultimately originates from the coupling of
their degrees of freedom via internal interactions. To arrive at a tractable approximation of such many-
body problems, coarse graining is often an essential step. Power functional theory provides a unique
and microscopically sharp formulation of this concept. The approach is based on an exact one-body
variational principle to describe the dynamics of both overdamped and inertial classical and quantum
many-body systems. In equilibrium, density-functional theory is recovered, and hence spatially
inhomogeneous systems are described correctly. The dynamical theory operates on the level of time-
dependent one-body correlation functions. Two- and higher-body correlation functions are accessible
via the dynamical test-particle limit and the nonequilibrium Ornstein-Zernike route. The structure of
this functional approach to many-body dynamics is described, including much background as well as
applications to a broad range of dynamical situations, such as the van Hove function in liquids, flow in
nonequilibrium steady states, motility-induced phase separation of active Brownian particles, lane
formation in binary colloidal mixtures, and both steady and transient shear phenomena.
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I. INTRODUCTION

A. Soft matter dynamics

Soft matter science covers a broad range of diverse systems
and their phenomena. Nagel (2017) and Evans, Frenkel, and
Dijkstra (2019) described the gamut from colloids to poly-
mers, from granulates to active systems, from liquid crystals to
biomolecular systems, and beyond those. Although the
systems are typically out of true equilibrium, in many
instances the concepts of equilibrium statistical physics can
be fruitfully exploited in order to understand and predict
the behavior observed in the lab. However, the genuine
dynamical behavior of soft matter is varied and rich, and it
often constitutes the central focus of research. Balucani and
Zoppi (1994), Dhont (1996), Zwanzig (2001), Götze (2008),
and not least Hansen and McDonald (2013) provided acces-
sible and thorough treatments of soft matter and dynamical
liquid state theory. Schilling (2021) gave a recent compre-
hensive review of dynamical coarse-graining strategies.
Specific recent studies were aimed at the dynamical

structure of the hard sphere liquid (Stopper et al., 2018) as
well as of complex ordered states (Bier et al., 2008), micro-
fluidics (Squires and Quake, 2005), slow dynamics and the
glass transition (Dyre, 2006), gelation, and the topical field of
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active systems, as reviewed by Marchetti et al. (2013) and
Bechinger et al. (2016). Starting from a microscopic point
of view, one would expect phenomena such as these to
ultimately originate from the large number of degrees of
freedom in the system, which are coupled via the interparticle
interactions.1 On the many-body level of description, com-
puter simulation techniques offer in principle direct access to
the physical behavior of a given system. To rationalize the
bare data that are output from simulations, however, a
theoretical framework is required, which (i) condenses the
many-body information into digestible and intelligible form,
and (ii) formulates interrelations between the simulated
quantities. Furthermore, (iii) both strong conceptual and
practical reasons (such as computational efficiency) speak
for having a reliable and predictive stand-alone theory.
For equilibrium properties classical density-functional

theory (DFT), as established by Evans (1979), satisfies the
previously mentioned needs. Its basic (variational) variable is
the density profile, i.e., the position-resolved microscopic
probability to find a particle at the given space point.
The density profile determines all physical properties of the
system, at given thermodynamic state point, and in the
presence of a fixed external one-body potential. Hence,
the equation of state, the phase diagram, correlation functions,
solvation forces, interfacial tension, etc., are all accessible.
The DFT framework was originally conceived for quantum
systems at zero temperature (i.e., for the ground state) by
Hohenberg and Kohn (1964).2 Only one year later, Mermin
(1965) accomplished the generalization to finite temperatures.
Evans (1979) formulated the classical version of DFT, and his
approach has become textbook material (Hansen and
McDonald, 2013). The quantum and classical theories are
similar in their formal structure, although the approximative
functional forms that are used in either field differ substan-
tially from each other.3

To give a sense of the breadth of classical DFT subject
matters, we enlist recent pivotal DFT studies. These have
addressed atomically resolved three-dimensional structures of
electrolytes near a solid surface (Martin-Jimenez et al., 2016;
Hernández-Muñoz, Chacón, and Tarazona, 2019), solvation
phenomena in water (Jeanmairet et al., 2013), and water-
graphene capacitors (Jeanmairet et al., 2019). Much work
addressing hydrophobicity has been carried out, where liquid
water (or a more general liquid) avoids contact with a substrate
or solute. Here the density fluctuations near the substrate were
quantified (Evans and Wilding, 2015) and a unified descrip-
tion was obtained for hydrophilic and superhydrophobic
surfaces in terms of wetting and drying transitions of liquids

(Evans, Stewart, and Wilding, 2019; Remsing, 2019).
Furthermore, critical drying of liquids (Evans, Stewart, and
Wilding, 2016) and superhydrophobicity (Giacomello et al.,
2016, 2019) were investigated. There has been much
progress on the conceptual level, as exemplified by the recent
systematic incorporation of two-body correlation functions
(Tschopp et al., 2020; Tschopp and Brader, 2021) and
fluctuation profiles (Eckert et al., 2020) into the one-body
DFT framework.
A time-dependent version of classical DFT, or “dynamical

DFT,” was proposed by Evans (1979) and later much
advocated for by Marconi and Tarazona (1999) and Archer
and Evans (2004). Selected examples of insightful dynamical
DFT studies include the uptake kinetics of molecular cargo
into hollow hydrogels (Moncho-Jordá et al., 2019), the
particle-scale-resolved nonequilibrium sedimentation of col-
loids (Royall et al., 2007), the bulk dynamics of colloidal
Brownian hard disks (Stopper et al., 2018), the pair dynamics
in inhomogeneous liquids and glasses (Archer, Hopkins, and
Schmidt, 2007; Hopkins et al., 2010), and the growth of
monolayers of hard rods on planar substrates (Klopotek et al.,
2017). The dynamical DFT can be viewed as being based on
the approximation that the nonequilibrium dynamics are
represented as a sequence of “adiabatic states” that each
are taken to be in equilibrium. While the adiabatic approxi-
mation for dynamical processes can be valid in certain cases,
important physical effects are absent (Fortini et al., 2014),
such as drag forces (Krinninger, Schmidt, and Brader, 2016),
viscosity (de las Heras and Schmidt, 2018a), and structural
nonequilibrium forces (Stuhlmüller et al., 2018; de las Heras
and Schmidt, 2020; Geigenfeind, de las Heras, and Schmidt,
2020; Treffenstädt and Schmidt, 2021).
Going beyond the somewhat ad hoc equation of motion of

dynamical DFT is facilitated by the formally exact power
functional variational framework of Schmidt and Brader
(2013). Power functional theory provides a minimization
principle for the description of the dynamics. The internal
force field, as arising from the interparticle interactions of
particles that undergo Brownian dynamics, consists of both
adiabatic and superadiabatic (above adiabatic) contributions.
The former are accounted for in dynamical DFT; the latter
possess genuine nonequilibrium character, as they are gen-
erated from a kinematic functional of the density profile and of
the microscopically resolved flow. The variational fields are
dynamical one-body objects, i.e., they depend on the position
coordinate and the time. In particular, the superadiabatic
force field is a functional of these kinematic fields, while
the adiabatic force field is a functional of the instantaneous
density profile alone. The power functional theory has been
formulated for different types of underlying many-body
dynamics, such as overdamped Brownian motion (Schmidt
and Brader, 2013), including active systems (Krinninger,
Schmidt, and Brader, 2016; Hermann et al., 2019;
Hermann, de las Heras, and Schmidt, 2019; Krinninger and
Schmidt, 2019), classical Hamiltonian dynamics as relevant
for molecular dynamics (Schmidt, 2018), and nonrelativistic
quantum dynamics (Schmidt, 2015). The last case promises to
help overcome the limitations of adiabatic time-dependent
electronic DFT, and furthermore to act as a conceptual bridge
between the classical and quantum worlds, due to the strong

1There are interesting counterexamples, where the dynamics of a
single particle already are exceedingly rich, such as in magnetically
driven topological transport (Loehr et al., 2016, 2018) and in active
(Maes, 2020) and viscoeslastic (Berner et al., 2018) solvents.

2Accessible and compact descriptions of electronicDFTwere given
by Kohn (1999), Jones and Gunnarsson (1989), and Jones (2015).

3See the excellent reviews by Tarazona, Cuesta, and Martínez-
Ratón (2008), Lutsko (2010), and Roth (2010), for descriptions of the
state of the art of classical DFT; the foreword by Evans et al. (2016)
of a special issue on classical DFT described recent progress.
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formal similarities between the classical Hamiltonian and
quantum versions of the power functional. Developing time-
dependent quantum DFT (Runge and Gross, 1984) [see Chan
and Finken (2005) for a classical analog] constitutes an active
field of research (Onida, Reining, and Rubio, 2002; Nakatsukasa
et al., 2016). There is much current interest in bringing the
quantum and classical DFT communities closer together (Dufty
et al., 2019), and power functional theory provides a concrete
theoretical structure for making the corresponding progress.
The review is organized as follows. Section I.B gives an

overview of the central power functional concept of working on
the level of locally resolved forces and exploiting functional
dependencies. Section II begins with a specification of the
splitting of the forces that act in typical many-body systems into
internal and external contributions (Sec. II.A). The splitting
applies to a generic and broad class of systems and it forms the
primary motivation for the specific choice of one-body kin-
ematic fields as fundamental dynamical variables. We then turn
to the level of one-body fields and derive corresponding
equations of motion, starting with underlying classical
(Newtonian) dynamics of the many-body system. This includes
the equations of motion for the one-body operators, i.e., for
phase space functions that represent the density and current.
The form of these equations is that of a force balance
relationship, or Newton’s second law, including transport
effects (Sec. II.B). While transport effects are familiar from
a hydrodynamic standpoint, the present treatment is entirely
microscopic and does not involve coarse graining in the sense
of averaging out microscopic length scales. The description is
microscopically “sharp.” One-body distribution functions are
obtained by averaging over the many-body phase space
probability distribution function (of which the time evolution
is governed by the Liouville equation).
The one-body equations of motion for overdamped

Brownian classical motion (Sec. II.C) and for nonrelativistic
quantum dynamics (Sec. II.D) are similar to the previously
mentioned Newtonian case. Although the respective deriva-
tions are elementary (to a certain degree) and the underlying
dynamics are apparently different from each other, it is
surprising that the one-body description possesses universal
status. There are clear differences though. The quantum one-
body dynamics feature additional genuine quantum contribu-
tions (dependent on ℏ), the appearance of the quantum kinetic
stress tensor distribution as well as of different types of force
densities. For overdamped classical dynamics, the local force
directly translates into an instantaneous particle current, and
not into its time derivative, as is the case for quantum and
Newtonian dynamics, which instead feature inertia. As we
demonstrate, in all considered cases of many-body time
evolution, the nontrivial coupling arises directly in the force
density distribution (along with the kinetic stress in the inertial
cases). The details of the definition of the internal force
density differ among the three types of dynamics, as do the
different types of averages (phase space average, quantum
expectation value, and positional configuration space inte-
gral). Nevertheless, one can view these differences as merely
technical and the internal force density as a universal and
fundamental physical object. At this stage, however, the
internal force density is defined only as a many-body average.
Hence, the one-body theory is not closed and does not yet

form a stand-alone framework. The one-body quantities
merely constitute observables, which, although characteristic
of the full dynamics, lack a mechanism to restore the full
information and evolve the system in time.
In equilibrium, a closed theory on the one-body level is

available through the well-established framework of density-
functional theory, which ascertains that the reduction of
information that is inherent to relying on one-body fields is
perfectly compensated for, without any principle loss, by the
recognition and use of functional dependencies. Section III
hence describes the adiabatic state and its treatment via the
classical version of density-functional theory, which is promi-
nently used in the description of bulk and inhomogeneous
fluids, solids, liquid crystals, and further self-organized states
of matter (Hansen and McDonald, 2013; Evans et al., 2016).
The reasons for laying out the framework are twofold. The
first reason is that DFT forms a blueprint, or prototype, for the
subsequent construction of the power functional framework.
Both approaches share on an abstract, formal level many
similarities, such as a truly microscopic foundation, the
existence of a central functional object, which is minimized
at the physical solution, and the generation of meaningful
averages (correlators) via functional differentiation.
Physically, however, the frameworks are distinct as to whether
equilibrium (DFT) or nonequilibrium (power functional
theory) situations are addressed. The second, and possibly
more important, reason for covering DFT is its relevance in
genuine nonequilibrium for the description of the adiabatic
state (Sec. III.A). Any dynamical theory on the one-body level
that can account for spatial inhomogeneity needs to reduce to
DFT in the equilibrium limit. In power functional theory, this
reduction is generic. The adiabatic contribution to the dynam-
ics is unique and forms the part that is independent of the flow.
After an overview of the history of DFT (Sec. III.B) and its

general structure (Sec. III.C), we start from the partition sum
(Sec. III.D) and show how its functional derivative(s) with
respect to the external potential are meaningful response
functions; these are equivalent to correlation functions in
the classical case. We cover several recent developments that
are crucial for the dynamical material to follow and that are
not covered in the previously mentioned standard introductory
DFT literature. This includes the derivation of the Mermin-
Evans variational principle via the Levy constrained search
method (Sec. III.E). The intrinsic elegance and prowess of this
method are not only a boon for the equilibrium framework, as
a delicate reductio ad absurdum argument is circumvented,
but also vital for the construction of the power functional. We
describe two-body correlation functions (Sec. III.F) and derive
the Ornstein-Zernike relation directly from the DFT minimi-
zation principle (Sec. III.G). This derivation cleanly separates
the fundamental concept from the technicalities of defining
and manipulating the various response and correlation func-
tions that are involved. It is this type of derivation that is later
generalized to the dynamical functional calculus in order to
obtain the nonequilibrium version of the Ornstein-Zernike
relation. An overview of approximate free energy functionals
is presented (Sec. III.H). We conclude the section with an
account of dynamical density-functional theory (Sec. III.I).
Section IV describes power functional theory, starting

with an overview of the concept (Sec. IV.A). We cover the
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formulations for classical inertial dynamics and for diffusive
overdamped Brownian dynamics, as well as for nonrelativistic
many-body quantum dynamics. In all these cases the power
functional not only plays the role of a Gibbs-Appell Gaussian
that determines the dynamics via a minimization principle but
also constitutes a functional generator for time correlation
functions. The reduction to the one-body level is performed
using a dynamic generalization of the Levy search method,
where, in particular, the constraint of fixed one-body current
creates a one-body extremal principle with respect to the
current (or the time derivative of the current in the inertial
cases). This concept allows to formulate closed one-body
equations of motion in all three cases of microscopic dynam-
ics considered (Sec. IV.B), i.e., for molecular dynamics,
overdamped Brownian motion, and quantum mechanics. It
is shown that the natural splitting into intrinsic and external
(and additional transport effects, in the inertial cases) trans-
lates into an analogous splitting of the functional generator. In
all cases, the internal force density plays a central role in
coupling the microscopic degrees of freedom. The interrelated
kinematic one-body fields, i.e., the density profile, the local
current or velocity, and the local acceleration, play the role of
order parameters.
The superadiabatic force contributions act on top of the

adiabatic force field. Although there is no exact solution for
the superadiabatic functional contribution available (similar to
the corresponding situation in equilibrium DFT, where the
excess free energy functional is unknown in general), the
framework shows existence and uniqueness. In contrast to
the deterministic Gibbs-Appell-Gaussian formulation in
classical mechanics, the constraint is a statistical one, as
has been used in the Levy method of classical DFT con-
struction. The framework implies a fundamental functional
map from the density and current (and the current time
derivative, in the inertial cases) to the external force field
that generates these dynamics. A discussion is given of simple
approximate forms of the superadiabatic free power functional
(Sec. IV.C). We show how local and semilocal gradient
functionals describe important classes of physically distinct
effects, such as drag, viscous, and structural nonequilibrium
forces. Based on the concept of functional differentiation of
the Euler-Lagrange equation, we describe the derivation of
nonequilibrium Ornstein-Zernike relations (Sec. IV.D). This
includes the introduction of time direct correlation functions,
which are identified as functional derivatives of the super-
adiabatic free power functional.
We then turn to several recent applications. The dynamical

test-particle limit (Sec. IV.E) constitutes an alternative, for-
mally exact route to the time-dependent two-body structure.
A practical and simple explicit computational simulation
scheme that implements kinematic functional dependencies
is provided by the custom flow method, which we lay out for
overdamped Brownian dynamics (Sec. IV.F). This method is
vital in the study of viscous and structural forces (Sec. IV.G),
which is based on splitting the Brownian dynamics into flow
and structural contributions. Viscoelasticity, as originating
from memory dependence of the superadiabatic free power
functional, is demonstrated to occur for hard spheres under
time-dependent step shear (Sec. IV.H). Lane formation in
counterdriven mixtures is shown to originate from a

superadiabatic demixing force contribution (Sec. IV.I). An
overview of power functional theory for active Brownian
particles, including the treatment of motility-induced phase
separation, is described (Sec. IV.J). We draw conclusions and
provide an outlook on future work in Sec. V.
The Appendix contains an overview of Hamilton’s action

principle (Appendix A.1), from which both the Lagrangian and
Hamiltonian formulations of classical mechanics are derived.
This familiar material serves to review the essentials of func-
tional calculus, which we spell out explicitly in spatiotemporal
and time-slice forms (Appendix A.2). As Hamilton’s principle
requires only stationarity and not necessarily an extremum of
the functional, this case also constitutes a counterexample to
dynamical minimization, as performed in the Gibbs-Appell-
Gaussian formulation of classical mechanics (Appendix A.3).
Despite the considerable fame of its originators and its wide use
both in the nonequilibrium liquids computer simulation com-
munity (Evans and Morriss, 2013) and in mechanical applica-
tions of classical dynamics with constraints, the method seems
to be crucially undervalued and little known in the wider
statistical physics community. As the power functional per-
forms a similar variation, we lay out the deterministic Gibbs-
Appell-Gaussian theory.

B. Forces as the basis

The forces that govern the behavior of typical many-body
systems naturally split into internal forces, which act between
the constituent particles, whether they be atoms, molecules, or
colloids, and forces that are of an external nature. Typically the
external forces depend on a single space coordinate only, i.e.,
the external force that acts on a given particle i depends only on
its position ri, and possibly explicitly on time. If the particles
possess additional degrees of freedom, such as the orientations
of anisotropic particles, then the external force field can also
depend on these, as it might on the type of particle in the case of
multicomponent systems. Thus, in general the external force
will depend on the same degrees of freedom that characterize a
single particle (such as position, orientation, and species).
Hence, one refers to such forces as one-body forces (of external
nature in the present case). Even in cases where no explicit
external forces are present, such as in a bulk fluid, one might
regard one of the particles being fixed, say, at the origin and
consider the forces that this “test” particle exerts on the
remaining system as external. This is Percus’s test-particle
limit (Percus, 1962), which relates inhomogeneous one-body
distribution functions to bulk two-body correlation functions.
The external forces can be of various physical origins and

hence model a broad range of real-world experimental
situations, such as gravity, container walls, light, and electric
and magnetic fields. The mathematical description of forces
via one-body fields allows for systematic classification into
conservative contributions, as derived by the negative gradient
of an external potential, and nonconservative contributions,
where such a potential does not exist. Both types of forces
might be simultaneously present, and they might, or might
not, be time dependent. A mesoscopic example of the time-
dependent conservative case is the switching of a laser tweezer
in strength and/or position. Nonconservative forces can
represent the influence of shear flow in overdamped systems,
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such as sheared hard spheres at a hard wall (Brader and
Krüger, 2011).
Restricting ourselves to the simple case of a one-component

system of spheres, the external force field is

fextðr; tÞ ¼ −∇Vextðr; tÞ þ fncðr; tÞ; ð1Þ

where Vextðr; tÞ is the external potential and fncðr; tÞ is the
nonconservative contribution to the force field; here r indi-
cates position, t indicates time, and ∇ denotes the derivative
with respect to r.
In cases where the nonconservative forces vanish

[fncðr; tÞ≡ 0] and the external potential is time independent
[Vextðr; tÞ≡ VextðrÞ], a well-defined equilibrium state typically
exists. Averaging over the equilibrium time evolution of the
system then provides a method to calculate the quantities of
interest. On physical grounds one would be interested in the
response of the preferred particle positions to the action of
VextðrÞ. Valleys in the external potential should be populated
more likely by particles than peaks of the external potential.
As the external potential acts on single particles individually, a
meaningful corresponding observable is the one-body density
distribution (or “density profile”)

ρðr; tÞ ¼
�X

i

δðr − riÞ
�
; ð2Þ

where the sum is over all particles i ¼ 1;…; N, with N the
total number of particles, δð·Þ the Dirac function, and the
angles representing a statistical average (specified in detail
later) over microstates. For an equilibrium system, the one-
body density distribution will be time independent, but in
general be “inhomogeneous” in space, i.e., ρðrÞ ≠ const. In
practice, Eq. (2) amounts to “counting” the number of
occurrences of any particle (hence the sum) at a given position
r; see Rotenberg (2020) for an account of modern and more
efficient “force-sampling” simulation methods. Hence, Eq. (2)
can be viewed as an idealized, infinitely sharply resolved
histogram of particle positions. Its normalization isR
drρðr; tÞ ¼ N due to the property of the Dirac distributionR
drδðrÞ ¼ 1 (for a suitable integration domain).
Summarizing, in an equilibrium many-body system, it is

natural to consider the influence of a position-dependent
external potential VextðrÞ on the system. As a result it is
plausible to consider ρðrÞ a meaningful response function to
assess the physical behavior. One would view the relationship
between the two fields to be a causal one; i.e., VextðrÞ provides
the physical reason for the form of ρðrÞ. A primary example
is the barometric law of the isothermal atmosphere with an
exponentially (in height) decreasing density profile in
response to gravity. A diffusive force field emerges in
such an inhomogeneous system −kBT∇ ln ρðrÞ, where kB is
the Boltzmann constant and T indicates temperature. The
diffusive force can counteract the external force, such as the
gravitational pull in the previous example. This effect is
already present in the ideal gas. In an interacting system,
however, the relationship between external potential and the
density profile is a much more subtle, and by far richer, one.

In equilibrium the system will on average not move. Hence,
the external forces need to be balanced by an average intrinsic
force field, which consists of the previously mentioned ideal
diffusive contribution and an interparticle interaction contri-
bution fintðrÞ. Hence, in equilibrium the sum of all forces must
vanish,

−kBT∇ ln ρðrÞ þ fintðrÞ þ fextðrÞ ¼ 0: ð3Þ

As a result of the force cancellation, no temporal changes
occur in the averaged quantities. Here the intrinsic force field
−kBT∇ ln ρðrÞ þ fintðrÞ consists of a sum of ideal and excess
(above ideal) contributions, and hence it contains all effects
that are not of an external nature. The excess contribution
fintðrÞ arises from the internal interactions and is given by

fintðrÞ ¼ −
�X

i

δðr − riÞ∇iuðrNÞ
�
=ρðrÞ; ð4Þ

where uðrNÞ is the interparticle interaction potential; the set of
all particle position coordinates is denoted by rN ≡ r1;…; rN,
and ∇i is the derivative with respect to ri. Here uðrNÞ can be,
but need not be, due to only pairwise contributions.
The average in Eq. (4) can again be viewed as a histogram,

but in contrast to the one-body density (2) the entries are not
simply events that are being counted but rather (vectorial)
values (−∇iu). Hence the “bin” corresponding to r can attain
large values due to both a large number of events and large
values of the local force. The normalizing factor 1=ρðrÞ scales
out the first of these effects (number of events). While the
force density “operator” in Eq. (4) is entirely deterministic,
the statistical nature of the problem is prominently present in
the average over microstates.
It could be argued that the dependence of the positions on

the forces is a concept that dates back to Newton, with Gibbs’s
extension to a statistical description. However, the precise
nature of the relationship between density and external
potential is an equally important and arguably more funda-
mental one, as established in the 1960s (and described in
Sec. III). In fact, for a given system (as specified by its internal
interactions), knowledge of the one-body distribution function
alone is sufficient to reconstruct the corresponding external
potential. This mathematical map is at the heart of both
quantum and classical DFT; see Mermin (1965) and Evans
(1979), respectively.
Within classical DFT one expresses the equilibrium force

field (4) that arises due to the internal interactions as the
gradient of a functional derivative as follows:

fintðrÞ ¼ −∇ δFexc½ρ�
δρðrÞ : ð5Þ

In Eq. (5) Fexc½ρ� is a mathematical map from the function ρðrÞ
to the value of the excess (over ideal gas) intrinsic Helmholtz
free energy. As an intrinsic contribution, this value is due
solely to the internal interactions uðrNÞ, regardless of the
external potential. Such a map constitutes a functional.
The functional derivative δ=δρðrÞ creates the “response” of
the value of Fexc½ρ� to changes in density ρðrÞ at position r;
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a pragmatic introduction to functional calculus is given in
Appendixes A.1 and A.2.
The result of the functional derivative is hence position

dependent, and we have made this position dependence
explicit in the notation on the left-hand side of Eq. (5).
Recall that the position dependence in the “probabilistic”
expression (4) arises due to the presence of the delta function.
The functional Fexc½ρ� depends also on T (and on system
volume V), and the functional is specific to the choice of
interparticle interaction potential uðrNÞ. One highly nontrivial
feature is that Fexc½ρ� is independent of VextðrÞ. Recall that
Eq. (4) at face value seems to depend on VextðrÞ, as the external
potential enters the Boltzmann factor and hence determines
the statistical ensemble that defines the average. However, the
existence of the unique relationship ρðrÞ → VextðrÞ frees
Fexc½ρ� of any dependence on VextðrÞ, and hence renders it
an entirely intrinsic quantity.
It is instructive to use Eq. (5) to rewrite the equilibrium

force balance condition (3) as

−kBT∇ ln ρðrÞ −∇ δFexc½ρ�
δρðrÞ ¼ ∇VextðrÞ; ð6Þ

and we recall that any nonconservative contribution to the
external force field (1) needs to be absent and the external
potential must be independent of time in order for an
equilibrium state to exist.
Equation (6) can be viewed as an overall gradient of a scalar

function, and upon spatial integration (and multiplication
by −1) one obtains

kBT ln½ρðrÞΛd� þ δFexc½ρ�
δρðrÞ ¼ μ − VextðrÞ; ð7Þ

where μ arises formally as an integration constant, which
can be identified with the chemical potential. Furthermore,

Λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πβℏ2=m

p
is the thermal de Broglie wavelength

(Hansen and McDonald, 2013), with particle mass m, inverse
temperature β ¼ 1=kBT, and spatial dimensionality d of the
system; note that ∇ ln½ρðrÞΛd� ¼ ∇ ln ρðrÞ, as Λ is a constant.
In practical applications of equilibrium DFT, one typically
solves Eq. (7), or its exponentiated version, numerically for
ρðrÞ given VextðrÞ. This is a nontrivial problem, as Eq. (7) is an
implicit equation for ρðrÞ due to the complex (in general)
dependence of Fexc½ρ� on ρðrÞ.
Practical applications of DFT require one to make approx-

imations for Fexc½ρ�. A famous exception, where the exact
solution was obtained by Percus (1976) [see Robledo and
Varea (1981)], is the one-dimensional system of hard rods.
However, for certain realistic systems, such as three-
dimensional hard spheres, powerful approximations are avail-
able (Rosenfeld, 1989; Tarazona, 2000; Roth et al., 2002);
these can yield highly accurate results relative even to large-
scale simulation results.
Even simple, mean-field-like approximations to Fexc½ρ�

often yield physically correct qualitative and semiquantitative
results. Here the accessibility of physical quantities goes far
beyond the one-body density profile, as thermodynamics,
phase behavior, two- and higher-body correlation functions,

etc., can be obtained. One of the reasons for both the robust
reliability of simple DFT approximations and the width of the
range of accessible quantities lies in the fact that Eq. (7)
constitutes, within the calculus of variations, an Euler-
Lagrange equation corresponding tominimization of the grand
potential functional Ω½ρ�. At the minimum of the functional

δΩ½ρ�
δρðrÞ ¼ 0 ðminÞ; ð8Þ

where Ω½ρ� consists of the following sum of intrinsic and
external contributions:

Ω½ρ� ¼ Fid½ρ� þ Fexc½ρ� þ
Z

drρðrÞ½VextðrÞ − μ�: ð9Þ

In Eq. (9) the intrinsic free energy functional for the ideal
gas is

Fid½ρ� ¼ kBT
Z

drρðrÞfln½ρðrÞΛd� − 1g: ð10Þ

The functional derivative with respect to the density profile
yields δFid½ρ�=δρðrÞ ¼ kBT ln½ρðrÞΛd�, as appears in Eq. (7).
In carrying out the derivative, as is typical in functional
differentiation, the space integral is canceled by a Dirac delta
function that arises from the identity δρðrÞ=δρðr0Þ ¼ δðr − r0Þ.
Given the many successes of equilibrium DFT, it is natural

to use it as a springboard for the formulation of dynamical
theories. One way of doing so is to start with a description of
the forces that are present in the system. The challenge for
such a formulation is to come to grips with the internal force
field (4), where the average is now built over the non-
equilibrium distribution of microstates at a given time t.
Knowing the forces is crucial, as this allows one to progress in
time and obtain the complete dynamics of the system, as we
demonstrate in Sec. II.
If the system is driven out of equilibrium, either because the

external potential changes in time or through the addition of a
nonconservative contribution to the external force field, then a
nonvanishing average flow will result. The flow is quantified
by the average current distribution as follows:

Jðr; tÞ ¼
�X

i

δðr − riÞvi
�
; ð11Þ

where we recall that ri is the position of particle i, its velocity
is vi, and the average is performed at time t. As in the case of
the internal force field (4), the average (11) will acquire large
values at position r due to frequent occurrences of particles,
but also due to large values of the many-body velocity vi.
Scaling out the former effect leads to the definition of the local
velocity field

vðr; tÞ ¼ Jðr; tÞ=ρðr; tÞ; ð12Þ

which is fully microscopically resolved (and hence
different from a hydrodynamic field as appearing in, say,
the Navier-Stokes equation). In a truly microscopic treatment,
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we need to specify the time evolution of the positions rN on the
many-body level. Several choices exist; for simplicity, but also
because of its practical relevance in the description of colloidal
systems, we focus first on overdamped Brownian dynamics.
Typical implementations in computer simulations are based on
the Euler algorithm4 to perform the time evolution; here the
particle displacements are induced by (i) all deterministic forces
that act on particle i at time t, and (ii) an additional random
(white noise) displacement that models diffusion at constant T.
Hence, the time evolution is based on stochastic trajectories,
i.e., on the Langevin picture. An equivalent, and for theoretical
purposes often more convenient and arguably more powerful,
formulation is based on the many-body probability distribution
function ΨðrN; tÞ for finding microstate rN at time t. Access to
ΨðrN; tÞ allows averages [such as the density profile (2), the
internal force field (4), and the current distribution (11)] to be
explicitly specified, via integration over all microstates, as
follows: h·i ¼ R

drN · ΨðrN; tÞ. In the overdamped limit con-
sidered here, there is no need to keep track of the momentum
part of classical phase space; only the position (configuration)
part is relevant.
The Smoluchowski equation (Dhont, 1996) is the dynami-

cal equation for ΨðrN; tÞ for overdamped Brownian motion.
This Fokker-Planck equation can be viewed as the following
many-body continuity equation that expresses conservation of
probability:

∂ΨðrN; tÞ
∂t ¼ −

X
i

∇i · viðrN; tÞΨðrN; tÞ; ð13Þ

where the expression on the right-hand side is the negative
divergence of the probability current viðrN; tÞΨðrN; tÞ in
configuration space. Here the “configurational” many-body
velocity viðrN; tÞ of particle i is given via

γviðrN;tÞ¼−∇iuðrNÞþfextðri; tÞ−kBT∇i lnΨðrN;tÞ; ð14Þ

where γ is the friction constant against a static background. The
first and second terms on the right-hand side of Eq. (14) are due
to the internal and external (deterministic) forces, respectively,
and the third term represents the thermal force that arises due to
the diffusive Brownian motion. For the present case of over-
damped Brownian motion, it is the configurational velocity vi,
as given by Eq. (14), that enters the averaged one-body current
distribution (11). We reiterate the conceptual and practical
difference of Eq. (14) from the one-body velocity field vðr; tÞ;
see Eq. (12). The former is a configuration space function, and
hence constitutes an important formal object, whereas the latter
is the result of microscopically sharp coarse graining.
Therefore, this is a more concrete and intuitively accessible
vector field in physical space.
Given an initial state of the system at time t, the time

evolution is fully determined by Eqs. (13) and (14). This is a
high-dimensional problem, and the feasibility of direct sol-
utions can be assessed with the reasoning used by Kohn

(1999) in equilibrium: If we were to attempt a numerical
solution in a one-dimensional problem of, say, ten particles
and restrict ourselves to a numerical grid containing ten grid
points, with 10 bytes to represent the value at each grid point,
we would need 100 GB memory in order to store a single
instance of Ψ. (Optimists in the development of computer
resources may consider 20 particles.) In the power functional
context, for small systems, both analytical (Hermann and
Schmidt, 2018) and numerical (Stuhlmüller et al., 2018)
solutions were obtained. For conceptual purposes, it is
important to have specified a concrete many-body dynamics.
In practice trajectory-based Brownian dynamics simulations
(see Sammüller and Schmidt, 2021) offer a powerful alter-
native, based on importance sampling, that is well suited for
tackling realistic, large systems.
Developing a stand-alone theoretical dynamical framework

both offers practical benefits of computational efficiency and
provides a conceptual framework for formulating fundamental
physical questions, analyzing simulation data, and identifying
physical mechanisms for phenomena that are observed in
simulation work and in experiment. As the external forces (1)
remain of one-body character even if the system is no longer
in equilibrium, we seek a description on the basis of one-body
correlation functions.
In a time-dependent situation, the sum of the external and

internal forces will not cancel in general, and will hence
influence the average motion. Hence, the sum of the terms on
the left-hand side of the force balance relation (3) will no
longer vanish. Moreover, having a nonconservative contribu-
tion to the external force field is no longer forbidden, as was
the case in equilibrium. In the overdamped limit considered
here, the resulting driving force will be balanced by a friction
force −γvðr; tÞ. This plausibility argument leads to the correct
one-body equation of motion,

γvðr; tÞ ¼ −kBT∇ ln ρðr; tÞ −∇ δFexc½ρ�
δρðr; tÞ

þ fsupðr; tÞ þ fextðr; tÞ; ð15Þ

where the one-body density profile ρðr; tÞ and the velocity field
vðr; tÞ are microscopically resolved in space and time. The
forces on the right-hand side of Eq. (15) represent (i) ideal
diffusion, (ii) an internal “adiabatic” excess force that arises
from the excess free energy functional Fexc½ρ�, (iii) an additional
internal superadiabatic force field fsupðr; tÞ that is due to the
flow and occurs only in nonequilibrium, and (iv) the external
driving force field fextðr; tÞ. Here the superadiabatic force field
fsupðr; tÞ accounts for all contributions, due to internal inter-
actions, that are of a genuine nonequilibrium character and
hence are not contained in the adiabatic excess force field.
One might be surprised by the occurrence of a genuine

equilibrium object, the excess free energy functional Fexc½ρ�, in
an out-of-equilibrium situation. As Fexc½ρ� requires an under-
lying statistical ensemble and Boltzmann distributed micro-
states, one might question its validity in Eq. (15). However,
this situation is well founded due to the adiabatic construc-
tion. Here one considers a hypothetical adiabatic equilibrium
system that possesses the same interparticle interaction
potential uðrNÞ as the real system. Furthermore, the adiabatic

4The benefits of using adaptive time stepping in Brownian
dynamics were described by Sammüller and Schmidt (2021).
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system possesses the same one-body density distribution as
the nonequilibrium system at a fixed snapshot in time t,

ρad;tðrÞ ¼ ρðr; tÞ; ð16Þ

where ρad;tðrÞ is the density profile in the adiabatic system.
One can perform the adiabatic construction at each point in
time; hence, ρad;tðrÞ inherits an apparent time dependence,
although by construction the underlying many-body system is
in equilibrium with no explicit time dependence. As the
adiabatic system is in equilibrium, we may invoke the
Mermin-Evans theorem of DFT and conclude that there is
a unique adiabatic external potential Vad;tðrÞ that stabilizes the
given density ρad;tðrÞ.
Hence, we can formulate the force balance (3) in the

adiabatic system as

−kBT∇ ln ρad;tðrÞ þ fadðr; tÞ ¼ ∇Vad;tðrÞ; ð17Þ

where the adiabatic excess force field fadðr; tÞ is given either
(i) by the microscopic average (4) over the equilibrium
ensemble of the adiabatic system or (ii) as the density-
functional relationship (5). In the first case, we may sample
fadðr; tÞ directly with an equilibrium method that offers access
to the adiabatic system. This task involves finding Vad;tðrÞ.
This constitutes an inverse problem that requires computa-
tional effort. A brute force method consists of guessing Vad;tðrÞ
and sampling ρad;tðrÞ and then adjusting Vad;tðrÞ iteratively,
such that the external potential is increased in regions with
excessively high density relative to the target density. Once a
satisfactorily small error in Eq. (16) is achieved, one can

directly solve Eq. (17) for fadðr; tÞ. However, more direct
methods based on the custom flow method exist (as described
in Sec. IV.F).
Within DFT the inverse problem has already been addressed

implicitly and, as a result, the adiabatic force field is directly
available. We can hence make the second term on the right-
hand side of the equation of motion (15) fully explicit as

fadðr; tÞ ¼ −∇δFexc½ρ�
δρðrÞ

����
ρðrÞ¼ρðr;tÞ

; ð18Þ

which shows explicitly how the equilibrium free energy func-
tional enters the dynamical theory (15) in a well-defined and
unambiguous way.
In the time evolution equation (15) the genuine nonequili-

brium contributions to the internal force field are contained in
fsupðr; tÞ. These forces do not occur in equilibrium and cannot
be obtained based on a free energy description. Setting
fsupðr; tÞ ¼ 0 can in specific cases be a reasonable approxi-
mation, and the resulting dynamical theory is commonly
referred to as the dynamical density-functional theory (DDFT).
A simple counterexample, where the adiabatic approxima-

tion fails, is steady shear of a homogeneous fluid, where
ρðr; tÞ ¼ const. As the density is constant, no adiabatic effects
occur on the one-body level [the gradient in Eq. (18) van-
ishes], although the system can be driven arbitrarily far out of
equilibrium by increasing the shear rate. [This concept was
carried much further by de las Heras and Schmidt (2020);
see their Supplemental Material for fully inhomogeneous
flow patterns.] Figure 1 shows results from an adiabatic
treatment of sedimentation [Fig. 1(a)] and superadiabatic

(a) (b) (c)

FIG. 1. Dynamics of the density profile of colloidal hard spheres in (a) dynamical sedimentation, as primarily governed by adiabatic
forces, and (b),(c) motion reversal under temporal switching of step shear, as a purely superadiabatic effect. (a) Local packing fraction
ϕðz; tÞ ¼ ρðz; tÞπσ3=6 as a function of the scaled height coordinate z=σ, where σ is the hard sphere diameter. Results at increasing time
are shifted upward by 0.2 units. The system is initially almost homogeneous and, over the course of time, develops a strong density
gradient, including layering at the bottom of the container. Shown are results from confocal microscopy experiment (solid lines) and
from DDFT (dashed lines) using a density-dependent mobility. (b),(c) Current profiles in the flow ez direction Jzσ2τ as a function of the
position x in the gradient ex direction of the inhomogeneous shear field. The system is three dimensional and it is homogeneous in the
third direction ey. Shear is induced by a square wave external force that acts by alternating in the positive (light violet and þ) and
negative (light cyan and −) ez direction with strength 5kBT=σ for times t < 0. At time t ¼ 0 the external force is switched off. Because
of the viscoelastic memory of the hard sphere fluid, the current immediately reverses its direction, as can be seen by comparing the
down-up sequence of arrows in (b) to the up-down sequence in (c). Results are obtained from event-driven BD simulations (symbols)
and from power functional theory with spatially local (KL) and nonlocal diffusing memory kernel (KD). (a) Adapted from Royall et al.,
2007. (b),(c) Adapted from Treffenstädt and Schmidt, 2020.
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effects in time-dependent shear [Figs. 1(b) and 1(c)] of
Brownian hard spheres.
Hence, a complete dynamical theory needs to specify the

superadiabatic force field fsupðr; tÞ. This task is accomplished
within the power functional framework, where the super-
adiabatic force field is expressed as a functional derivative
(Schmidt and Brader, 2013), as follows:

fsupðr; tÞ ¼ −
δPexc

t ½ρ; J�
δJðr; tÞ : ð19Þ

In Eq. (19) the variation is performed at a fixed density
distribution and at fixed time t, and the superadiabatic excess
power functional Pexc

t ½ρ; J� is a functional of both the density
and the current distribution. As Pexc

t ½ρ; J� originates from
uðrNÞ, it is in general both nonlocal in space and nonlocal in
time. The dependence is on the history of both fields, i.e., on
their values at times < t, where t is the time at which the
variation (19) is performed; the continuity equation holds
(Schmidt and Brader, 2013). The functional carries units of
energy per time, or power, ½Pexc

t � ¼ J=s ¼ W.
Besides the occurrence of memory effects, the mathemati-

cal structure is significantly richer than that of the DDFT, due
to the fact that the dependence on the current now occurs on
both sides of Eq. (15), on the left-hand side via Eq. (12) and on
the right-hand side via Eq. (19). Hence, the current is defined
by an implicit relationship, which offers far greater flexibility
in describing physical effects than an explicit theory such as
the DDFT. Recall that the Euler-Lagrange equation (7) of
equilibrium DFT is an implicit equation as well, albeit one
for the density profile. In equilibrium, it is precisely this
structure that allows freezing, capillary behavior, wetting, etc.
(Evans et al., 2016), to be described.
For completeness, the temporal changes of the density

profile ρðr; tÞ are obtained from the current Jðr; tÞ via the
continuity equation

∂ρðr; tÞ
∂t ¼ −∇ · Jðr; tÞ: ð20Þ

The variational structure of power functional theory is
analogous to that of equilibrium DFT. However, the similarity
occurs on a deep structural level, as power functional theory
is based on a variational (extremal) principle, akin to the
equilibrium minimization principle with respect to the density
distribution (8). In the dynamical case, the minimization is
instead performed with respect to the current, at fixed density
distribution, and at fixed time as follows:

δRt½ρ; J�
δJðr; tÞ ¼ 0 ðminÞ: ð21Þ

In Eq. (21) the total power functional Rt½ρ; J� consists of a sum

Rt½ρ; J� ¼ _F½ρ� þ Pt½ρ; J� − Xt½ρ; J�; ð22Þ

where _F½ρ� is the time derivative of the total (ideal and excess)
intrinsic free energy functional F½ρ� ¼ Fid½ρ� þ Fexc½ρ�, the
superadiabatic contribution Pt½ρ; J� accounts for genuine

nonequilibrium effects, and Xt½ρ; J� is the external power.
Both _F½ρ� and Pt½ρ; J� are of an intrinsic nature; i.e., they
depend on uðrNÞ but not on the external force field.
The genuine nonequilibrium power splits into ideal and

excess (superadiabatic) contributions (Pt½ρ; J� ¼ Pid
t ½ρ; J� þ

Pexc
t ½ρ; J�), where the exact ideal gas dissipation contribution

is local in space and time and given by

Pid
t ½ρ; J� ¼

γ

2

Z
dr

J2ðr; tÞ
ρðr; tÞ : ð23Þ

The external power is the following sum of mechanical and
motionless contributions:

Xt½ρ; J� ¼
Z

dr½Jðr; tÞ · fextðr; tÞ − ρðr; tÞ _Vextðr; tÞ�: ð24Þ

Inserting the decomposition (22) into the dynamical extremal
principle (21) and carrying out the functional derivative yield
an Euler-Lagrange equation that is identical to the equation
of motion (15) with the superadiabatic excess force given by
Eq. (19). The proof of this identity requires the deriva-
tive δPid

t ½ρ; J�=δJðr; tÞ ¼ γJðr; tÞ=ρðr; tÞ.
Furthermore, using successively the functional chain rule,

the continuity equation, and spatial integration by parts, one
finds the total time derivative of the intrinsic free energy
functional as

_F½ρ� ¼ d
dt

F½ρ� ¼
Z

dr
δF½ρ�
δρðr; tÞ _ρðr; tÞ ð25Þ

¼ −
Z

dr
δF½ρ�
δρðr; tÞ∇ · Jðr; tÞ ð26Þ

¼
Z

drJðr; tÞ ·∇ δF½ρ�
δρðr; tÞ : ð27Þ

Because of the linear dependence on Jðr; tÞ, the form (27) can
be differentiated easily with respect to the current with the
density profile held fixed. The result is the following total
(ideal and excess) adiabatic force field:

−
δ _F½ρ�
δJðr; tÞ ¼ −∇ δF½ρ�

δρðr; tÞ

¼ −kBT∇ ln ρðr; tÞ −∇ δFexc½ρ�
δρðr; tÞ ; ð28Þ

where the last term is fadðr; tÞ; see Eq. (18). Finally, the
derivative of the external power is δXt½ρ; J�=δJðr; tÞ ¼
fextðr; tÞ. The equation of motion (15) follows straightfor-
wardly upon the collection of all terms.
That the power functional (22) exists is not an assumption.

Via a constructive proof it is derived from an underlying
many-body extremal principle. We do not reproduce the proof
here (see Sec. IV.B.2), but instead state only the starting point,
which is a many-body version of the one-body power func-
tional (22) defined as
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Rt ¼
Z

drNΨðrN; tÞ
X
i

�
γṽ2i
2

− ṽi · ftoti þ _Vextðri; tÞ
�
: ð29Þ

In Eq. (29) ṽiðrN; tÞ are configuration space functions that
represent trial velocities and ftoti is the total force acting on
particle i. The physical values of the velocities are attained
upon minimizing Rt with respect to ṽi [which can easily be
explicitly performed due to the simple quadratic structure of
Eq. (29)]. Using a dynamical version of Levy’s constrained
search method (Levy, 1979; Dwandaru and Schmidt, 2011)
yields the one-body power functional Rt½ρ; J� given in
Eq. (22), with the one-body minimization principle (21). In
the following we flesh out this material and first turn to the
fundamentals.

II. MANY-BODY DESCRIPTION

A. Internal and external forces

We consider particles (colloids, atoms, molecules, macro-
molecules, or quantum particles) with position coordinates ri,
where the particle index i ¼ 1;…; N and N is the total number
of particles. As a shorthand notation rN ≡ r1;…; rN . Position
space is d dimensional with d ¼ 3 often being the most
relevant case, but important systems, such as particles
adsorbed at substrates or confined between plates, have
d ¼ 2 or even d ¼ 1 (confinement in channels). The case
d ¼ 1 is also important for conceptual purposes, as some exact
results are available.
The force on particle i is also a d-dimensional vector, which

typically can be split into internal and external parts as
follows:

fiðrN; tÞ ¼ fint;iðrNÞ þ fextðri; tÞ: ð30Þ

In Eq. (30) fint;iðrNÞ is the internal force on particle i that is
exerted due to the cumulative effect of all other particles in
the system. There are typically no self-interactions, and the
internal interactions do not depend explicitly on time. The
external force field, however, is in general time dependent and
characterized (defined by) the property that it depends only on
the position of particle i, not on the positions of all other
particles j ≠ i. Hence, fextðr; tÞ can be viewed as a prescribed
external force field of a generic position coordinate r and
time t. The external force field hence couples to the degrees of
freedom in the system, but there is no “backaction”; i.e.,
fextðr; tÞ is externally imposed, independent of the system
degrees of freedom.
We consider internal forces that are obtained from an

interparticle interaction potential uðrNÞ as the following
negative gradient:

fint;iðrNÞ ¼ −∇iuðrNÞ; ð31Þ

where, as before, ∇i denotes the derivative with respect to ri.
The total internal potential energy uðrNÞ can, but need not,
come from pairwise interparticle interactions.

B. Hamiltonian dynamics

We consider classical particles first and start by deriving the
microscopic continuity equation by building the time deriva-
tive of the density operator as follows:

d
dt

ρ̂ ¼ d
dt

X
i

δðr − riÞ ð32Þ

¼
X
i

� ∂
∂ri δðr − riÞ

�
· _ri ð33Þ

¼
X
i

� ∂
∂ðri − rÞ δðr − riÞ

�
· vi ð34Þ

¼
X
i

�
−

∂
∂r δðr − riÞ

�
· vi ð35Þ

¼ −
∂
∂r ·

X
i

δðr − riÞvi ð36Þ

¼ −∇ · Ĵ; ð37Þ

where the spatial derivative is ∇ ¼ ∂=∂r, the microscopic
density operator is defined as ρ̂ ¼ P

i δðr − riÞ, and the
microscopic one-body current operator is given as
Ĵ ¼ P

i δðr − riÞvi. Note the sign change in Eq. (35) from
the change to the argument of the derivative. This substitution
enables one in Eq. (36) to move the divergence operator
outside of what becomes the current operator.
As the Newtonian dynamics are second order in time, we

expect to obtain a useful result when differentiating one more
in time. Hence, consider

d2

dt2
ρ̂ ¼ d

dt
ð−∇ · ĴÞ ¼ −∇ ·

d
dt

Ĵ; ð38Þ

where we have used Eq. (37) in the first step. We can make
progress with the following time derivative of the current
operator:

dĴ
dt

¼ d
dt

X
i

δðr − riÞvi ð39Þ

¼
X
i

�
d
dt

δðr − riÞ
�
vi þ

X
i

δðr − riÞ
dvi
dt

ð40Þ

¼
X
i

∂δðr − riÞ
∂ri · _rivi þ

X
i

δðr − riÞ
fi
m

ð41Þ

¼ −∇ ·
X
i

δðr − riÞvivi þ
F̂
m

ð42Þ

¼ ∇ · τ̂
m

þ F̂
m
; ð43Þ
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where the kinetic stress operator is defined as τ̂ ¼
−
P

i mviviδðr − riÞ and the force density operator is
F̂ ¼ P

i δðr − riÞfi. Hence, we have obtained the operator
equation of motion

m
d
dt

Ĵ ¼ ∇ · τ̂ þ F̂; ð44Þ

which expresses the total change in current (multiplied by
mass) as the sum of the divergence of the stress tensor (as a
transport effect) plus the force density. Equation (44) can be
viewed as Newton’s second law on the classical one-body
operator level. Readers with a background in hydrodynamics
will immediately be familiar with the kinetic stress being a
velocity-velocity dyadic product, as this appears in standard
derivations of the Navier-Stokes equation; see Hansen and
McDonald (2013). However, in contrast to a continuum
mechanical treatment, here τ̂ is resolved on a microscopic
scale (via the delta function in position). Note also that the
trace Tr τ̂=2 is the locally resolved kinetic energy density
operator.

1. Distribution functions as averages

We obtain one-body distribution functions via averaging
according to

Oðr; tÞ ¼ hÔðr; t; rN;pNÞi; ð45Þ

where Ô is a phase space function (operator) that additionally
depends on a generic position argument r and explicitly on
time, in the most general case. In Eq. (45) the average is over
the probability distribution of microstates at time t. (This is
now a statistical description; an ensemble of systems is
propagated forward in time.) Hence,

h·i ¼
Z

drNdpN ·ΨðrN;pN; tÞ; ð46Þ

where Ψ is the many-body probability distribution function to
find microstate rN;pN at time t. The differential phase space
volume element (which determines how to integrate over Ψ in
order to obtain probabilities) is drNdpN , and the distribution
function is normalized [

R
drNdpNΨðrN;pN; tÞ ¼ 1] at all

times t. For classical inertial dynamics the time evolution
of Ψ is governed by the following Liouville equation:

∂Ψ
∂t ¼ −

X
i

�
pi

m
·
∂
∂ri þ fi ·

∂
∂pi

�
Ψ: ð47Þ

2. One-body equation of motion

The operator identities for the time derivative of density (37)
and current (44) can be averaged over the phase space
distribution function according to Eq. (46). This yields the
following reduced, yet microscopically sharp, one-body
equations of motion:

_ρðr; tÞ ¼ −∇ · Jðr; tÞ; ð48Þ

m_Jðr; tÞ ¼ ∇ · τðr; tÞ þ Fintðr; tÞ þ ρðr; tÞfextðr; tÞ: ð49Þ

In Eq. (49) the one-body distribution functions are averaged
according to Eq. (46), i.e., ρðr; tÞ ¼ hρ̂i, Jðr; tÞ ¼ hĴi,
τðr; tÞ ¼ hτ̂i, Fðr; tÞ ¼ hF̂i, etc.; the internal force density
operator is F̂int ¼ −

P
i δðr − riÞ∇iuðrNÞ. The kinematic

fields are interrelated by time integration. Let the system
initially be in equilibrium and ρðr; t ≤ 0Þ ¼ ρðr; 0Þ, and let
Jðr; t ≤ 0Þ ¼ 0. At times t > 0, then

Jðr; tÞ ¼
Z

t

0

dt0 _Jðr; t0Þ; ð50Þ

ρðr; tÞ ¼ ρðr; 0Þ −
Z

t

0

dt0∇ · Jðr; t0Þ: ð51Þ

(Note that rotational contributions to the current leave the
density unchanged.) The one-body equations of motion are
not closed as ρðr; tÞ, Jðr; tÞ, ∇ · τðr; tÞ, and Fintðr; tÞ are
unknown; only fextðr; tÞ is given, and we have only two
equations.
The nontrivial contribution due to transport and the inter-

particle coupling is

∇ ·τðr;tÞþFintðr;tÞ

≡−∇ ·

�X
i

δðr−riÞ
pipi

m

�
−
�X

i

δðr−riÞ∇iuðrNÞ
�
: ð52Þ

We treat this force density field in Sec. IV.B using dynamical
functional methods.

C. Brownian dynamics

We turn to the case of N classical colloidal particles in
d-dimensional space, dispersed in a solvent at temperature T
and undergoing overdamped Brownian motion with friction
coefficient γ, internal interaction potential uðrNÞ, and under
the influence of an external force field fextðr; tÞ. The Langevin
equations of motion are

γ _ri ¼ fdeti ðrN; tÞ þ ξiðtÞ; ð53Þ

where the deterministic force acting on particle i is a vector
field given by

fdeti ðrN; tÞ ¼ −∇iuðrNÞ þ fextðri; tÞ: ð54Þ

The random contribution on the right-hand side of Eq. (53) is a
stochastic white noise term with prescribed moments

ξiðtÞ ¼ 0; ð55Þ

ξiðtÞξjðt0Þ ¼ 2kBTγδij1δðt − t0Þ; ð56Þ

where the overline denotes an average over the noise real-
izations, the left-hand side of Eq. (56) is a dyadic product, δij
denotes the Kronecker symbol, and 1 indicates the d × d unit
matrix.
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The Langevin scheme is well suited to carrying out
computer simulations via discretizing the equations of motion
and using a simple Euler or an adaptive time-stepping
algorithm (Sammüller and Schmidt, 2021) to integrate the
positions forward in time. The noise can be generated from
pseudo–random number algorithms (such as the Box-Muller
transform to generate Gaussian distributed random numbers).
Building averages then requires one, in principle, to average
both over initial states (of which the distribution function
needs to be known and is in practice often assumed to be
equilibrated) and over different realizations of the noise. In the
Langevin framework, the time-dependent probability distri-
bution function of microstates ΨðrN; tÞ does not appear
explicitly. This often makes calculations difficult, as averages
of interest have to be reduced to the only known ones for the
noise, Eqs. (55) and (56).
Having ΨðrN; tÞ is a powerful feature, with the microscopic

foundation of the concept of entropy resting upon it. The
explicit introduction of ΨðrN; tÞ into the framework is achieved
by complementing the Langevin picture by the corresponding
Fokker-Planck equation of motion for ΨðrN; tÞ. In the present
case of overdamped motion this is the following Smoluchowski
equation:

∂Ψ
∂t ¼ −

X
i

∇i · viΨ: ð57Þ

In Eq. (57) the many-body configurational velocity viðrN; tÞ of
particle i is a function (not a differential operator) defined via

γvi ¼ fdeti − kBT∇i lnΨ ð58Þ

¼ −∇iuðrNÞ þ fextðri; tÞ − kBT∇i lnΨ; ð59Þ

wherewehave usedEq. (54) tomake fdeti ðrN; tÞ explicit. The last
term on the right-hand sides corresponds to the noise contribu-
tion in the Langevin equation (53); by differentiating the
logarithm, the term can be analogously rewritten as
−ðkBT=ΨÞ∇iΨ. The position derivative in the Smoluchowski
equation (57) acts both on vi and on the distribution function;
hence, Eq. (57) has the formof a continuity equation for the local
conservation of probability, as the right-hand side expresses the
negative divergence of a probability current viΨ.
It is instructive to rewrite the Smoluchowski equation in

operator form as follows:

∂Ψ
∂t ¼ −

X
i

∇i · γ−1ðfdeti − kBT∇i lnΨÞΨ ð60Þ

¼ −γ−1
X
i

½ð∇i · fdeti Þ þ fdeti · ∇i − kBT∇2
i �Ψ ð61Þ

≡ Ω̂Ψ; ð62Þ

where the Smoluchowski operator is defined as

Ω̂ ¼ −γ−1
X
i

½ð∇i · fdeti Þ þ fdeti · ∇i − kBT∇2
i �: ð63Þ

The Smoluchowski equation is in compact notation simply

∂Ψ
∂t ¼ Ω̂Ψ; ð64Þ

which is a partial differential equation of first order in time
and second order in position. However, in contrast to the
Schrödinger equation, here Ψ is real. Hence, there is no
coupling of real and imaginary parts, as occurs in quantum
mechanics. The Smoluchowski equation is instead a drift-
diffusion equation for the many-body distribution function.
In particular, the diffusive effect is generated by the Laplace
operator ∇2

i .
Again, one central purpose of Ψ is to facilitate building

averages O via

O ¼ hÔi ¼
Z

drNÔΨðrN; tÞ; ð65Þ

where Ô is an operator that constitutes a physical observable.
If Ô is a configuration space function ÔðrN; tÞ, then the
order of terms in the integrand does not matter
(hÔi ¼ R

drNÔΨ ¼ R
drNΨÔ).

For the case of the density operator ρ̂ ¼ P
i δðr − riÞ we

obtain the one-body density distribution

ρðr; tÞ ¼ hρ̂i ¼
Z

drN
X
i

δðr − riÞΨðrN; tÞ: ð66Þ

We turn to the description of the one-body dynamics and
are interested in the time evolution of ρðr; tÞ. Hence, we
consider the time derivative

∂
∂t ρðr; tÞ ¼

∂
∂t

Z
drN

X
i

δðr − riÞΨ ð67Þ

¼
Z

drN
X
i

δðr − riÞ
∂Ψ
∂t ð68Þ

¼ −
Z

drN
X
i

δðr − riÞ
X
j

∇j · vjΨ ð69Þ

¼
Z

drN
X
i

X
j

½∇jδðr − riÞ� · vjΨ ð70Þ

¼ −∇ ·
Z

drN
X
i

δðr − riÞviΨ ð71Þ

¼ −∇ · Jðr; tÞ; ð72Þ

where we have used the Smoluchowski equation (57) for
Eq. (69), integration by parts for Eq. (70), and the identity
∇jδðr − riÞ ¼ −δij∇δðr − riÞ for Eq. (71). In the last step
[Eq. (72)] we have defined the one-body current distribution as

Jðr; tÞ ¼ hĴi; ð73Þ
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Ĵ ¼
X
i

δðr − riÞvi; ð74Þ

where Ĵ is the current operator. As an aside, the current operator
can alternatively be expressed, using the velocity differential
operator v̂i, as

Ĵ ¼
X
i

δðr − riÞv̂i; ð75Þ

γv̂i ¼ fdeti − kBT∇i; ð76Þ

where fdeti ðrN; tÞ is still given via Eq. (54). It is straightforward
to show that v̂iΨ ¼ viΨ, and hence that both velocity repre-
sentations yield the same one-body current distribution. [The
many-body velocity should not be confused with the average,
microscopically resolved velocity field vðr;tÞ¼Jðr;tÞ=ρðr;tÞ.]
It remains to express the current distribution via the forces

that act in the system. As the dynamics are overdamped, no
further time derivative is required. We instead rewrite the
distribution as follows:

γJðr; tÞ ¼ γ

Z
drN

X
i

δðr − riÞviΨ ð77Þ

¼
Z

drN
X
i

δðr − riÞðfdeti − kBT∇i lnΨÞΨ ð78Þ

¼
Z

drN
X
i

δðr − riÞ

× ½−ð∇iuÞ þ fextðri; tÞ − kBT∇i�Ψ ð79Þ

¼ −
Z

drN
X
i

δðr − riÞð∇iuÞΨ

þ
Z

drN
X
i

δðr − riÞfextðri; tÞΨ

−
Z

drN
X
i

δðr − riÞkBT∇iΨ ð80Þ

≡ Fintðr; tÞ þ ρðr; tÞfextðr; tÞ − kBT∇ρðr; tÞ: ð81Þ

In Eq. (81) we have defined the first integral in Eq. (80) as the
internal force density distribution

Fintðr; tÞ ¼ −
Z

drN
X
i

δðr − riÞð∇iuÞΨ: ð82Þ

In the second integral in Eq. (80) we have replaced fextðri; tÞ
with fextðr; tÞ due to the presence of the delta function. In the
third integral in Eq. (80) we have integrated by parts and once
more used ∇iδðr − riÞ ¼ −∇δðr − riÞ.

The equations of motion of motion follow as

γJðr; tÞ ¼ Fintðr; tÞ þ ρðr; tÞfextðr; tÞ − kBT∇ρðr; tÞ; ð83Þ

∂ρðr; tÞ
∂t ¼ −∇ · Jðr; tÞ: ð84Þ

The current can be eliminated to obtain a single equation for
the time evolution of the one-body density

∂ρðr; tÞ
∂t ¼ −γ−1∇ · Fintðr; tÞ − γ−1∇ · ρðr; tÞfextðr; tÞ

þD∇2ρðr; tÞ; ð85Þ

where D ¼ kBT=γ is the diffusion constant according to
Einstein’s relation.
It is instructive to scale Eq. (83) by the density profile. We

first define the internal microscopic one-body force field by
normalizing as follows:

fintðr; tÞ ¼ Fintðr; tÞ=ρðr; tÞ: ð86Þ

The microscopic velocity field is obtained as before as the
ratio

vðr; tÞ ¼ Jðr; tÞ=ρðr; tÞ: ð87Þ

We can now rewrite the force density balance (83) by dividing
by the density profile, which yields the following force
balance relationship:

γvðr; tÞ ¼ fintðr; tÞ þ fextðr; tÞ − kBT∇ ln ρðr; tÞ: ð88Þ

Note that there are no transport contributions (kinetic stress is
absent), as the motion is overdamped. However, diffusive
effects do occur. The equations of motion are not closed on
the one-body level, as the internal force density distribution
Fintðr; tÞ is unknown at this stage and defined only via the
many-body average (82).
There are three possible ways out.
(i) Solve the many-body dynamics numerically, using

either trajectory-based Brownian dynamics (BD)
or, for a small number of degrees of freedom, the
Smoluchowski equation.

(ii) Relate Fintðr; tÞ to higher-body (two-body, three-
body, etc.) correlation functions and formulate
closure relations. This is both technically and con-
ceptually difficult.

(iii) Express Fintðr; tÞ in a variational way via a generator
(generating functional). This is also technically and
conceptually difficult, but it is complementary to
(i) and (ii). [Hybrid forms of (i) and (iii) could be
imagined.] We describe the power functional for
overdamped BD in Sec. IV.B.

D. Quantum dynamics

Besides its relevance in a broad variety of systems, the
importance of quantum dynamics in this context lies not least
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in its formal similarities with the classical Hamiltonian
dynamics (Sec. II.B). As we demonstrate in the following,
a case can be made for the universality of the dynamical one-
body point of view.5 Readers who are interested primarily in
classical systems may proceed directly to Sec. III, where we
cover classical density-functional theory. Besides the signifi-
cant importance in its own right, this approach also acts as
both a blueprint and an integral component for the dynamical
theory. The connection is via the adiabatic construction, as
described in Sec. III.A.
We consider N spinless nonrelativistic quantum particles

that are coupled using an internal interaction potential uðrNÞ.
The particles have an electrical charge q and mass m. The
particles are exposed to a magnetic vector potential Aðr; tÞ
and an external potential energy Vextðr; tÞ. The form of uðrNÞ
is general, possibly including a Coulombic contribution. We
use the position representation of the Schrödinger equation

iℏ
∂
∂tΨðr

N; tÞ ¼ ĤΨðrN; tÞ; ð89Þ

with ΨðrN; tÞ the quantum mechanical wave function and Ĥ
the Hamiltonian. The wave function is normalized at all times
as
R
drNΨ�Ψ ¼ R

drN jΨj2 ¼ 1; the asterisk denotes the com-
plex conjugate. The Hamiltonian has the following form of
kinetic energy plus potential energy:

Ĥ ¼
X
i

p̂2
i

2m
þ uðrNÞ þ

X
i

Vextðri; tÞ; ð90Þ

where the kinematic momentum operator is

p̂i ¼ −iℏ∇i − qAðri; tÞ; ð91Þ

with the first term acting via differentiation and the second
term acting via multiplication (on the wave function in
position representation).
Our goal is to obtain the reduced one-body dynamics.

Consider the following general Heisenberg equation of
motion for an operator Ô:

dÔ
dt

¼ i
ℏ
½Ĥ; Ô� þ ∂Ô

∂t ; ð92Þ

where the brackets denote the commutator of two operators.
Quantum mechanical averagesO are built using the following
bra-ket sandwich:

O ¼ hÔi ¼ hΨjÔjΨi ¼
Z

drNΨ�ÔΨ; ð93Þ

where, depending on the form of the operator Ô, its expect-
ation value can have both explicit and implicit time
dependence.

Applying Eq. (92) to the position operator yields

dri
dt

¼ p̂i

m
; ð94Þ

which shows that calling Eq. (91) the kinematic momentum is
justified.
We next differentiate p̂i in time. The calculation (which is

omitted) is lengthier but straightforward. We define the force
operator for particle i as

f̂i ¼ −½∇iuðrNÞ� − ½∇iVextðri; tÞ� − q _Aðri; tÞ
þ q
2m

½p̂i × Bðri; tÞ − Bðri; tÞ × p̂i�; ð95Þ

where the magnetic field is Bðr; tÞ ¼ ∇ ×Aðr; tÞ.
The equation of motion (92) for p̂i then attains the compact

form

dp̂i

dt
¼ f̂i; ð96Þ

which is Newton’s second law on the operator level.
We next summarize the relevant one-body operators, for

density n̂, current Ĵ, kinetic stress τ̂, and internal force density
F̂int. These are defined, respectively, by

n̂ ¼
X
i

δðr − riÞ; ð97Þ

Ĵ ¼ 1

2m

X
i

½p̂iδðr − riÞ þ δðr − riÞp̂i�; ð98Þ

τ̂ ¼ −
1

2m

X
i

ðp̂iδip̂i þ p̂iδip̂T
i Þ; ð99Þ

F̂int ¼ −
X
i

½∇iuðrNÞ�δðr − riÞ; ð100Þ

where we have used the shorthand notation δi ¼ δðr − riÞ in
Eq. (99) and the superscript T indicates the transpose of a
d × d matrix (here a dyadic product). Both the density and
internal force density are multiplication operators. All occur-
ring kinematic momentum operators act on all arguments to
their right.
We now derive the corresponding equations of motion,

beginning with the density operator. (The change of notation
from ρ̂ to n̂ is cosmetic, done in order to conform to quantum
convention.) We consider the density operator for particle i
and apply the Heisenberg equation of motion (92), which
yields

d
dt

δðr − riÞ ¼
i
ℏ
½Ĥ; δðr − riÞ� þ

∂
∂t δðr − riÞ ð101Þ

¼ i
2mℏ

X
j

½p̂2
j ; δðr − riÞ�; ð102Þ

where the commutator of the potential energy contributions
and the density operator (delta function) vanishes, as does the
partial time derivative of the delta function.

5See Tchenkoue et al. (2019) and Tarantino and Ullrich (2021) for
recent work addressing the force balance in the context of time-
dependent density-functional theory.
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To address Eq. (102), we consider the following general
form of the commutator of p̂2

i ≡ p2 with a function gðrNÞ:

½p2; gðrNÞ� ¼ p2g − pgpþ pgp − gp2 ð103Þ

¼ pðpg − gpÞ þ ðpg − gpÞp ð104Þ

¼ p½p; g� þ ½p; g�p ð105Þ

¼ pð−iℏ∇igÞ − iℏð∇igÞp; ð106Þ

where we have used ½p; g� ¼ −iℏð∇igÞ. Returning to the full
notation, hence, we have

½p̂2
i ; gðrNÞ� ¼ −iℏ½p̂i · ð∇igÞ þ ð∇igÞ · p̂i�: ð107Þ

The application to Eq. (102) yields zero for the case i ≠ j.
For i ¼ j we obtain

i
2mℏ

½p̂2
i ; δðr − riÞ� ð108Þ

¼ −i2ℏ
2mℏ

fp̂i · ½∇iδðr − riÞ� þ ½∇iδðr − riÞ� · p̂ig ð109Þ

¼ −∇ ·
1

2m
½p̂iδðr − riÞ þ δðr − riÞp̂i�; ð110Þ

where we have used ∇iδðr − riÞ ¼ −∇δðr − riÞ. Recalling
that the left-hand side of Eq. (101) is the time derivative of
δðr − riÞ and summing over all particles yields

d
dt

n̂ ¼ −∇ · Ĵ; ð111Þ

which can rightfully be called the operator continuity equa-
tion. Here the anticipated form (98) of the current operator Ĵ
applies. Building quantum mechanical expectation values
yields the one-body density distribution and the one-body
current distribution, which are defined, respectively, by

nðr; tÞ ¼ hn̂i ¼
Z

drNΨ�n̂Ψ; ð112Þ

Jðr; tÞ ¼ hĴi ¼
Z

drNΨ�ĴΨ: ð113Þ

Building the quantum average over the operator continuity
equation (111) yields the continuity equation

∂
∂t nðr; tÞ ¼ −∇ · Jðr; tÞ; ð114Þ

where we have changed the notation from total to partial time
derivative. This is purely cosmetic; the character of the time
derivative has not changed. In both cases the time derivative is
with respect to the real dynamics and at fixed position r.
The form of Eq. (114) is identical to that of the classical
result [Eq. (48)].

Current operator dynamics.—We turn to the time evolution
of the current operator (98). Our hope, if not our expectation,
is to be able to identify a relationship to the transport
contribution represented by the kinetic stress tensor (99)
and to the internal force density operator (100). Hence, we
are seeking an analog of the classical MD force density
relationship [Eq. (44)]. This can indeed be established, albeit
not without a certain level of engagement in the quantum
formalism; however, all manipulations are straightforward
in principle. We start by considering the time evolution
of the current operator of particle i, defined as
Ji ¼ ðδip̂i þ p̂iδiÞ=2m, where δi ¼ δðr − riÞ, such that the
total current operator is Ĵ ¼ P

i Ĵi. Hence,

d
dt

Ĵi ¼
i
ℏ
½Ĥ; Ĵi� þ

∂
∂t Ĵi: ð115Þ

The last term in Eq. (115) can be simplified as

∂
∂t Ĵi ¼

1

2m
∂
∂t ðδip̂i þ p̂iδiÞ ð116Þ

¼ 1

2m
fδi½−q _Aðri; tÞ� þ ½−q _Aðri; tÞ�δig ð117Þ

¼ −
q
m
δi _Aðri; tÞ; ð118Þ

which is a multiplication operator and an expected part of the
force density balance. We hence still need to consider the first
(commutator) term in Eq. (115). We first address the following
kinetic energy contribution to the Hamiltonian:

i
ℏ

�X
j

p̂2
j

2m
;
p̂iδi þ δip̂i

2

	

¼ i½p̂2
i ; p̂iδi þ δip̂i�

4mℏ

¼ i
4mℏ

ðp̂α
i ½p̂α

i ; p̂iδi þ δip̂i� þ ½p̂α
i ; p̂iδi þ δip̂i�p̂α

i Þ; ð119Þ

where p̂α
i is the αth Cartesian component of p̂i and the

Einstein summation convention over α is implied.
Contributions with i ≠ j vanish as there is no coupling
between ∇j and ri. Hence, we need the following commutator
identity (which can be explicitly proven):

i
4mℏ

X
i

½p̂2
i ; p̂iδi þ δip̂i�

¼ ∇ · τ̂ þ q
2m

X
i

½δiðp̂i × Bi − Bi × p̂iÞ

þ ðp̂i ×Bi −Bi × p̂iÞδi� þ
ℏ2

4m
∇∇2n̂; ð120Þ

where the kinetic one-body stress operator is a second-rank
tensor given by
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τ̂ ¼ −
1

2m

X
i

ðp̂iδip̂i þ p̂iδip̂T
i Þ: ð121Þ

It remains to consider the potential energy contribution to
the commutator in Eq. (115). Defining the total potential
energy as VðrNÞ ¼ uðrNÞ þP

i Vextðri; tÞ, we have

i
ℏ

�
V;

p̂iδi þ δip̂i

2m

	
¼ −

i
2mℏ

½p̂iδi þ δip̂i; V� ð122Þ

¼ −
i

2mℏ
ð−iℏÞ½∇iδi þ δi∇i; V�; ð123Þ

as the magnetic contribution −2qAiδi commutes with the
potential energy. Hence, we can rewrite Eq. (123) as

−
1

2m
ð½∇iδi; V� þ ½δi∇i; V�Þ ð124Þ

¼ −
1

2m
ð∇iδiV − V∇iδi þ δi∇iV − Vδi∇iÞ ð125Þ

¼ −
1

2m
½ð∇iδiÞV þ δið∇iVÞ þ δiV∇i − Vð∇iδiÞ
− Vδi∇i þ δið∇iVÞ þ δiV∇i − Vδi∇i� ð126Þ

¼ 1

m
δið−∇iVÞ ð127Þ

¼ 1

m
δðr − riÞð−∇iVÞ ð128Þ

¼ 1

m
fδi½−∇iuðrNÞ� þ δi½−∇iVextðri; tÞ�g; ð129Þ

where in the last step we have split the total potential energy
into internal and external contributions. Equation (129) is the
(perhaps expected) contribution to the force density due to
potential forces.
Collecting all terms, i.e., Eqs. (118), (120), and (129),

yields

m
d
dt

Ĵ ¼ ∇ · τ̂ þ ℏ2

4m
∇∇2n̂þ F̂; ð130Þ

where the total force density operator is defined as

F̂ ¼ 1

2

X
i

ðf̂iδi þ δif̂iÞ; ð131Þ

with the force operator of particle i given by

f̂i ¼ −½∇iuðrNÞ� − ½∇iVextðri; tÞ� − q _Aðri; tÞ
þ q
2m

ðp̂i × Bi − Bi × p̂iÞ: ð132Þ

Building the quantum average h·i ¼ R
drNΨ� · Ψ of

Eq. (130) yields the following force density balance in the
form of Newton’s second law for one-body current and force
density distributions:

m
d
dt

Jðr; tÞ ¼ ℏ2

4m
∇∇2nðr; tÞ þ∇ · τðr; tÞ þ Fðr; tÞ: ð133Þ

Here the total one-body force density is given by

Fðr; tÞ ¼ Fintðr; tÞ − nðr; tÞ½∇Vextðr; tÞ þ q _Aðr; tÞ�
þ qJðr; tÞ × Bðr; tÞ; ð134Þ

and the internal force density is given by the quantum
average Fintðr; tÞ ¼ −hPi½∇iuðrNÞ�δðr − riÞi.
As a corollary, for a single particle N ¼ 1, rN ≡ r1,

Fintðr; tÞ ¼ 0, and the resulting equation of motion takes on
the following form (leaving away arguments r, t):

m
dJ
dt

¼ ð−q _A −∇VextÞnþ qJ ×B

þ∇ · τid þ
ℏ2

4m
∇∇2n; ð135Þ

τid ¼ −m
JJ
n
−

ℏ2

4m
ð∇nÞð∇nÞ

n
; ð136Þ

which is exact, i.e., equivalent to the Schrödinger equation for
a single quantum particle. For N ≥ 2 internal interactions will
be relevant and the one-body description is no longer closed as
both Fintðr; tÞ and τðr; tÞ are unknown. To address this issue,
we return to the quantum dynamical case in Sec. IV.B, where
we introduce functional generators for these fields, which then
allow us to construct a formally closed one-body theory.
The classical and quantum force balance relationships,

Eqs. (49) and (133), bear striking similarities to each other;
note that the external force field is fextðr; tÞ ¼ −q _Aðr; tÞþ
qvðr; tÞ × Bðr; tÞ −∇Vextðr; tÞ. Sometimes the first term on
the right-hand side of Eq. (133) is subsumed into a modified
kinetic stress tensor τQMðr; tÞ ¼ τðr; tÞ þ ℏ2∇∇nðr; tÞ=4m,
which then renders Eqs. (49) and (133) formally identical.

III. THE ADIABATIC STATE

A. The adiabatic construction

In the following we describe the concept of splitting the
internal force field of a nonequilibrium system into an adiabatic
and an additional superadiabatic contribution. We restrict our-
selves to the case of classical overdamped Brownian many-body
dynamics. The adiabatic construction, illustrated in Fig. 2, was
explicitly demonstrated on the basis of computer simulation
results by Fortini et al. (2014) using a one-dimensional hard-
core system. A range of subsequent studies were aimed at the
Gaussian core model (Bernreuther and Schmidt, 2016;
Stuhlmüller et al., 2018), the Lennard-Jones liquid (Schindler
and Schmidt, 2016), Weeks-Chandler-Andersen repulsive par-
ticles (de las Heras and Schmidt, 2020), and hard disks (de las
Heras and Schmidt, 2018a; Jahreis and Schmidt, 2020). An
elegant and computationally straightforward implementation in
simulation work is via the custom flow method of de las Heras,
Renner, and Schmidt (2019), as described in Sec. IV.F.
We start by recalling the BD one-body force field bal-

ance (88), where the time-dependent internal force field
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fintðr; tÞ is defined via the correlator (82) and the ratio (86),
i.e.,

fintðr; tÞρðr; tÞ ¼ −
�X

i

½∇iuðrNÞ�δðr − riÞ
�
: ð137Þ

The time-dependent density profile is ρðr; tÞ ¼ hρ̂i, where the
average is carried out over the nonequilibrium many-body
probability distribution ΨðrN; tÞ. We compare Eq. (88) at
time t to the force balance relationship in a second system,
which is at rest (on average) and in equilibrium. Hence, in this
so-called adiabatic system

0 ¼ −kBT∇ ln ρad;tðrÞ þ fad;tðrÞ −∇Vad;tðrÞ; ð138Þ
where ρad;tðrÞ is the density profile and Vad;tðrÞ is the external
potential in the adiabatic system; −∇Vad;tðrÞ is the external
force field, which is necessarily of a gradient nature as the
adiabatic system is in equilibrium. The internal force field
fad;tðrÞ in the adiabatic system, expressed as an average, is
given via

fad;tðrÞρad;tðrÞ ¼ −
�X

i

½∇iuðrNÞ�δðr − riÞ
�
eq
; ð139Þ

which is similar in form to the nonequilibrium internal force
field [Eq. (137)], with the sole distinction (and an important
one) being that an equilibrium average is carried out (at fixed
N, V, T, i.e., canonically, indicated by the subscript eq). The
density profile in the adiabatic system is the equilibrium
average ρad;tðrÞ ¼ hρ̂ieq.
Assume the most general case of a spatially inhomogeneous

system that evolves in time, i.e., consider ρðr; tÞ as having
nontrivial dependence on both of its arguments. At each time t
we choose the adiabatic system in such a way that its density
profile coincides with that in the nonequilibrium system. This
amounts to the density matching condition

ρad;tðrÞ ¼ ρðr; tÞ; ð140Þ

where the adiabatic density profile has acquired a parametric
dependence on time but is itself stationary as the adiabatic
system is in equilibrium at the same temperature T of the
nonequilibrium system. (More precisely, were one to evolve
the adiabatic system according to its own time evolution, i.e.,
along a new adiabatic time axis tad, then with respect to tad no
changes in the adiabatic density profile occur.)
The many-body distributions in the real system and in the

adiabatic system will in general differ from each other
[ΨðrN; tÞ ≠ Ψad;tðrNÞ]. However,

Z
drN ρ̂Ψad;tðrNÞ ¼

Z
drN ρ̂ΨðrN; tÞ; ð141Þ

which is the density matching condition (140) written in
explicit average form.
Per construction Ψad;tðrNÞ needs necessarily to be of

normalized Boltzmann form, as is appropriate for the canoni-
cal ensemble at fixed N, V, and T. One might wonder whether
such a distribution is guaranteed to exist. Note that we are
dealing with a potentially complex situation, as ρad;tðrÞ can
have a virtually arbitrary shape (as long as it is one that occurs
in a real time evolution of the system). The answer to the
question is affirmative, based on a Hamiltonian with an
unchanged interparticle interaction potential uðrNÞ, i.e., the
adiabatic system is composed of, say, Lennard-Jones particles,
when the real system under investigation is a time-dependent
process in the Lennard-Jones system. The freedom that we
need to introduce in the adiabatic system is the presence of an
adiabatic external potential, which is, from the standpoint of
the real system, of an entirely virtual nature and, in particular,
different than the real force field fextðr; tÞ that drives the time
evolution. Mathematically, for a given uðrNÞ, there is a unique
map in equilibrium, from the density distribution to the
external potential, ρad → Vad. This is indeed ensured by the
theorem due to Mermin (1965) and Evans (1979).
It is of interest to study the internal force field in the

adiabatic reference system. To gain access to fad;tðrÞ, there are
two obvious routes.

(i) We can use the correlator expression (139) and carry
out the average. The Mermin-Evans theorem ensures
that Vad;tðrÞ is unique. Hence, the Hamiltonian is
fully and uniquely specified, as is the canonical
equilibrium probability distribution, which is re-
quired to carry out the average.

(ii) The second route takes a shortcut, based directly on
the external potential Vad;tðrÞ (which again is de-
termined in principle from the Mermin-Evans theo-
rem) and a trivial rearranging of the equilibrium
force balance relationship (138) into the form

fad;tðrÞ ¼ kBT∇ ln ρad;tðrÞ þ∇Vad;tðrÞ: ð142Þ

Both routes are directly accessibly in many-body simulation
work and they can be equally useful. The density profile in
the adiabatic system is known [recall the density matching
condition (140)]. Hence, using either method in practice
requires one to have an explicit representation of the

FIG. 2. Illustration of the adiabatic construction. Left panel: the
real system evolves in time according to BD. It is characterized by
an in general inhomogeneous density distribution ρðr; tÞ and an
inhomogeneous one-body current Jðr; tÞ ≠ 0. The adiabatic state
is constructed at each fixed time, such that ρðr; tÞ is identical to
the density profile ρad;tðrÞ in the adiabatic system at the time
considered. Right panel: the adiabatic system is in equilibrium,
and hence there is no average current. The inhomogeneous
adiabatic density profile is stabilized by the action of an external
potential Vad;tðrÞ, which acts solely in the adiabatic system, but
not in the real system. In the real system it is the external force
field fextðr; tÞ that drives the dynamics.
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Mermin-Evans map ρad → Vad. For computer simulation
work, custom flow (de las Heras, Renner, and Schmidt,
2019) delivers this task.
An important point concerns higher-order correlation func-

tions, i.e., those beyond the one-body density profile. While
the density profile is per construction guaranteed to be the
same in the dynamical and in the adiabatic system, higher-
body correlation functions in general will differ. This is a
straightforward consequence of the differences in underlying
many-body distributions; recall the Boltzmann form in the
adiabatic system versus the result of the Smoluchowski
dynamics in the real system. In practice, the respective
two-body density correlation functions are accessible in
simulation work; see Fortini et al. (2014). Moreover, recent
conceptual advances in DFT have demonstrated the relevance
of two-body correlations, e.g., in the quest for systematically
incorporating interparticle attraction; see the pioneering work
by Tschopp et al. (2020) and Tschopp and Brader (2021).
As is the case for the higher-correlation functions, there is

hence no reason to expect that the internal force density in the
adiabatic system will be identical to the counterpart in the real
system, and therefore fintðr; tÞ ≠ fad;tðrÞ in general. Note that
for the case of pair forces the pair distribution function
determines the local force density. Nevertheless, as the
interparticle interaction potential is the same in the real and
in the adiabatic system, and the one-body density distribution
has the same form, we might want fad;tðrÞ to capture some of
the properties of fintðr; tÞ. (This is made rigorous in Sec. IV.)
As a consequence the difference between the real force density
and that of the adiabatic system might be a simpler object than
the bare fintðr; tÞ itself. Hence, we define the superadiabatic
force field fsupðr; tÞ as the difference

fsupðr; tÞ ¼ fintðr; tÞ − fadðr; tÞ; ð143Þ

where we have changed the notation fad;tðrÞ to fadðr; tÞ. Here
the term superadiabatic refers to the contribution above
adiabatic or, more accurately, the contribution that acts in
addition to the adiabatic force field. [This implies no simple
relationship of the relative sign, the direction, or the magni-
tude of fsupðr; tÞ relative to either fintðr; tÞ or fadðr; tÞ.] We
cover the behavior of these fields in model setups with several
simplifying geometries when discussing power functional
applications in Sec. IV. Figure 3 shows an illustration.
We insert the adiabatic-superadiabatic internal force split-

ting (143) into the nonequilibrium force balance relation-
ship (88) and trivially obtain the equation of motion in the
form

γvðr; tÞ ¼ −kBT∇ ln ρðr; tÞ
þ fadðr; tÞ þ fsupðr; tÞ þ fextðr; tÞ; ð144Þ

with the adiabatic construction (Fortini et al., 2014) implied
[i.e., the density matching condition (140) that uniquely
specifies the adiabatic system]. The functional dependencies
of fadðr; tÞ and fsupðr; tÞ are fundamentally different from each
other. In the adiabatic system, owing to the Mermin-Evans
map ρad → Vad and Eq. (142), we have a density-functional
dependence

fadðr; tÞ ¼ fadðr; t; ½ρ�Þ ¼ fad;tðr; ½ρad�Þ; ð145Þ

where the adiabatic and dynamic density profiles are identical
[see Eq. (140)] by construction. Hence, fadðr; tÞ is an
instantaneous (Markov-type) density functional with neither
memory nor dependence on other kinematic variables. Its
complexity lies entirely in the spatially nonlocal dependence
on the density distribution. We see in Sec. IV that the
superadiabatic force field depends functionally on density
and flow as follows:

fsupðr; tÞ ¼ fsupðr; t; ½ρ; J�Þ ¼ fsupðr; t; ½ρ; v�Þ; ð146Þ

i.e., with an additional dependence on the current distribution
or, equivalently, on the microscopic velocity field. In general
the functional dependence will again be nonlocal in space, but
also nonlocal in time [in the form of history dependence, i.e.,
dependence on ρðr; t0Þ and vðr; t0Þ at times t0 that do not lie in
the future, i.e., t0 ≤ t].
In general fsupðr; tÞ ≠ 0 only if the system is in motion,

i.e., vðr; t0Þ ≠ 0. The superadiabatic force field vanishes
[fsupðr; tÞ ¼ 0] if the system is at rest at all prior times
[vðr; t0Þ ¼ 0]. Hence, in a system with no flow the equation
of motion (144) reduces to

0 ¼ −kBT∇ ln ρðr; tÞ þ fadðr; tÞ þ fextðr; tÞ; ð147Þ

where the density profile and hence the adiabatic force field
are both invariant in time. Necessarily the external force
field is also invariant in time and of the form −∇VextðrÞ. We
hence recover the exact static equilibrium limit from the time-
dependent theory. (This is still a highly nontrivial many-body
problem encompassing a broad range of relevant physical
phenomena from phase behavior in bulk and at interfaces,
structural correlations, etc.) The adiabatic construction hence
allows one to systematically split the problem of determining
fintðr; tÞ into the problem of separately determining

nonequilibrium                    adiabatic

FIG. 3. Force balance in nonequilibrium (left panel) and in the
adiabatic system (right panel). In nonequilibrium the sum of the
external force field fextðr; tÞ, the diffusive force field
−kBT∇ ln ρðr; tÞ, and the internal force field fintðr; tÞ add up
and generate the scaled flow γvðr; tÞ. The internal force field
fintðr; tÞ consists of a sum of adiabatic and superadiabatic con-
tributions [fadðr; tÞ þ fsupðr; tÞ]. In the adiabatic system the sum of
the diffusive force field −kBT∇ ln ρðr; tÞ, the internal adiabatic
force field fadðr; tÞ, and the adiabatic external force field−∇Vad;tðrÞ
vanishes, as there is no flow (average one-body motion) in
equilibrium. The superadiabatic force field fsupðr; tÞ constitutes
the genuine nonequilibrium contribution to the real dynamics.
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(and hence modeling and rationalizing) both the adiabatic and
superadiabatic contributions.
As it turns out, the adiabatic-superadiabatic splitting is not

merely a formal one. Important and prominent physical effects
such as drag against a dense surrounding, both bulk and shear
viscosity, and nonequilibrium structural forces that are of
genuine nonequilibrium character are solely accounted for by
the superadiabatic effects, i.e., they can be understood only if
fsupðr; tÞ is correctly accounted for (Sec. IV presents the
corresponding theoretical development as well as concrete
applications). In contrast fadðr; tÞ is free of any of the
previously mentioned effects.
Nevertheless, fadðr; tÞ is in general neither a negligible nor a

small contribution [although there are special cases where
fadðr; tÞ ¼ 0 or a small number, such as in strong shear flow of
a nearly homogeneous system (Jahreis and Schmidt, 2020) or
the specifically tailored systems of de las Heras and Schmidt
(2020)]. We later demonstrate the functional structure, which
involves a superadiabatic current-density functional Pexc

t ½ρ; J�,
which generates the superadiabatic force field via functional
differentiation as follows:

fsupðr; t; ½ρ; J�Þ ¼ −
δPexc

t ½ρ; J�
δJðr; tÞ : ð148Þ

The magnitude and direction of fadðr; tÞ and those of fsupðr; tÞ
are in general decoupled from each other. As a rule of thumb,
fadðr; tÞ is more prominent the more the density profile
deviates from a homogeneous profile, and fsupðr; tÞ grows
large with increased driving.
In the following, we first address the adiabatic force profile,

then describe the theoretical (equilibrium density-functional)
structure that one can associate with it. The Mermin-Evans
theorem has the important feature that the adiabatic force field
is obtained from a generating (intrinsic excess Helmholtz) free
energy functional Fexc½ρ� via

fadðr; tÞ ¼ −∇ δFexc½ρ�
δρðrÞ

����
ρðrÞ¼ρðr;tÞ

: ð149Þ

Fexc½ρ� is an intrinsic object in the sense that it is independent
of the external potential, and characteristic for (and dependent
on) the internal interaction potential uðrNÞ. This might come
as a surprise given the coupled nature of the many-body
problem behind the equilibrium force balance relation-
ship (138), but this property can be made entirely rigorous.
Moreover, a functional minimization principle lies behind this
beautiful mathematical structure, and powerful physical
theory, which is the density-functional framework, to which
we turn in the following and which we lay out in some detail.
As a final remark, it is worthwhile to point out that the

concept of integrating out degrees of freedom, or partial noise
averaging in the nonequilibrium system in order to arrive at
effective internal interactions [which differ in general from the
bare uðrNÞ] is entirely different in character from the adiabatic
construction. See Farage, Krinninger, and Brader (2015) for
an insightful study of how self-propulsion of active Brownian
particles generates an effective attractive tail of the pair
potential, which originally was purely repulsive. Turci and

Wilding (2021) recently addressed many-body contributions
to the effective attraction.

B. Timeline of density-functional theory

The free gas-liquid interface, as treated by van der Waals
(1894) via a square-gradient approximation, can be viewed
historically as the first DFT. He concluded correctly that the
interface between the coexisting bulk fluid phases has finite
width and is hence not a sharp two-dimensional mathematical
object. The theory extends the work performed in his Ph.D.
thesis of 1873 [see the reissue (van der Waals, 2004)], which
itself was dedicated to gas-liquid bulk phase coexistence
in bulk.6

The theory by Onsager (1949) of the isotropic-nematic
phase transition of long and thin hard rods is based on the
virial (i.e., low-density) expansion together with a geometrical
scaling argument that involves the particle aspect ratio; van
Roij (2005) gave a clear account of this. The phase transition
is of first order and the treatment is exact in the scaling limit.
While neither Onsager nor van der Waals knew of free energy
density functionals, each of them was able to deduce a self-
consistency equation that in hindsight can be viewed as the
Euler-Lagrange equation of an underlying density functional.
The following decades saw much progress in the descrip-

tion of the liquid state. Particular highlights include the
formulation of the integral equation closure by Percus and
Yevick (1958) and of scaled-particle theory for hard spheres
by Reiss, Frisch, and Lebowitz (1959). Percus (1976) pre-
sented the exact solution for one-dimensional hard rods
(Tonks, 1936) that are exposed to an arbitrary external
potential. His solution has the form of an exact and closed
self-consistency equation for the density profile, with no
higher-order correlators involved. These by then classic
approaches [see Hansen and McDonald (2013)] formed the
grassroots upon which Rosenfeld (1989) later built his
formidable fundamental-measure density-functional theory
for hard sphere systems.
The birth of modern DFT is the treatment given by

Hohenberg and Kohn (1964) of the ground state properties
of the electron gas. Their work established that the ground
state energy of a quantum system is a functional of the one-
body density distribution nðrÞ, and a unique map exists
nðrÞ → VextðrÞ. Only one year later, Mermin (1965) general-
ized the theory to finite temperatures. At T > 0 entropy
becomes relevant, and the framework that he developed
applies to quantum statistical physics. In the same year,
Kohn and Sham reintroduced orbitals into DFT; see Kohn
(1999) for an accessible and compact description of the
essentials of electronic DFT.
In a far-reaching work, Evans (1979) laid out the structure

and the foundation of the present-day use of classical DFT.
[Evans et al. (2016) discussed prior work.] The paper also
contains the first formulation of the DDFTequation of motion.
The DDFT approach lay virtually dormant for 20 years, until

6Clerk-Maxwell (1874) reviewed that work a year after its
publication in the journal Nature.
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Marconi and Tarazona (1999) put it at the center of a new
research activity; see also Archer and Evans (2004).
Three important innovations were put forward in the same

year: Levy (1979) formulated the constrained search proof of
the Hohenberg-Kohn theorem. Rosenfeld and Ashcroft (1979)
formulated the modified hypernetted chain theory, including
the hypothesis of universality of the short-range structure in
liquids. Ramakrishnan and Yussouff (1979) developed their
first-principles order-parameter theory of freezing, which was
based on a functional Taylor expansion of the excess free
energy functional around the homogeneous bulk liquid.
Tarazona and Evans (1984) used weight functions in

classical DFT to smooth the density profile via spatial
convolution. They take the weight function to be proportional
to the Mayer function exp½−βϕðrÞ� − 1, where ϕðrÞ is the pair
potential. The method allowed them to incorporate nonlocal
interparticle correlations into DFT. Rosenfeld (1988) formu-
lated his scaled-field particle approach, which unifies the
hitherto distinct scaled-particle and Percus-Yevick theories.
Vanderlick, Davis, and Percus (1989) formulated the exact
solution for mixtures of one-dimensional polydisperse hard
rods in an arbitrary external potential.
Rosenfeld (1989) constructed fundamental-measure theory

(FMT) for hard sphere mixtures. His density-functional
approach is geometric in nature and was at that time (and still
is) different in theoretical structure than all other existing DFT
approximations. Kierlik and Rosinberg (1990) gave an alter-
native and elegant formulation of FMT based on scalar
weight functions. In a noteworthy extension of his hard
sphere functional, Rosenfeld (1994) obtained an initial gener-
alization of FMT to nonspherical hard bodies; he indentified a
relationship to the Gauss-Bonnet theorem of integral geometry
and related the Mayer bond to topological properties of the
system. This approach was carried further for specific systems
such as hard needle-sphere (Schmidt, 2001a) and hard plate-
sphere mixtures (Esztermann, Reich, and Schmidt, 2006). More
generally shaped bodies were addressed by Hansen-Goos and
Mecke (2009) and Wittmann, Marechal, and Mecke (2015).
The hard sphere FMT functional received a boost in

popularity through the version by Rosenfeld et al. (1997),
which is based on respecting the properties of the free energy
functional upon dimensional reduction. This version of FMT
cured the initial defect of FMT, which yielded the fluid
unstable with respect to the crystal. Tarazona (2000) intro-
duced a new tensorial weight function into FMT from
considering cavitylike, one-dimensional density distributions.
His functional predicted freezing from first principles in
excellent quantitative agreement with simulation benchmarks.
Remaining inaccuracies are due to the description of the fluid
rather than the solid. To go beyond the Percus-Yevick
compressibility equation of state that is seemingly inherent
to FMT, Roth et al. (2002) formulated the White Bear version
of FMT, which they based on the Carnahan-Starling equation
of state; Hansen-Goos and Roth (2006) generalized this
approach to multicomponent mixtures of hard spheres.
Davidchack, Laird, and Roth (2016) compared the perfor-
mance of different versions of FMT against benchmark
simulation data. Minimization in three dimensions was
performed by Levesque, Vuilleumier, and Borgis (2012).
Recently Lutsko (2020) reconsidered the original deficiency

of the functional of Rosenfeld (1989) and obtained a class of
what he referred to as explicitly stable functionals.
Progress was made at overcoming the hard sphere paradigm

and hence to arrive at a first-principles version of FMT for a
wider range of microscopic models. This includes the pen-
etrable step function pair potential (Schmidt, 1999), as an
example of a non-hard-core model, used to test the universality
of the bridge functional (Rosenfeld et al., 2000). The FMT for
the Asakura-Oosawa model colloid-polymer mixture (Schmidt
et al., 2000) of hard sphere colloids and ideal effective polymer
spheres proved to be a valuable tool for the study of adsorption
and confinement phenomena in such systems. See Schmidt
(2001b, 2004, 2011a) for work on free energy functionals for
more general nonadditive hard sphere mixtures.
On a more conceptual level, classical DFT was generalized

to quenched-annealed mixtures (Schmidt, 2002), where the
quenched component forms a random matrix and the annealed
component represents an equilibrated fluid that is adsorbed in
the resulting pore structure. The theory predicts quenched-
annealed fluid structure with an accuracy comparable to liquid
integral equation theory (Schmidt et al., 2002). de las Heras
and Schmidt (2014) demonstrated how to practically obtain
canonical information from grand canonical DFT results. This
proved to be a crucial step in clarifying the role of ensembles
in DDFT (de las Heras et al., 2016). Recently Lin and Oettel
(2019) and Lin, Martius, and Oettel (2020) constructed a DFT
using nonlocal functional ideas combined with machine
learning; see also the approach of Cats et al. (2021).
Today there is a broad range of applications of DFT, from

fundamental toy situations to applied, relevant problems such
as the calculation of solvation free energies of complex
molecules, where DFT performs orders of magnitude faster
than simulations, as shown by Jeanmairet, Levesque, and
Borgis (2013), Jeanmairet et al. (2013), and Sergiievskyi et al.
(2014) on the basis of their classical molecular density-
functional model for water. The behavior of patchy colloids
has been addressed by using DFT (de las Heras, Tavares, and
Telo da Gama, 2011), as well as complex capillary phase
behavior in model liquid crystals (de las Heras, Velasco, and
Mederos, 2005). DFT is applied to complex problems such as
the nucleation of crystals (Lutsko and Lam, 2018) and the
hard sphere crystal-fluid interface (Härtel et al., 2012). FMT
was formulated for lattice models by Lafuente and Cuesta
(2004); see Oettel et al. (2016) for an insightful application.

C. Sketch of classical DFT

For an introduction to classical DFT see Evans (1979),
Hansen and McDonald (2013), and the reviews by Tarazona,
Cuesta, and Martínez-Ratón (2008), Lutsko (2010), and Roth
(2010). We consider systems of particles in d space dimen-
sions, where all forces are represented by time-independent
gradient fields. The total force that acts on particle i is

fiðrNÞ ¼ −∇iuðrNÞ −∇iVextðriÞ: ð150Þ

The total potential energy is uðrNÞ þP
i VextðriÞ and the

Hamiltonian has no explicit time dependence. We are inter-
ested in equilibrium states and typically work in the grand

Matthias Schmidt: Power functional theory for many-body dynamics

Rev. Mod. Phys., Vol. 94, No. 1, January–March 2022 015007-20



ensemble at chemical potential μ, absolute temperature T, and
system volume V. The grand potential is expressed as

Ωð½ρ�;μ;V;TÞ¼Fð½ρ�;V;TÞþ
Z

drρðrÞ½VextðrÞ−μ�; ð151Þ

where the square brackets indicate a functional dependence
and F½ρ� is the intrinsic Helmholtz free energy density
functional, which is independent of VextðrÞ. The space integral
in the external contribution runs over V. The dependence on V
is often disregarded, as it can be subsumed into an appropriate
form of VextðrÞ that models system walls.
The minimization principle states that Ω is minimized at

fixed values of μ, V, and T by the true equilibrium density
distribution ρ0ðrÞ. Hence,

δΩ½ρ�
δρðrÞ

����
ρ¼ρ0

¼ 0 ðminÞ: ð152Þ

The value of the functional at the minimum is the equilibrium
value of the grand potential Ω0 itself,

Ω0ðμ; V; TÞ ¼ Ωð½ρ0�; μ; V; TÞ: ð153Þ
The intrinsic free energy functional F½ρ� can be split into ideal
and excess (over ideal gas) contributions, according to

F½ρ� ¼ Fid½ρ� þ Fexc½ρ�; ð154Þ
where the dependence on the thermodynamic parameters T
and V has been suppressed in the notation; no dependene on μ
occurs, as this is accounted for solely by the second term in
Eq. (151). The ideal gas free energy functional is given by

Fid½ρ� ¼ kBT
Z

drρðrÞ(fln½ρðrÞΛd�g − 1). ð155Þ

Recall that Λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πβℏ2=m

p
is the thermal de Broglie wave-

length, with β ¼ 1=kBT. Changing the value of Λ adds only a
constant to Fid½ρ�, which has no effect on the minimiza-
tion (152). The excess free energy functional Fexc½ρ� is due to
the internal interaction potential uðrNÞ, and typically approx-
imations are required to proceed toward application to actual
physical problems (freezing, adsorption, etc.).
Inserting the intrinsic-external splitting (151) and the ideal-

excess decomposition (154) of the intrinsic free energy into
the minimization condition (152) yields

0 ¼ δΩ½ρ�
δρðrÞ ð156Þ

¼ δ

δρðrÞ ðFid½ρ� þ Fexc½ρ�Þ

þ δ

δρðrÞ
Z

dr0ρðr0Þ½Vextðr0Þ − μ� ð157Þ

¼ kBT ln½ρðrÞΛd� þ δFexc½ρ�
δρðrÞ

þ
Z

dr0
δρðr0Þ
δρðrÞ ½VextðrÞ − μ� ð158Þ

¼ kBT ln½ρðrÞΛd� þ δFexc½ρ�
δρðrÞ þ VextðrÞ − μ; ð159Þ

where we have used in the last step the fact that
δρðr0Þ=δρðrÞ ¼ δðr − r0Þ. Solving for the first term on the
right-hand side of Eq. (159) and exponentiating gives

ρðrÞ ¼ Λ−d exp

�
−
δβFexc½ρ�
δρðrÞ − βVextðrÞ þ βμ

�
; ð160Þ

which forms a self-consistency equation for the determination
of the equilibrium density profile ρ0ðrÞ. [Recall that the
minimization Eq. (152) holds at ρðrÞ ¼ ρ0ðrÞ.] In the case
of the ideal gas Fexc½ρ� ¼ 0 and the Euler-Lagrange equa-
tion (160) reduces to the generalized barometric law
ρðrÞ ¼ Λ−d exp½−βVextðrÞ þ βμ�.
We can alternatively rearrange the Euler-Lagrange equa-

tion (159) in the following form:

VextðrÞ ¼ μ − kBT ln½ρðrÞΛd� − δFexc½ρ�
δρðrÞ ; ð161Þ

which makes the functional map ρðrÞ → VextðrÞ explicit: the
right-hand side of Eq. (161) is independent of VextðrÞ, as it
depends solely on ρðrÞ (and on the form of the functional
Fexc½ρ�Þ. Hence, knowing the density profile is enough, in
principle, to evaluate the right-hand side of Eq. (161) and
obtain the corresponding external potential. One hence
obtains, formally, a corresponding pair of functions VextðrÞ
and ρðrÞ that minimize the grand potential functional, i.e., that
satisfy Eq. (152). Physically, it is this hence identified external
potential that then leads in equilibrium to the prescribed target
density profile.
The DFT framework is well suited for addressing phase

behavior, where multiple macrostates can coexist. This applies
to general situations with nonvanishing VextðrÞ, such as in
capillaries. At coexistence, we have multiple stable phases,
labeled by an index α, with corresponding density profiles
ραðrÞ. The map

ραðrÞ → VextðrÞ ð162Þ
is then unique, as it should be. The external potential is the
same in the coexisting phases, as is the external force field
−∇VextðrÞ. On the other hand, VextðrÞ → ρðrÞ is not unique,
due to the multiplicity of the density profile(s). This is a real
effect at phase coexistence. Typically, for discontinuous (first-
order) phase transitions, the location of the interface between
the two coexisting phases constitutes further freedom in the
construction of a valid density profile.

D. Statistical mechanics and variations

We work in the grand ensemble (or “grand canonical”
ensemble), where the particle number N fluctuates and its
mean is controlled by the chemical potential μ, which renders
μ, V, and T the macrovariables. The grand partition sum is
defined as

Ξðμ; V; TÞ ¼ Tre−βðH−μNÞ; ð163Þ

where the Hamiltonian is for N ¼ const particles, and the
classical “trace” is defined as the sum over all particles and the
integral over each N-specific phase space as follows:
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Tr ¼
X∞
N¼0

1

h3NN!

Z
drNdpN: ð164Þ

The corresponding thermodynamic potential is the grand
potential, which is given by

Ωðμ; V; TÞ ¼ −kBT lnΞðμ; V; TÞ: ð165Þ

The microstates now encompass all rN and pN , with
N ¼ 0; 1; 2;…, distributed according to

ΨμVTðrN;pNÞ ¼ e−βðH−μNÞ

Ξ
; ð166Þ

where μ, V, andT are control parameters; see their occurrence
on the right-hand side of Eq. (166). Averages are built
according to

h·iμVT ¼ Tr ·ΨμVT: ð167Þ

It is then elementary to see that thermodynamic identities are
generated as parametric derivatives, such as

−
∂Ω
∂μ

����
VT

¼ hNiμVT: ð168Þ

Thus far everything has been general and applicable to
arbitrary forms of N-body Hamiltonians. Consider now the
specific form

H ¼
X
i

p2
i

2m
þ uðrNÞ þ

X
i

VextðriÞ; ð169Þ

which has no explicit time dependence, splits into internal and
external one-body contributions, and generates potential forces
only. Trivially, H depends on the function VextðrÞ as a time-
independent one-body field. WhenH is input into Eq. (165) the
dependence on Vextð·Þ persists and renders Ω a functional of
Vextð·Þ. We spell out the dependence explicitly as follows:

Ωðμ; V; T; ½Vext�Þ ¼ −kBT ln Tr exp

�
−β

�X
i

p2
i

2m
þ uðrNÞ

þ
X
i

VextðriÞ − μN

�	
;

ð170Þ

where the only dependence on the external potential is made
explicit in the notation. Hence, any input field Vextð·Þ is
converted to a number (the value of Ω with units of energy)
by carrying out the high-dimensional integrals that constitute
the classical trace. In particular the space integrals are coupled
via uðrNÞ and there is no hope in general of finding an exact
result. Nevertheless, Eq. (170) is important as a meaningful
starting point for an exact microscopic formal description as
the basis of statistical mechanics in equilibrium. Recognizing
the apparently trivial functional dependence on VextðrÞ, and the
consquences that this has, is an important modern achievement;
see the wealth of research carried out on the basis of
Evans (1979).

To study and understand the functional relationship better,
it is useful to consider functional derivatives of the grand
potential with respect to VextðrÞ. All the usual reasons for
studying derivatives, as a means of studying an object itself,
apply here. The parameters μ, V, and T are kept constant upon
building the functional derivative and hence

δΩ
δVextðrÞ

����
μVT

¼ −
kBT
Ξ

Tr
δ

δVextðrÞ
e−βðH−μNÞ ð171Þ

¼ Ξ−1Tre−βðH−μNÞ δH
δVextðrÞ

ð172Þ

¼
�

δH
δVextðrÞ

�
μVT

: ð173Þ

In Eqs. (171)–(173) r is a generic position coordinate (which
is in general different from ri). The functional derivative
commutes with the classical trace operation (164), and hence
operates only on the Boltzmann factor in Eq. (171). The
functional chain rule then reproduces the exponential and
generates the derivative of the Hamiltonian, which is

δH
δVextðrÞ

¼ δ

δVextðrÞ
X
i

VextðriÞ ð174Þ

¼
X
i

δVextðriÞ
δVextðrÞ

ð175Þ

¼
X
i

δðr − riÞ≡ ρ̂ðrÞ: ð176Þ

Insertion into Eq. (173) yields

δΩ
δVextðrÞ

����
μVT

¼ ρðrÞ; ð177Þ

where ρðrÞ ¼ hρ̂ðrÞiμVT is the equilibrium one-body density
distribution in the grand ensemble. Equation (177) is a
powerful generalization of the much more elementary
Eq. (168), which relates only the mean particle number to
the negative partial derivative of the grand potential with
respect to the chemical potential.
As an aside, sometimes one chooses to define a “local”

chemical potential via

μlocðrÞ ¼ μ − VextðrÞ; ð178Þ

where μ ¼ const is the “true” chemical potential.7 This allows
us to rewrite Eq. (177) in a form that is even more in line with
Eq. (168), namely,

7The concept of a species-dependent local chemical potential has
been exploited in work on sedimentation in binary colloidal mixtures
(de las Heras et al., 2012; de las Heras and Schmidt, 2013, 2015).
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−
δΩ

δμlocðrÞ
����
VT

¼ ρðrÞ: ð179Þ

Several remarks are in order.
(i) The relationship (177) applies to the elementary

concept of the (grand ensemble) grand potential. No
further functional needs to be established, apart from
recognizing that the (standard) partition sum is
already functionally dependent on VextðrÞ.

(ii) The mean density ρðrÞ is microscopically sharp (i.e.,
it can resolve inhomogeneities on small length
scales, as determined by the interaction forces). In
practice, this involves packing effects on the length
scale of the particle size.

(iii) Although functional calculus has certainly proved to
be powerful, at this stage it is not at all obvious how
deep the result (177) is, and whether it holds by a
mere accident.

Having had a useful outcome of applying functional
calculus to the partition sum, it is natural to consider its
second functional derivative. Using Eq. (177) this can
immediately be rewritten as

δ2Ω
δVextðr0ÞδVextðrÞ

����
μVT

¼ δρðrÞ
δVextðr0Þ

����
μVT

; ð180Þ

which is a surprising result, as it relates an abstract object (left-
hand side) to the physical response of the density distribution at
space point r upon changing the external potential at point r0.
Hence, the right-hand side of Eq. (180) constitutes a density-
response function. We return to this point for an in-depth study
in Sec. III.G of the Ornstein-Zernike relation.
Before doing so we further investigate Eq. (180). At fixed

thermodynamic parameters, consider

δρðrÞ
δVextðr0Þ

¼ δ

δVextðr0Þ
1

Ξ
Tre−βðH−μNÞρ̂ðrÞ ð181Þ

¼
�
−

1

Ξ2

δ

δVextðr0Þ
Ξ
�
Tre−βðH−μNÞρ̂ðrÞ

þ 1

Ξ
Tr

δ

δVextðr0Þ
e−βðH−μNÞρ̂ðrÞ ð182Þ

≡ðiÞ þ ðiiÞ: ð183Þ

We consider the two contributions separately.
(i) We rearrange the first term in Eq. (182) as

�
−
1

Ξ
δ

δVextðr0Þ
Ξ
�
Tr

1

Ξ
e−βðH−μNÞρ̂ðrÞ

¼
�
−
1

Ξ
Tre−βðH−μNÞð−βÞ δH

δVextðr0Þ
�
ρðrÞ ð184Þ

¼ β

�
Tr

1

Ξ
e−βðH−μNÞρ̂ðr0Þ

�
ρðrÞ ð185Þ

¼ βρðr0ÞρðrÞ; ð186Þ

where we have used the functional derivative of the
Hamiltonian δH=δVextðr0Þ ¼

P
i δðr0 − riÞ≡ ρ̂ðr0Þ.

(ii) The second term in Eq. (182) can be transformed as

1

Ξ
Tre−βðH−μNÞð−βÞ δH

δVextðr0Þ
ρ̂ðrÞ

¼ −β
Ξ

Tre−βðH−μNÞρ̂ðr0Þρ̂ðrÞ ð187Þ

¼ −βhρ̂ðrÞρ̂ðr0Þi: ð188Þ

Adding Eqs. (186) and (188) together yields

−
δρðrÞ

δβVextðr0Þ
¼ hρ̂ðrÞρ̂ðr0Þi − ρðrÞρðr0Þ; ð189Þ

which relates a density-response function (left-hand side) with
a density-density correlation function, i.e., the covariance of
ρ̂ðrÞ and ρ̂ðr0Þ (right-hand side). We return to static two-body
correlation functions later, when we summarize their standard
definition (Sec. III.F) and derive the static Ornstein-Zernike
relation (Sec. III.G). Dynamic correlations functions are
described in Sec. IV. We next turn to proving the existence
of the free energy density functional.

E. Levy’s constrained search

The standard Mermin-Evans derivation of classical DFT
(Evans, 1979) was described by Hansen and McDonald
(2013); see Two Theorems in Density Functional Theory in
Appendix B of that work. The first step consists of construct-
ing a many-body variational theory on the level of many-body
distribution functions, using the Mermin grand potential
functional

ΩM½Ψ� ¼ TrΨðH − μN þ kBT lnΨÞ ð190Þ

and then, via reductio ad absurdum, obtaining the functional
dependence on the density profile.
For the quantum case, Levy (1979) developed and used his

method as an alternative, and arguably more explicit, deriva-
tion of the Hohenberg-Kohn theorem. Dwandaru and Schmidt
(2011) applied the method to classical DFT and argued that it
has similar advantages over the conventional Mermin-
Evans proof.
The starting point of Levy’s search is to consider a function

space fΨðrN;pNÞg of normalized many-body distribution
functions [TrΨðrN;pNÞ ¼ 1], where the grand canonical
trace (164) is as previously defined. Each many-body dis-
tribution implies a corresponding density profile. Hence, we
have a functional map

Ψ → ρðrÞ ¼ TrΨρ̂; ð191Þ

which allows us to build subspaces of distribution functions Ψ
that generate the same given ρðrÞ. Hence, within one subspace
fΨ1;Ψ2;…g, all Ψ1 → ρðrÞ, Ψ2 → ρðrÞ, etc. In a different
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(primed) subspace fΨ0
1;Ψ0

2;…g all Ψ0
1 → ρ0ðrÞ, Ψ0

2 → ρ0ðrÞ,
etc., with a unique ρ0ðrÞ, but ρ0ðrÞ ≠ ρðrÞ.
The Mermin-Evans form of the intrinsic many-body

Helmholtz free energy functional is given by

F½Ψ0� ¼ TrΨ0

�X
i

p2
i

2m
þ uðrNÞ þ kBT lnΨ0

�
; ð192Þ

which resembles the Mermin functional (190), where the
external energy and chemical potential contributions have
been split off. The first two terms in the integrand of Eq. (192)
represent the internal kinetic and potential energyUint, and the
third term involving the logarithm is entropy S multiplied by
negative temperature. Hence, overall the structure is indeed
that of an intrinsic free energy, Uint − TS. In Eq. (192), Ψ0 is
an equilibrium many-body probability distribution function
associated with a Mermin external potential VMðrÞ. In the
proof by contradiction one shows that any density distribution
ρ0ðrÞ determines uniquely a corresponding Mermin potential
VMðrÞ, which renders Ψ0 known. This implies functional
dependence Ψ0½ρ�, which leads to the free energy (192) also
being functionally dependent on ρðrÞ.
Here we argue differently and instead operate on the

function space of general many-body phase space distribution
functions Ψ. The Levy definition of the intrinsic Helmholtz
free energy functional (Dwandaru and Schmidt, 2011) is

FL½ρ� ¼ min
Ψ→ρ

TrΨ
�X

i

p2
i

2m
þ uðrNÞ þ kBT lnΨ

�
; ð193Þ

where the minimization is performed in the subspace
fΨjΨ → ρðrÞg, i.e., it is a search for the minimum under
the constraint of a given one-body density, as expressed in
Eq. (191). It is this constraint that makes the value of the
integral (193) functionally dependent on ρðrÞ. This works for
any normalized, non-negative trial form of Ψ. [The integral in
Eq. (191) can be carried out regardless of whether Ψ is a valid
equilibrium distribution.]
The Levy version of the grand potential functional is

defined as

ΩL½ρ� ¼ FL½ρ� þ
Z

drρðrÞ½VextðrÞ − μ�; ð194Þ

where FL½ρ� is given via Eq. (193). The functional ΩL½ρ� forms
the basis of DFT as follows.
Theorem.—The Levy form (194) of the grand potential

functional has the properties

ΩL½ρ0� ¼ Ω0; ð195Þ

ΩL½ρ� ≥ Ω0; ð196Þ

with the equilibrium density profile ρ0ðrÞ and any trial density
profile ρðrÞ.
Proof.—The idea for the proof is based on Levy’s argu-

ment of a double minimization. The first step consists of the
constrained (search) minimization. The constraint is then

relaxed and the overall minimum is identified. We show this
explicitly in the following.
For completeness we spell out ρ0ðrÞ ¼ TrΨ0ρ̂, whereΨ0 ¼

Ξ−1 expf−β½Pi p
2
i =ð2mÞ þ uðrNÞ þP

i VextðriÞ − μN�g, the
grand potential is Ω0 ¼ −kBT lnΞ, and the grand partition
sum is Ξ ¼ Tr exp½−βðH − μNÞ�. It is a standard exercise
(Hansen and McDonald, 2013) to show via the Gibbs-
Bogoliubov inequality that the Mermin functional (190)
satisfies ΩM½Ψ0� ¼ Ω0 ≤ ΩM½Ψ�. Rephrasing this, we can
obtain from ΩM, as defined in Eq. (190), the following value
of the grand potential via minimization in the space of many-
body distribution functions:

Ω0 ¼ min
Ψ

TrΨ
�X

i

p2
i

2m
þ uðrNÞ þ kBT lnΨ

þ
X
i

VextðriÞ − μN

�
: ð197Þ

We next decompose the overall minimization into two steps,

min
Ψ

ð·Þ ¼ min
ρ

min
Ψ→ρ

ð·Þ; ð198Þ

where the inner (right) minimization on the right-hand side
is a search under the constraint of prescribed ρðrÞ and the
outer (left) minimization then finds the minimum upon
varying ρðrÞ.
Applying this general concept to Eq. (197) yields

Ω0 ¼ min
ρ

min
Ψ→ρ

TrΨ
�X

i

p2
i

2m
þ uðrNÞ þ kBT lnΨ

þ
X
i

VextðriÞ − μN

�
: ð199Þ

Inside of the inner minimization ρðrÞ is fixed and hence

Ω0 ¼ min
ρ

min
Ψ→ρ

TrΨ
�X

i

p2
i

2m
þ uðrNÞ þ kBT lnΨ

þ
Z

drVextðrÞ
X
i

δðr − riÞ − μN

�

ð200Þ

¼ min
ρ

�
min
Ψ→ρ

TrΨ
�X

i

p2
i

2m
þ uðrNÞ þ kBT lnΨ

�

þ
Z

dr½VextðrÞ − μ�min
Ψ→ρ

TrΨ
X
i

δðr − riÞ
	

ð201Þ

¼ min
ρ

�
FL½ρ� þ

Z
dr½VextðrÞ − μ�ρðrÞ

�
; ð202Þ

where the final form is written using Eq. (193) for FL½ρ�.
This proves the theorem and identifies the Levy form (193)
with the aforementioned intrinsic free energy functional
F½ρ� [Eq. (154)].
Levy’s constrained search method is flexible. Dwandaru

and Schmidt (2011) used it to formulate classical DFT in the
canonical ensemble. Here the constraint of the fixed particle
number is implemented straightforwardly by setting up the
previously mentioned reasoning in the canonical ensemble.
The canonical intrinsic free energy functional formally
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resembles the grand ensemble form (193), but with the trace
and many-body probability distribution function expressed
canonically; see Dwandaru and Schmidt (2011) for details.
Schmidt (2011b) used Levy’s method for the construction of
an internal-energy functional, which depends both on the
density profile and on a microscopically resolved entropy
density (both act as constraints). An extended set of closely
related fluctuation profiles in inhomogeneous fluids were
systematically studied by Eckert et al. (2020). The fluctuation
profiles include the local compressibility. Based on early work
(Stewart and Evans, 2012, 2014), this one-body function was
shown to be a highly useful indicator for important phenom-
ena ranging from solvent-mediated interactions (Chacko,
Evans, and Archer, 2017), solvophobicity and hydrophobicity
(Evans and Stewart, 2015), and drying and wetting (Evans,
Stewart, and Wilding, 2016, 2017) to the physical mechanism
behind hydrophobicity (Coe, Evans, and Wilding, 2022).
In practice, approximations for canonical functionals are

scarce. There are alternative ways to obtain canonical informa-
tion; see themethod byGonzález et al. (1997) and the framework
of White et al. (2000) and White and González (2002). Starting
from grand ensemble data requires one, in principle, to carry out
an inverse Laplace transform, which is a numerically difficult
task. The direct decomposition method of de las Heras and
Schmidt (2014) circumvents this problem by instead solving a
linear set of equations that is numerically tractable. Obtaining
canonical information can be crucial, particularly for small
systems, and when comparing to results from experiment or
simulation. For ensemble differences to vanish, typically the
thermodynamic limit is required. The decomposition method
allows one to obtain canonical information from grand canonical
results, as are characteristic for numerical DFT applications.
de lasHeras et al. (2016) used this approach to formulate particle-
conserving adiabatic dynamics in order to avoid erroneous
particle number fluctuations of dynamical density-functional
theory; see also Schindler, Wittmann, and Brader (2019) and
Wittmann, Löwen, and Brader (2021).

F. Static two-body correlation functions

We recall the fundamental property of the grand potential
Ω, as expressed via the grand partition sum and viewed as a
functional of the external potential, to generate correlation
functions from functional derivatives [Eqs. (177), (180),
and (189) in Sec. III.D]. Explicitly,

δΩ½Vext�
δVextðrÞ

¼ ρðrÞ; ð203Þ

δ2Ω½Vext�
δVextðr0ÞδVextðrÞ

¼ δρðrÞ
δVextðr0Þ

ð204Þ

¼ −β½hρ̂ðrÞρ̂ðr0Þi − ρðrÞρðr0Þ�: ð205Þ

From the interchangeability of the order of the second
derivatives in Eq. (204), the symmetry δρðrÞ=δVextðr0Þ ¼
δρðr0Þ=δVextðrÞ follows.
We summarize the definitions of several closely related

two-body functions (Hansen and McDonald, 2013). The
density-density correlation function H2ðr; r0Þ is defined as

H2ðr; r0Þ ¼ hρ̂ðrÞρ̂ðr0Þi − ρðrÞρðr0Þ; ð206Þ

where the symmetry H2ðr; r0Þ ¼ H2ðr0; rÞ holds. One can
alternatively express Eq. (206) as the autocorrelator of density
fluctuations around the mean density profile,

H2ðr; r0Þ ¼ h½ρ̂ðrÞ − ρðrÞ�½ρ̂ðr0Þ − ρðr0Þ�i. ð207Þ
To show the equivalence of Eqs. (206) and (207), we omit
the position arguments and indicate the dependence on r0

with a prime. Mulitplying out Eq. (207) we obtain
hρ̂ρ̂0i− hρ̂ρ0i− hρρ̂0i þ hρρ0i ¼ hρ̂ρ̂0i − hρ̂iρ0 − ρhρ̂0i þ ρρ0 ¼
hρ̂ρ̂0i− ρρ0 − ρρ0 þ ρρ0 ¼ hρ̂ρ̂0i− ρρ0, which is Eq. (206).
The total correlation function hðr; r0Þ is defined via

H2ðr; r0Þ ¼ ρðrÞρðr0Þhðr; r0Þ þ ρðrÞδðr − r0Þ; ð208Þ
where rearranging gives

hðr; r0Þ ¼ H2ðr; r0Þ
ρðrÞρðr0Þ −

δðr − r0Þ
ρðrÞ : ð209Þ

The correlation function hðr; r0Þ carries no units (the delta
function carries units of inverse volume).
The pair correlation function gðr; r0Þ is defined via

gðr; r0Þ ¼ 1þ hðr; r0Þ ð210Þ

¼ H2ðr; r0Þ þ ρðrÞρðr0Þ
ρðrÞρðr0Þ −

δðr − r0Þ
ρðrÞ ð211Þ

¼ hρ̂ðrÞρ̂ðr0Þi
ρðrÞρðr0Þ −

δðr − r0Þ
ρðrÞ : ð212Þ

Alternatively and equivalently, one can express the pair
correlation function as

gðr; r0Þ ¼ 1

ρðrÞρðr0Þ
�X

i

X
j

0δðr − riÞδðr0 − rjÞ
�
; ð213Þ

where the primed sum indicates that the terms with i ¼ j have
been omitted. The equivalence with the prior definition (212)
can be seen by considering the product of the two density
operators,

ρ̂ðrÞρ̂ðr0Þ ¼
X
i

δðr − riÞ
X
j

δðr0 − rjÞ ð214Þ

¼
X
i

X
j

0δðr − riÞδðr0 − rjÞ

þ δðr − r0Þ
X
i

δðr − riÞ; ð215Þ

where the last term is δðr − r0Þρ̂ðrÞ. Averaging yields the sum
of a distinct part (from different particles) and a self part
(considering the same particle twice) according to

hρ̂ðrÞρ̂ðr0Þi ¼
�X

i

X
j

0δðr − riÞδðr0 − rjÞ
�

þ δðr − r0Þhρ̂ðrÞi; ð216Þ
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where ρðrÞ ¼ hρ̂ðrÞi. Input of the result (216) into Eq. (212)
yields Eq. (213).
Finally, the density-response function is defined as

χðr; r0Þ ¼ δρðrÞ
δVextðr0Þ

; ð217Þ

which is often formulated in the form of a response relation-
ship. Here the density change δρðrÞ at position r in response
to a change in external potential δVextðr0Þ at position r0 is
expressed as

δρðrÞ ¼
Z

dr0χðr; r0ÞδVextðr0Þ: ð218Þ

A priori the density-response function is different in character
than the previously mentioned density-density correlation
functions. However, in the present classical context, we can
identify these conceptually different objects:

χðr; r0Þ ¼ −βH2ðr; r0Þ: ð219Þ

We have thus far used explicit correlator expressions and
functional derivatives of the partition sum (in the form of the
grand potential) with respect to the external potential. We next
turn to the density-functional structure.
One defines the one-body direct correlation function as

c1ð½ρ�; r;T; VÞ ¼ −β
δFexc½ρ�
δρðrÞ ; ð220Þ

where Fexc½ρ� is the excess (over ideal gas) contribution of
the Helmholtz excess free energy functional; recall the ideal-
excess splitting (154). Strictly speaking, Eq. (220) defines a
functional, and the direct correlation function c1ðrÞ is
obtained by evaluating this functional, for given thermody-
namic parameters, at the physical equilibrium density profile
ρ0ðrÞ, i.e.,

c1ðrÞ ¼ c1ð½ρ0�; r;T; VÞ: ð221Þ

We can build higher than first derivatives of the excess free
energy density functional. Going to the second derivative, i.e.,
one order higher than in Eq. (220), gives the two-body direct
correlation “function” c2ðr; r0Þ, defined as

c2ð½ρ�; r; r0;T; VÞ ¼ −β
δ2Fexc½ρ�

δρðrÞδρðr0Þ ; ð222Þ

where we have again made the functional dependence on ρðrÞ
explicit in the notation. Evaluating at the equilibrium density
profile [ρðrÞ ¼ ρ0ðrÞ] gives the two-body direct correlation
function, central to liquid integral equation theory (Hansen
and McDonald, 2013). In a bulk fluid c2ðr; r0Þ ¼ c2ðjr − r0jÞ
due to global translational and rotational symmetry; see
Hermann and Schmidt (2021, 2022) for the consequences
that arise from symmetries according to Noether’s theorem.

G. Static Ornstein-Zernike relation

The Ornstein-Zernike relation connects the two-body direct
correlation function with the density-response function (which
can be expressed and rewritten in various forms, as described
in Sec. III.F). Here we give a derivation that identifies the
underlying physical concept and separates this from the more
technical points that arise from the use of the different form of
correlators and response functionsH2, h, g, and χ. This type of
derivation was used recently in equilibrium by Eckert et al.
(2020) in their derivation of Ornstein-Zernike relations for
fluctuation profiles, and by Tschopp and Brader (2021) in
their fundamental-measure theory for inhomogeneous two-
body correlation functions. The dynamical generalization
formed the basis of the nonequilibrium Ornstein-Zernike
relation (Brader and Schmidt, 2013, 2014).
We address the general, inhomogeneous case in the

following. Consider the Euler-Lagrange equation (161) of
DFT, which we make fully explicit as

kBT ln½ρ0ðrÞΛd� ¼ −
δFexc½ρ�
δρðrÞ

����
ρðrÞ¼ρ0ðrÞ

− VextðrÞ þ μ; ð223Þ

where ρ0ðrÞ is the equilibrium density profile in the presence
of the external potential VextðrÞ. Hence, Eq. (223) is valid
for any corresponding pair of fields ρ0ðrÞ and VextðrÞ. As
Eq. (223) stays true upon changing VextðrÞ and correspond-
ingly changing ρ0ðrÞ, its derivative with respect to the external
potential is also true. Introducing a new primed spatial
position variable, from Eq. (223) we hence obtain

δkBT ln½ρ0ðrÞΛd�
δVextðr0Þ

¼ −
δ

δVextðr0Þ
δFexc
δρðrÞ

����
ρðrÞ¼ρ0ðrÞ

−
δ(VextðrÞ − μ)

δVextðr0Þ
: ð224Þ

As the variation is performed at a constant thermodynamic
state point, the second term on the right-hand side is simply

−
δ(VextðrÞ − μ)

δVextðr0Þ
¼ −

δVextðrÞ
δVextðr0Þ

¼ −δðr − r0Þ; ð225Þ

as no dependence on the density profile is involved. To
calculate the remaining terms, we need (i) the standard rules
of functional calculus and (ii) to recognize the relationship
with the previously mentioned correlators. The left-hand
side of Eq. (224) can be related to Eq. (205), i.e.,
H2ðr; r0Þ ¼ −kBTδρðrÞ=δVextðr0Þ, by rewriting it as

kBT
δ ln½ρðrÞΛd�
δVextðr0Þ

¼ kBT
ρðrÞ

δρðrÞ
δVextðr0Þ

¼ −
H2ðr; r0Þ
ρðrÞ ; ð226Þ

where we have dropped the subscript 0. To obtain the
remaining (first) term on the right-hand side of Eq. (224),
we carry out the functional derivative by using the functional
chain rule and once more the definition (205),
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−
δ

δVextðr0Þ
δFexc½ρ�
δρðrÞ

����
ρ¼ρ0

¼ −
Z

dr00
δ2Fexc½ρ�

δρðr00ÞδρðrÞ
δρðr00Þ
δVextðr0Þ

ð227Þ

¼ −
Z

dr00
δ2Fexc½ρ�

δρðr00ÞδρðrÞ
�
−

1

kBT
H2ðr00; r0Þ

�
ð228Þ

¼
Z

dr00
δ2βFexc½ρ�
δρðr00ÞδρðrÞH2ðr00; r0Þ ð229Þ

¼ −
Z

dr00c2ðr00; rÞH2ðr00; r0Þ ð230Þ

¼ −
Z

dr00c2ðr; r00ÞH2ðr00; r0Þ: ð231Þ

We can now restore the starting equality (224) by equating
Eq. (226) with the sum of Eq. (231) and the delta func-
tion (225). The result is

H2ðr; r0Þ ¼ ρðrÞ
Z

dr00c2ðr; r00ÞH2ðr00; r0Þ þ ρðrÞδðr − r0Þ;

ð232Þ

where we have multiplied by −ρðrÞ. Equation (232) can
already be viewed as the static Ornstein-Zernike relation. Its
standard form is expressed in terms of the total correlation
function hðr; r0Þ, where according to Eq. (209) we have
H2ðr; r0Þ ¼ ρðrÞρðr0Þhðr; r0Þ þ ρðrÞδðr − r0Þ. We insert this
identity into the integral in Eq. (232),

Z
dr00c2ðr; r00ÞH2ðr00; r0Þ ð233Þ

¼
Z

dr00c2ðr; r00Þ½ρðr00Þρðr0Þhðr00; r0Þ þ ρðr00Þδðr00 − r0Þ�

¼
Z

dr00c2ðr; r00Þρðr00Þρðr0Þhðr00; r0Þ

þ
Z

dr00c2ðr; r00Þρðr00Þδðr00 − r0Þ ð234Þ

¼ ρðr0Þ
�Z

dr00c2ðr; r00Þρðr00Þhðr00; r0Þ þ c2ðr; r0Þ
�
: ð235Þ

We use this result in Eq. (232), divide by ρðr0ÞρðrÞ, and obtain
the standard form of the inhomogeneous Ornstein-Zernike
relation as

hðr; r0Þ ¼ c2ðr; r0Þ þ
Z

dr00c2ðr; r00Þρðr00Þhðr00; r0Þ; ð236Þ

where the total correlation function hðr; r0Þ is a probabilistic
object, defined via Eqs. (207) and (209), and c2ðr; r0Þ is the
total correlation function, defined as the second functional
density derivative (222) of the excess free energy functional.
The Ornstein-Zernike relation is a fundamental sum rule,

different in character from hierarchies that relate two-body to

three-body (and/or higher) correlation functions. The
Ornstein-Zernike relation is closed on the two-body level.
(It also involves the one-body density profile.) Three- and
higher-body versions exist and can be systematically derived.
Alternatively, without the density-functional context, the
Ornstein-Zernike relation can be viewed as the definition of
the direct correlation function c2ðr; r0Þ. (This is the original
concept by Ornstein and Zernike.) The combination with a
“closure” relation, i.e., an approximate additional relation
between h and c2, forms the basis of liquid state integral
equation theory. In a bulk fluid ρðrÞ ¼ ρb ¼ const and the
spatial dependence is only on rαβ ¼ jrα − rβj, where α; β ¼
1; 2; 3 labels the space points. We then have

hðr13Þ ¼ c2ðr13Þ þ ρb

Z
dr2c2ðr12Þhðr23Þ: ð237Þ

One can visualize the integrals via diagrammatic notation,
which gives deep insights into the mathematical structure and
forms a useful calculation device. There are generalizations to
mixtures and to anisotropic interparticle interactions. While
this is conceptually straightforward, in actual applications the
use can be highly challenging. We demonstrate in Sec. IV.D
how the power functional permits one to generalize to time-
dependent correlation functions.

H. Approximate free energy functionals

In practical applications of DFT an approximation for the
nontrivial excess part Fexc½ρ� of the density functional is
required. Carrying out such work, an example being to
investigate the behavior of a given fluid in the presence of
an external potential, requires solving the Euler-Lagrange
equation (160), which is typically performed numerically.
Owing to decades of fundamental research efforts, a wide
range of useful concrete prescriptions for Fexc½ρ� is available.
The different functionals vary both in the underlying concepts
to perform the approximation and in the resulting mathemati-
cal complexity. We refer the interested reader to the pertinent
literature8 and here describe only several basic concepts
that are relevant to the construction of power functional
approximations.
Arguably the simplest model form for Fexc½ρ� is the local-

density approximation (LDA). This scheme requires as input
the bulk fluid equation of state, which determines the excess
free energy density per unit volume ψ excðρbÞ as a function of
the bulk density ρb. The LDA density functional then sums
up local contributions from all space points via Fexc½ρ� ¼R
drψ exc(ρðrÞ), thereby ignoring all spatial correlations that

the internal interactions generate. Nevertheless, for slowly
varying spatial inhomogeneities (as measured on the length
scale of interparticle correlations in the system) the LDA
can be a good approximation. [See the studies of colloidal
sedimentation by de las Heras et al. (2012), Geigenfeind and

8Good starting points are Evans (1992), Tarazona, Cuesta, and
Martínez-Ratón (2008), Lutsko (2010), Roth (2010), Hansen and
McDonald (2013), and Evans et al. (2016).
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de las Heras (2017), Eckert, Schmidt, and de las
Heras (2021).]
Taking simple account of some correlation effects is

possible via the following square-gradient approximation:

Fexc½ρ� ¼
Z

dr

�
ψexc(ρðrÞ)þ

m
2
½∇ρðrÞ�2

�
; ð238Þ

where m determines the strength of the square-gradient
contribution. Microscopically, m is related to the second
moment of the bulk direct correlation function m ¼
kBT

R
drr2c2ðrÞ=6 (for d ¼ 3), which allows to make a

connection with the underlying model fluid.
Building the functional derivative of Eq. (238) with respect

to the density profile gives

δFexc½ρ�
δρðrÞ ¼ ∂ψ excðρÞ

∂ρðrÞ −m∇2ρðrÞ; ð239Þ

which can be directly input into the Euler-Lagrange equa-
tion (160). The resulting theory is along the lines of van der
Waals’s historical treatment of the free gas-liquid interface and
is akin to a Landau theory when ρðrÞ is identified as the local
order parameter. Approximations of the form of Eq. (238) are
sometimes referred to as semilocal.
A better accounting of the microscopic correlations that

arise from interparticle forces and, in particular, from short-
ranged repulsion requires genuine nonlocal approximations.
Most nonlocal functionals rely on the introduction of one or
several weighted densities that are obtained by convolution of
the density profile with suitable weight function(s). Arguably
the most successful scheme of this form is Rosenfeld’s
fundamental-measure theory for hard sphere mixtures (as
well as for certain further model fluids). In short, the weighted
densities are built according to

nαðrÞ ¼
Z

dr0ρðr0Þwαðr − r0Þ; ð240Þ

where α is an index that labels the different weight functions.
The Rosenfeld (1989) functional has the form

Fexc½ρ� ¼ kBT
Z

drΦ(fnαðrÞg); ð241Þ

where the scaled excess free energy density per volume
Φ(fnαðrÞg) depends on all weighted densities. It is given
by the simple rational expression

Φ(fnαðrÞg)¼−n0 lnð1−n3Þþ
n1n2
1−n3

þ n32
24πð1−n3Þ2

ð242Þ

in the form by Kierlik and Rosinberg (1990); we have omitted
the position argument of nαðrÞ for clarity. For the one-
dimensional hard-core system (“hard rods”) Φ1DðfnαgÞ ¼
−n0 lnð1 − n1Þ and the fundamental-measure functional is
identical to Percus’s exact functional. In three dimensions a
range of improved FMTs exist: these successfully describe
freezing and crossover to reduced dimensionality. The White

Bear version incorporates the quasiexact Carnahan-Starling
equation of state; see Roth (2010). We recall Sec. III.B, which
gives an overview of further developments in constructing free
energy density functionals.

I. Dynamical density-functional theory

The original proposal of Evans (1979) for the dynamical
DFTwas subsequently reconsidered by Marconi and Tarazona
(1999), Archer and Evans (2004), and Español and Löwen
(2009). In the following their dynamical theory is described on
the basis of the adiabatic construction, which was laid out in
Sec. III.A.
We recall the Euler-Lagrange equation (159) of equilibrium

DFT as follows:

δF½ρ�
δρðrÞ þ VextðrÞ − μ ¼ 0; ð243Þ

where for compactness of notation we have left out the fact
that equality holds for ρðrÞ ¼ ρ0ðrÞ, where ρ0ðrÞ indicates the
equilibrium density profile. Building the negative gradient of
Eq. (243) yields

−∇ δF½ρ�
δρðrÞ −∇VextðrÞ ¼ 0; ð244Þ

which has the clear physical interpretation of a force balance
relationship of vanishing sum of intrinsic and external forces.
The aim is to formulate a dynamical one-body theory that

drives the time evolution in nonequilibrium, based on the
equilibrium intrinsic force term in Eq. (244). We recall from
Sec. II the one-body continuity equation

_ρðr; tÞ ¼ −∇ · Jðr; tÞ; ð245Þ

which links changes in the time-dependent density profile to
the divergence of the microscopic current distribution Jðr; tÞ.
We have seen that the exact equation of motion (83) for the
case of overdamped Brownian motion represents the current
as being instantaneously generated by the sum of all force
densities that act in the system as follows:

γJðr; tÞ ¼ −kBT∇ρðr; tÞ þ Fintðr; tÞ þ ρfextðr; tÞ: ð246Þ

As before γ is the friction constant against the static back-
ground solvent. In equilibrium, we know that the internal
force density and the external force field satisfy, respectively,

FintðrÞ ¼ −
�X

i

δðr − riÞ∇iu

�
eq
¼ −ρðrÞ∇ δFexc½ρ�

δρðrÞ ; ð247Þ

fextðrÞ ¼ −∇VextðrÞ: ð248Þ

To use Eq. (247) in a dynamical context we use the concept of
the adiabatic state, which as described in Sec. III.A consists
of considering, at each time t, a true equilibrium adiabatic
system, with its genuine one-body density profile ρad;tðrÞ. As
the adiabatic system is in equilibrium, its density distribution
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is independent of time. However, per construction the non-
equilibrium system has at each time t a corresponding
adiabatic state. The nonequilibrium system and the adiabatic
system share the same internal interaction potential uðrNÞ and
they are related by the identification

ρðr; tÞ ¼ ρad;tðrÞ; ð249Þ

where the dependence on time is real in the nonequilibrium
system and parametric only in the adiabatic system (where t
instead “selects” the fitting adiabatic state in a sequence of
equilibrium systems indexed by t). In the adiabatic system, via
the Hohenberg-Kohn-Mermin-Evans map, we can identify a
unique external one-body potential Vad;tðrÞ that stabilizes the
given ρad;tðrÞ. Again the dependence on time of the adiabatic
external potential is merely parametric. The adiabatic system
is in equilibrium, and hence its external potential Vad;tðrÞ is
static. (This point is of mere conceptual inportance; in practice
one treats the adiabatic system using a corresponding equi-
librium ensemble that relieves one of a secondary time
evolution in the adiabatic system.)
In the adiabatic system the external force field needs to

balance the intrinsic force field, −kBT∇ ln ρad;tðrÞ þ fad;tðrÞ−
∇Vad;tðrÞ ¼ 0, where fad;tðrÞ is the one-body force field in
the adiabatic system that arises due to internal interactions.
Hence, we have a chain of functional relationships

ρðr; tÞ → ρad;tðrÞ → Vad;tðrÞ → fad;tðrÞ: ð250Þ

Dynamical DFT amounts to approximating the real internal
one-body force field by that in the adiabatic system as follows:

fintðr; tÞ ≈ fad;tðrÞ: ð251Þ

As a result of the approximation all forces are known in the
nonequilibrium system [as ρðr; tÞ is known at time t and
fad;tðrÞ is a density functional]. As the force balance is
known via the approximation (251), the dynamical theory
is closed. [The continuity equation (245) forms the supple-
mental, secondary relation.] Hence, we have the instantaneous
relationship

γJðr; tÞ ¼ −kBT∇ρðr; tÞ þ ρfadðr; tÞ þ ρfextðr; tÞ; ð252Þ

where we have dropped the subscript t and fextðr; tÞ needs no
longer be restricted to gradient form. Note that in cases where
it is restricted the real external potential, which generates the
instantaneous external force field via fextðr; tÞ ¼ −∇Vextðr; tÞ,
will in general be significantly different than the external
potential that acts in the adiabatic system [Vad;tðrÞ]. Hence,
Vextðr; tÞ ≠ Vad;tðrÞ, possibly strikingly so. To see this, first
consider a switching process that changes Vextðr; tÞ abruptly
but that had not allowed enough time to pass to generate a
noticeable effect on ρðr; tÞ, hence leaving Vad;tðrÞ virtually
intact. It is important to appreciate the difference between the
two external potentials: Vextðr; tÞ drives the time evolution
in the real system, whereas Vad;tðrÞ instead stops the time
evolution in the adiabatic system. When the real system is in
equilibrium, both potentials are identical. As a second

illustrative example, consider free expansion of an initially
confined density distribution, where at any time the adiabatic
potential needs to stabilize the broadening density profile,
although after the initial time Vextðr; tÞ≡ 0; see Schmidt and
Brader (2013).
Using the approximation (251) in a practical application

requires one to have access to the adiabatic map (250), of
which the nontrivial part is the following map from the density
profile to the external potential in the adiabatic system:

ρad;tðrÞ → Vad;tðrÞ: ð253Þ

DFT as an approximative computational scheme is perfectly
suited to this task. Consider the following Euler-Lagrange
equation in the adiabatic system:

kBT ln ρad;tðrÞ þ
δFexc½ρad;t�
δρad;tðrÞ

¼ μad − Vad;tðrÞ; ð254Þ

where μad is the chemical potential that controls the density in
the adiabatic system and Fexc½ρ� is the intrinsic excess free
energy functional, which arises from uðrNÞ ≠ 0. Hence, the
internal force field in the adiabatic system is available as a
density functional as

fad;tðrÞ ¼ −∇ δFexc½ρ�
δρðrÞ

����
ρðrÞ¼ρad;tðrÞ

; ð255Þ

which is a directly accessible quantity [recall ρðr;tÞ¼ρad;tðrÞ]
once the excess free energy functional is known (as an
approximation, as is typical for equilibrium DFT applications).
In summary, the DDFT equations of motion are

_ρðr; tÞ ¼ −∇ · Jðr; tÞ; ð256Þ

γJðr; tÞ ¼ −kBT∇ρðr; tÞ− ρðr; tÞ∇δFexc½ρ�
δρðr; tÞ þ ρðr; tÞfextðr; tÞ.

ð257Þ

Eliminating the current (which is a useful object in its
own right, as we demonstrate in Sec. IV) yields the following
standard form of DDFT:

_ρðr; tÞ ¼ D∇2ρðr; tÞ þ γ−1∇ · ρðr; tÞ∇ δFexc½ρ�
δρðr; tÞ

− γ−1∇ · ρðr; tÞfextðr; tÞ; ð258Þ

where D ¼ kBT=γ is the single-particle diffusion constant
and ∇2 ¼ ∇ · ∇ is the Laplace operator. For the ideal gas
Fexc½ρ� ¼ 0, as there are no interparticle interactions
[uðrNÞ≡ 0]. Hence, the second term on the right-hand side
of Eq. (258) vanishes. The leaves over the sum of the first term
(diffusion) and the third term (drift), which then constitutes the
correct drift-diffusion equation for the ideal gas.
The contribution due to the internal interactions in the

system [the second term on the right-hand side of Eq. (258)]
will in general have spatially nonlocal dependence on the
density distribution. Recall that Fexc½ρ� describes in
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equilibrium all correlation effects, from the particle scale to
macroscopic scales (say, near a gas-liquid critical point or in
complete wetting situations). The temporal dependence of the
equation of motion (258) remains simplistic though, and it is
virtually unchanged over the ideal drift-diffusion equation:
The time dependence is local (i.e., Markovian) and hence
memory effects are absent. A further, and related, problem is
the value of γ (and hence of the diffusion constant
D ¼ kBT=γ). If γ has the value of the free single-particle
motion, how can slowing down, as is typical at high densities,
occur? The theory seems to lack a corresponding mechanism.
Several ways to remedy this seeming absence of essential
physics have been proposed (some are described later) and are
primarily based on an empirical footing. As a recent repre-
sentative investigation of the differences of intrinsic time-
scales obtained from dynamical DFT as compared to BD
simulation work, we mention the studies of the van Hove pair
correlation function in liquids by Treffenstädt and Schmidt
(2021) and Treffenstädt, Schindler, and Schmidt (2022). We
give an overview of the dynamical test-particle limit, which
underlies their treatment, in Sec. IV.E.
Nevertheless, per construction the equilibrium limit of the

interacting many-body system with arbitrary spatial inhomoge-
neity is incorporated in an, in principle, exact fashion. This is
typically not the case in approaches that are developed genuinely
in nonequilibrium (where the assumption of a homogeneous
bulk fluid is often made). It is difficult to conceive how an
entirely different dynamical approach would be able to reduce
naturally to DFTwhen applied to time evolution in equilibrium.
We later show that power functional theory delivers this

feat, and that the internal force density field exactly splits into
fintðr; tÞ ¼ fadðr; tÞ þ fsupðr; tÞ, where the adiabatic force
field fadðr; tÞ is identical to that in DDFT, and the super-
adiabatic force field is generated from a kinematic excess free
power functional Pexc

t ½ρ; J� via functional differentiation,
fsupðr; tÞ ¼ −δPexc

t =δJðr; tÞ. Power functional theory elevates
the microscopic current distribution Jðr; tÞ from the status of a
mere bookkeeping device to that of a genuine degree of
freedom (an order parameter) of the physical system.
Our presentation of the DDFT based on Eq. (251) is as

ad hoc as the original proposal of the theory (Evans, 1979).
There has been much refined reasoning, based on the
Langevin picture and Dean’s equation (Marconi and
Tarazona, 1999), on the Smoluchowski equation (Archer
and Evans, 2004), and on the projection-operator formalism
(Español and Löwen, 2009). While these studies shed some
light on deep connections with the many-body dynamics and
each of the derivations has also gained widespread recog-
nition, they have thus far not provided a systematic basis for
assessing the fundamental approximation that is involved.
This step remained ad hoc, in the sense that no systematic way
for improvement is implied. In contrast, we later see that the
adiabatic state arises naturally in the power functional frame-
work, as a formally exact one-body treatment of the dynamics,
which allows one to formalize and build concrete approx-
imations for the superadiabatic force contributions.
Applications of the DDFT framework are numerous; an

exhaustive list was given by te Vrugt, Löwen, and Wittkowski
(2020). Here we mention selected insightful DDFT studies.

Royall et al. (2007) presented an investigation of sedimenta-
tion of model hard-sphere-like colloidal dispersions confined
in horizontal capillaries based on the use of laser scanning
confocal microscopy, Brownian dynamics computer simula-
tions, and DDFT [additional details were given by Schmidt
et al. (2008)]. The researchers could obtain quantitative
agreement of the results from the respective approaches for
the time evolution of the one-body density distribution and the
osmotic pressure on the walls. To match the theoretical results
to the experimental data, a density-dependent mobility γ−1

was empirically introduced.
Dzubiella and Likos (2003) formulated the DDFT concept

based on the mean-field (quadratic in density) free energy
functional. DDFT has been used to describe protein adsorp-
tion on polymer-coated nanoparticles (Angioletti-Uberti,
Ballauff, and Dzubiella, 2014, 2018) and the uptake kinetics
of molecular cargo into hollow hydrogels (Moncho-Jordá
et al., 2019). DDFT has been applied to lane formation in
oppositely driven binary mixtures (Chakrabarti, Dzubiella,
and Löwen, 2003, 2004). DDFT has been used for lattice
models for problems such as growth of hard-rod monolayers
via deposition (Klopotek et al., 2017). Bleibel, Domínguez,
and Oettel (2016) derived a DDFT including two-body
hydrodynamic interactions. Menzel et al. (2016) established
a DDFT for active microswimmer suspensions. A DDFT for
translational Brownian dynamics that includes hydrodynamic
interactions was described by Rex and Löwen (2009). Scacchi
and Brader (2018) investigated the formation of a cavitation
bubble as a local phase transition.
Goddard et al. (2012) derived a DFT for colloidal fluids

including inertia and hydrodynamic interactions. Wittkowski,
Löwen, and Brand (2012) formulated an extended DDFT for
colloidal mixtures with temperature gradients. Using DDFT
Scacchi, Archer, and Brader (2017) investigated the laning
instability of a sheared colloidal suspension. Wächtler, Kogler,
and Klapp (2016) performed a stability analysis based on
DDFT in order to investigate nonequilibrium lane formation
in a two-dimensional Lennard-Jones fluid composed of two
particle species driven in opposite directions. Anero, Español,
and Tarazona (2013) constructud an approach that they call
functional thermodynamics, which represents a generalization
of dynamic density-functional theory to nonisothermal situa-
tions. DDFT has also been used to describe polymeric systems
(Qi and Schmid, 2017). Archer and Rauscher (2004) aimed to
clarify confusion in the literature as to whether dynamical
density-functional theories for the one-body density of a
classical Brownian fluid should contain a stochastic noise term.

IV. POWER FUNCTIONAL THEORY

A. Dynamic minimization principle

Power functional theory is based on a formally exact
minimization principle on the one-body level of dynamic
correlation functions. The theory was formulated originally
for Brownian dynamics by Schmidt and Brader (2013), and
subsequently generalized to nonrelativistic quantum dynamics
(Schmidt, 2015), and classical Hamiltonian dynamics
(Schmidt, 2018). Here we provide an overview of the central
concepts. Key ideas of the microscopic foundation are
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described in Sec. IV.B. For the full treatment, see the
original papers.
The kinematic fields, i.e., the density ρðr; tÞ [referred to as

nðr; tÞ in the quantum case], the current Jðr; tÞ, and in the case
of inertial dynamics also the time derivative of the current
_Jðr; tÞ, are the relevant functional variables. Two continuity
equations interrelate these fields. The variational principle is
instantaneous in time, involving minimization with respect to
the highest relevant time derivative, i.e., with respect to Jðr; tÞ
in the overdamped Brownian case, and with respect to _Jðr; tÞ
in both the classical and quantum inertial cases. Integration in
time then determines the current (in the inertial cases) as well
as the density according to

Jðr; tÞ ¼ Jðr; 0Þ þ
Z

t

0

dt0 _Jðr; t0Þ; ð259Þ

ρðr; tÞ ¼ ρðr; 0Þ −
Z

t

0

dt0∇ · Jðr; t0Þ: ð260Þ

In practice, one proceeds in discrete time steps such that
minimization at time t allows one to proceed in time by one
step, then update according to Eqs. (259) and (260), and proceed
to the next time step; see Treffenstädt and Schmidt (2020).
We first collect from Sec. II the one-body equations of

motion for the three different types of dynamics. For over-
damped Brownian dynamics the relationship of the current
and the force densities (83) is

γJðr;tÞ¼−kBT∇ρðr;tÞþFintðr;tÞþρðr;tÞfextðr;tÞ; ð261Þ

where the internal force density distribution is Fintðr; tÞ ¼
−hPi δðr − riÞ∇iuðrNÞi, with the average being taken over
the instantaneous configuration space probability distribution.
In molecular dynamics the equations of motion (49)

and (52) are

m_Jðr; tÞ ¼ ∇ · τðr; tÞ þ Fintðr; tÞ þ ρðr; tÞfextðr; tÞ; ð262Þ

τðr; tÞ ¼ −
1

m

�X
i

δðr − riÞpipi

�
; ð263Þ

where the kinetic stress distribution τðr; tÞ captures transport
effects. The averages here in Fintðr; tÞ and τðr; tÞ are over the
many-body phase space distribution function.
The quantum dynamics in Eqs. (133) and (134) are similar

to the classical inertial case but incorporate additional wave-
like, genuine quantum effects as follows:

m_Jðr; tÞ ¼ ∇ · τðr; tÞ þ Fintðr; tÞ þ
ℏ2

4m
∇∇2nðr; tÞ

þ nðr; tÞfextðr; tÞ; ð264Þ

τðr; tÞ ¼ −
1

2m

�X
i

½p̂iδip̂i þ p̂iδip̂T
i �
�
; ð265Þ

where δi ¼ δðr − riÞ and all averages are bra-kets using the
instantaneous wave function. The continuity equations (259)

and (260) apply (with the symbol ρ replaced by n in the
notation).
The central object of power functional theory is the free

power functional Rt½ρ; J� (BD) or free power rate functional
Gt½ρ; J; _J� (MD) and Gt½n; J; _J� [quantum mechanical (QM)].
Staying with BD, the exact minimization principle states that
at each time t

δRt½ρ; J�
δJðr; tÞ

����
ρ;J¼J0

¼ 0 ðminÞ; ð266Þ

where J0ðr; tÞ is the real, physically realized current distri-
bution of the physical dynamics. Hence, J0ðr; tÞ ¼ hPi viδii,
averaged over the actual many-body phase space distribution
function at time t.
The derivative in Eq. (266) is performed as a spatial

variation, instantaneously at a fixed time t; the same time
argument occurs in both Rt½ρ; J� and Jðr; tÞ. This constitutes a
“time-slice” variation where the spatial argument can be
chosen freely but time is prescribed; see Fig. 4 for a graphical
illustration of the concept and Appendix A.2 for background.
The dependence of Rt½ρ; J� on its functional arguments is in
general nonlocal in space, but it is causal in time, such that the
value of the density and the current contribute only at times
≤ t (i.e., there is no unphysical dependence on future times
> t). The physical units of Rt½ρ; J� are those of energy per
time, i.e., power, ½Rt� ¼ J=s ¼ W. The density distribution
ρðr; tÞ is kept fixed under the variation (266). Hence, the
variation can be viewed as a partial functional derivative
with respect to the current, with the density distribution kept
constant. This is not an uncommon situation in functional
calculus; see Hamilton’s principle (Appendix A.1).
For MD and QM the power functional minimization

principle is

δGt½ρ; J; _J�
δ_Jðr; tÞ

����
ρ;J;_J¼_J0

¼ 0 ðminÞ; ð267Þ

where the subscript 0 again indicates the physically realized
dynamics _J0ðr; tÞ ¼ hdĴ=dti, with the average taken over the
state of the system at time t. The derivative (267) is taken in a
time slice, and the density and the current distributions are
held constant under the variation. The functional dependence
on time is again causal, i.e., on the value of the argument fields
at times ≤ t. Together with the continuity equations (259)

FIG. 4. Time-slice variational principle for overdamped BD.
The position-resolved current variation δJðr; tÞ is performed at a
fixed time t. The values at times < t (history) and > t (future) are
unaffected by the purely spatial variation in a time slice at the
present time t.
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and (260), one has formally exact equations of motion that are
closed on the one-body level. The many-body problem is
entirely encapsulated in the functional dependence of
Gt½ρ; J; _J� on its arguments.
As with the splitting of the grand potential density func-

tional in equilibrium, in the dynamical case a splitting of the
functional into intrinsic and external contributions holds.
We return to BD, where the total power functional splits
according to

Rt½ρ; J� ¼ Pt½ρ; J� þ _F½ρ� − Xt½ρ; J�: ð268Þ
In Eq. (268) the superadiabatic free power Pt½ρ; J� consists of
ideal and excess contributions, Pt½ρ;J�¼Pid

t ½ρ;J�þPexc
t ½ρ;J�,

with Pid
t ½ρ; J� the exact dissipation functional of the ideal gas

and Pexc
t ½ρ; J� accounting for the excess superadiabatic effects

(above excess free energy changes). Free energy changes
emerge via the time derivative _F½ρ�≡ dF½ρ�=dt of the
Helmholtz excess free energy functional F½ρ� of an equilib-
rium system with the unchanged interparticle interaction
potential uðrNÞ. The remaining term −Xt½ρ; J� in Eq. (268)
is the negative external power. The total power functional
Rt½ρ; J� constitutes free power in the sense that not only
energetic but also entropic effects are accounted for, analo-
gously to the free energy in equilibrium.
The intrinsic contribution to the total free power is the sum

Wt½ρ; J�≡ Pt½ρ; J� þ _F½ρ�, which depends on the internal
interactions but is independent of the external forces (which
in general are of time-dependent one-body form). A splitting
into ideal and excess (above ideal) parts holds according to

Wt½ρ; J� ¼ Wid
t ½ρ; J� þWexc

t ½ρ; J�; ð269Þ

where Wid
t ½ρ; J� is due to the diffusive motion and Wexc

t ½ρ; J�
arises from the interparticle interactions. Both terms consist of
a sum of adiabatic and superadiabatic contributions

Wid
t ½ρ; J� ¼ _Fid½ρ� þ Pid

t ½ρ; J�; ð270Þ

Wexc
t ½ρ; J� ¼ _Fexc½ρ� þ Pexc

t ½ρ; J�: ð271Þ

As one might expect for the noninteracting system, the two
ideal terms (270) are temporally local (as later given explic-
itly). The excess part (271) consists of an instantaneous
contribution, which one can identify with the time derivative
_Fexc½ρ� (also given explicitly later), and a temporally nonlocal,
i.e., memory-dependent, superadiabatic term Pexc

t ½ρ; J�. The
latter in general is also spatially nonlocal, as is _Fexc½ρ�, due to
the coupling via the interparticle interaction potential. We
recall the total time derivative of the equilibrium free energy
functional as

_F½ρ� ¼ d
dt

F½ρ� ¼
Z

dr

�
∇ δF½ρ�
δρðr; tÞ

�
· Jðr; tÞ; ð272Þ

which follows from the functional chain rule of differentiation,
the continuity equation, and integration by parts; see
Eqs. (25)–(27). In Eq. (272) the functional derivative of
F½ρ� with respect to the time-dependent density is defined
via the adiabatic construction (Sec. III.A) as

δF½ρ�
δρðr; tÞ ¼

δF½ρad;t�
δρad;tðrÞ

����
ρad;tðrÞ¼ρðr;tÞ

; ð273Þ

where ρad;tðrÞ is a trial density distribution in the adiabatic
system.
The ideal contribution to the time derivative (272) can be

made more explicit as

_Fid½ρ� ¼
Z

dr

�
∇ δFid½ρ�
δρðr; tÞ

�
· Jðr; tÞ ð274Þ

¼ kBT
Z

dr½∇ ln ρðr; tÞ� · Jðr; tÞ; ð275Þ

where we recall that the ideal gas free energy functional
is Fid½ρ� ¼ kBT

R
drρðrÞfln½ρðrÞΛd� − 1g.

The external power is the instantaneous expression

Xt½ρ; J� ¼
Z

dr½Jðr; tÞ · fextðr; tÞ − ρðr; tÞ _Vextðr; tÞ�; ð276Þ

where the first contribution in the integral is the mechanical
power due to motion along the external force field. The second
contribution is static with respect to the particle coordinates
and describes a “charging” effect due to temporal changes in
the external potential landscape at fixed particle positions.
The ideal dissipation functional is

Pid
t ½ρ; J� ¼

γ

2

Z
dr

½Jðr; tÞ�2
ρðr; tÞ ; ð277Þ

where, as previously, γ is the friction constant and the
expression is spatially local and temporally Markovian, as
one might expect for ideal diffusive motion.
Inserting the splitting (268) into the minimization princi-

ple (266) yields

0 ¼ δPid
t ½ρ; J�

δJðr; tÞ þ δPexc
t ½ρ; J�

δJðr; tÞ þ δ _Fid½ρ�
δJðr; tÞ þ

δ _Fexc½ρ�
δJðr; tÞ −

δXt½ρ; J�
δJðr; tÞ :

ð278Þ

Three of the individual contributions can be obtained explic-
itly, using Eqs. (275), (276), and (277), which give

δPid
t

δJ
¼ γJ

ρ
;

δ _Fid

δJ
¼kBT∇ lnρ;

δXt

δJ
¼ fext: ð279Þ

where arguments have been omitted for brevity. Use of the
microscopic velocity field vðr; tÞ ¼ Jðr; tÞ=ρðr; tÞ then gives
upon rearrangement of Eq. (278) a force balance relationship

γvðr; tÞ ¼ −kBT∇ ln ρðr; tÞ −∇ δFexc½ρ�
δρðr; tÞ

−
δPexc

t ½ρ; J�
δJðr; tÞ þ fextðr; tÞ; ð280Þ

where the negative friction force (left-hand side) equals the
sum of all driving forces (right-hand side). From averaging
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over the microscopic dynamics (Sec. II.C) we also know the
equation of motion [Eq. (261)],

γvðr; tÞ ¼ −kBT∇ ln ρðr; tÞ þ fintðr; tÞ þ fextðr; tÞ; ð281Þ

which is divided here by ρðr; tÞ; recall that the internal
force field and the internal force density are related via
fintðr; tÞ ¼ Fintðr; tÞ=ρðr; tÞ. When comparing Eqs. (280)
and (281), we can hence identify the internal one-body force
field as

fintðr; tÞ ¼ −∇ δFexc½ρ�
δρðr; tÞ −

δPexc
t ½ρ; J�

δJðr; tÞ : ð282Þ

The right-hand side of Eq. (282) depends functionally on
ρðr; tÞ and Jðr; tÞ, as both Fexc½ρ� and Pexc

t ½ρ; J� inherit their
functional dependence from Rt½ρ; J�. Hence, the left-hand side
of Eq. (282) is also a functional of these fields, i.e.,

fintðr; tÞ ¼ fintðr; t; ½ρ; v�Þ; ð283Þ

where the pairs ρðr; tÞ; vðr; tÞ and ρðr; tÞ; Jðr; tÞ are two
alternative sets of functional arguments (de las Heras and
Schmidt, 2018a). We split the internal force field into adiabatic
and superadiabatic parts fintðr; tÞ ¼ fadðr; tÞ þ fsupðr; tÞ, where
the two contributions are

fadðr;tÞ¼−∇δFexc½ρ�
δρðr;tÞ ; fsupðr;tÞ¼−

δPexc
t ½ρ;J�

δJðr;tÞ : ð284Þ

The adiabatic force field fadðr; t; ½ρ�Þ is an instantaneous
density functional. The superadiabatic force field
fsupðr; t; ½ρ; v�Þ depends on both the density and the velocity
field (or, equivalently, on the current distribution); we refer to
such an object as a kinematic functional.
Hence, the total internal force field is

fintðr; t; ½ρ; v�Þ ¼ fadðr; t; ½ρ�Þ þ fsupðr; t; ½ρ; v�Þ; ð285Þ

where the adiabatic force field depends instantaneously, at
time t, on the density distribution. The superadiabatic force
field also depends on the microscopic velocity field, and it
does so via causal dependence on time, i.e., the values of
density and velocity at all times ≤ t contribute, and they
determine the internal force field at time t. The internal one-
body force density field fintðr; tÞ plays a crucial role in the
power functional formulation of the dynamics, as it explicitly
contains the interparticle coupling that generates the many-
body effects.
We can express the adiabatic force field in correlator

form (139) as

fadðr; t; ½ρ�Þ ¼
−1

ρðr; tÞ
�X

i

δðr − riÞ∇iuðrNÞ
�
eq
; ð286Þ

where the average is performed in an equilibrium system with
density profile ρad;tðrÞ ¼ ρðr; tÞ. This density is generated via
an appropriate external Mermin potential Vad;tðrÞ, which acts
only in the adiabatic system, not in the real dynamical system;

see Sec. III.A. If a real external potential Vextðr; tÞ is present,
then in general Vextðr; tÞ ≠ Vad;tðr; tÞ.
Recall that within classical DFT we have

fadðr; t; ½ρ�Þ ¼ −∇ δFexc½ρad�
δρad;tðrÞ

����
ρad;tðrÞ¼ρðr;tÞ

: ð287Þ

Considering the force balance (281), we can conclude
that the external force field only appears explicitly; the
internal force field is independent thereof via the kinematic
functional dependence. It is hence instructive to rearrange
Eq. (281) as

fextðr; tÞ ¼ γvðr; tÞ þ kBT∇ ln ρðr; tÞ − fintðr; t; ½ρ; v�Þ;
ð288Þ

which in this form constitutes a balance relationship of
external forces (left-hand side) with friction due to the flow,
ideal diffusive forces, and internal forces (three contributions
on the right-hand side). Notably, the right-hand side of
Eq. (288) is independent of fextðr; tÞ. Hence, if the kinematics,
i.e., the history of ρðr; tÞ and vðr; tÞ, are known, then one can
determine the external force field fextðr; tÞ that generates the
dynamics. This implies the following functional map:

kinematics → external force field; ð289Þ

fρðr; tÞ; vðr; tÞg → fextðr; tÞ: ð290Þ

This nonequilibrium map can be viewed as a generalization of
the following equilibrium Hohenberg-Kohn-Mermin-Evans
map:

ρðrÞ → VextðrÞ: ð291Þ

Given an initial equilibrium state at t ¼ 0, one can prescribe
target kinematic fields ρðr; t > 0Þ and vðr; t > 0Þ (which
satisfy physical constraints such as the continuity equation)
and determine the external force field fextðr; tÞ that generates
the prescribed dynamics. This requires access to the kinematic
functional dependence of the internal force field, as realized in
the custom flow method by de las Heras, Renner, and Schmidt
(2019), which is described in Sec. IV.F.
Two simple special cases are worth spelling out.
(i) For ideal motion Pexc

t ½ρ; J� ¼ _Fexc½ρ� ¼ 0, and hence

_ρðr;tÞ¼∇ ·γ−1ρðr;tÞ½kBT∇ lnρðr;tÞ−fextðr;tÞ�
ð292Þ

¼ D∇2ρðr; tÞ − γ−1∇ · ρðr; tÞfextðr; tÞ; ð293Þ

which is the free drift-diffusion equation with
diffusion constant D ¼ kBT=γ.

(ii) Neglecting only the superadiabatic excess contribu-
tion Pexc

t ½ρ; J� ¼ 0 leads to

Matthias Schmidt: Power functional theory for many-body dynamics

Rev. Mod. Phys., Vol. 94, No. 1, January–March 2022 015007-33



γvðr;tÞ¼−kBT∇ lnρðr;tÞ−∇δFexc½ρ�
δρðr;tÞ þfextðr;tÞ;

ð294Þ

which is the equation of motion (257) according to
DDFT by Evans (1979) and Marconi and Tarazona
(1999).

We return to the description of the general framework and
address molecular dynamics next. The kinematic fields are
ρðr; tÞ, Jðr; tÞ, and _Jðr; tÞ.9 Consider Hamiltonians that con-
tain an internal interaction potential uðrNÞ and an external
potential Vextðr; tÞ and the contributions from a magnetic field
Bðr; tÞ ¼ ∇ ×Aðr; tÞ. The power rate functional satisfies the
minimization principle

δGt½ρ; J; _J�
δ_Jðr; tÞ

����
ρ;J;_J¼_J0

¼ 0 ðminÞ: ð295Þ

The minimum is attained at the physically realized form of the
acceleration density _J0ðr; tÞ.
The total power rate (with units J=s2 ¼ W=s) splits into the

following intrinsic and external contributions:

Gt½ρ; J; _J� ¼ Gint
t ½ρ; J; _J� −

Z
dr_Jðr; tÞ

· ½qvðr; tÞ × Bðr; tÞ − q _Aðr; tÞ −∇Vextðr; tÞ�;
ð296Þ

where the intrinsic contribution Gint
t ½ρ; J; _J� depends solely on

the interparticle interaction potential. An insertion into the
minimization principle (295) gives an Euler-Lagrange equa-
tion of the form

δGint
t ½ρ; J; _J�
δ_Jðr; tÞ ¼ qvðr; tÞ × Bðr; tÞ − q _Aðr; tÞ −∇Vextðr; tÞ:

ð297Þ
We split the intrinsic contribution into an approximate ideal
and an excess contribution

Gint
t ½ρ; J; _J� ¼ Gid

t ½ρ; J; _J� þ Gexc
t ½ρ; J; _J�; ð298Þ

where the approximate ideal contribution is given by

Gid
t ½ρ; J; _J� ¼

Z
dr

_Jðr; tÞ
ρðr; tÞ ·

�
m_Jðr; tÞ

2
−∇ · τidðr; tÞ

�
; ð299Þ

τidðr; tÞ ¼ −m
Jðr; tÞJðr; tÞ

ρðr; tÞ ; ð300Þ

with τidðr; tÞ a factorized form of the kinetic stress tensor.
Calculating the derivative

δGid
t ½ρ; J; _J�
δ_Jðr; tÞ ¼ m

_Jðr; tÞ
ρðr; tÞ −

∇ · τidðr; tÞ
ρðr; tÞ ð301Þ

and inserting Eq. (298) into the Euler-Lagrange equation (297)
yield upon rearranging the force balance relationship

m_Jðr; tÞ
ρðr; tÞ ¼ ∇ · τidðr; tÞ

ρðr; tÞ −
δGexc

t ½ρ; J; _J�
δ_Jðr; tÞ −∇Vextðr; tÞ; ð302Þ

where we have omitted the external magnetic contributions for
simplicity.
We also know the exact force balance directly from the

many-body dynamics (262) as

m_Jðr; tÞ
ρðr; tÞ ¼ ∇ · τðr; tÞ

ρðr; tÞ þ fintðr; tÞ −∇Vextðr; tÞ; ð303Þ

where the internal force field is the phase space average

fintðr; tÞ ¼ −
�X

i

δðr − riÞ∇iuðrNÞ
�
=ρðr; tÞ: ð304Þ

The kinetic stress is given by

τðr; tÞ ¼ −
1

m

�X
i

δðr − riÞpipi

�
: ð305Þ

By comparing Eqs. (302) and (303) we can identify

−
δGexc

t ½ρ; J; _J�
δ_Jðr; tÞ ¼ fintðr; tÞ þ

∇ · ½τðr; tÞ − τidðr; tÞ�
ρðr; tÞ : ð306Þ

Hence, Gexc
t ½ρ; J; _J� is a functional generator of the nontrivial

part of the transport plus the internal force field. [Here the
functional derivative is also taken while ρðr; tÞ and Jðr; tÞ are
kept fixed, and the physical field values need to be inserted
after the derivative has been taken.]
Together with the continuity equations, the Euler-Lagrange

equation forms a closed set of equations on the one-body
level. The quantum version is similar in structure but contains
important additional wave contributions, as described at the
end of Sec. IV.B.

B. Microscopic foundation

1. Power functional for molecular dynamics

We return to classical Hamiltonian dynamics and describe
the key concepts of the many-body functional description that
underpins the power functional. For the full presentation, see
Schmidt (2018).
The microscopic many-body power rate functional is

defined as

Gt ¼
Z

drNdπN
X
i

ðfi −maiÞ2
2m

ΨðrN;πN; tÞ

−
Z

dr
m
2hρ̂i

�
dĴ
dt

�
2

. ð307Þ

9An alternative and equivalent set of kinematic fields is ρðr; tÞ,
vðr; tÞ, and aðr; tÞ, where aðr; tÞ is the local acceleration field.
Rather than the bare microscopic acceleration aðr; tÞ ¼
_Jðr; tÞ=ρðr; tÞ Renner, Schmidt, and de las Heras (2022) recently
argued that for constructing approximations it is advantageous to
remove transport effects and instead use aðr; tÞ ¼ ∂vðr; tÞ=∂t ¼
_Jðr; tÞ=ρðr; tÞ þ vðr; tÞ½∇ ⋅ Jðr; tÞ�=ρðr; tÞ.
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In Eq. (307) the particle-labeled acceleration fields
aiðrN;πN; tÞ are trial variational fields on phase space; we
use the notation aN ¼ a1;…; aN in the following. At the
physical dynamics mai ¼ fi, where fi is the force on particle
i. Furthermore, Gt is an instantaneous functional at time t
(time-slice derivatives need to be taken). The units of Gt are
power per time, i.e., “power rate,” which can be seen by
observing that ½R drNdπNΨ� ¼ 1 and ½f2i =2m� ¼ ½f · ai� ¼
Nm=s2 ¼ J=s2 ¼ W=s. The second term in Eq. (307) is
independent of the ai.
Minimizing Gt at a fixed time with respect to the aN implies

that

δGt

δaiðrN;πN; tÞ ¼ 0 ðminÞ: ð308Þ

Explicitly carrying out the derivative yields

δGt

δaiðrN;πN; tÞ ¼ ½−fiðrN;πN; tÞ þmaiðrN;πN; tÞ�Ψ: ð309Þ

Hence, Gt acts like a Gibbs-Appell-Gauss function (see
Appendix A.3) in that it uniquely determines the physical
dynamics by minimization. However, beyond this role it is
also a generator of dynamical correlators via

δGt

δq _Aðr0; tÞ ¼
_Jðr0; tÞ; ð310Þ

where the derivative acts on both the explicit appearance of fi
and the “hidden” appearance in dĴ=dt in Eq. (307).
To connect the many-body variational principle with the

one-body level, the following constrained search is performed:

Gt½ρ; J; _J� ¼ min
aN→ρ;J;_J

Gt: ð311Þ

Hence, Gt½ρ; J; _J� is a one-body functional that is minimized
by _Jðr; tÞ at the physical dynamics; see Eq. (295). We recall
the Levy method’s use in the classical equilibrium density
functional (Sec. III.E) and refer the interested reader to
Schmidt (2018) for the details of the present dynamical
treatment.

2. Power functional for Brownian dynamics

We return to overdamped Brownian many-body dynamics,
as described in Sec. II.C, and present the key ideas of Schmidt
and Brader (2013). They introduce trial velocity fields
ṽiðrN; tÞ, i ¼ 1;…; N, on configuration space and define
the free power as an operator (phase space function) as

R̂t ¼
X
i

�
γ

2
ṽiðrN; tÞ− ftoti ðrN; tÞ

�
· ṽiðrN; tÞ þ

X
i

_Vextðri; tÞ:

ð312Þ

For Brownian motion the total force on particle i consists of
deterministic and diffusive contributions and is given by

ftoti ¼ −∇iuðrNÞ −∇iVextðri; tÞ þ fncðri; tÞ − kBT∇i lnΨ;

ð313Þ

where fncðr; tÞ is a nonconservative external force field.
Averaging over configuration space creates the following
functional dependence on the trial velocities:

Rt ¼
Z

drNΨðrN; tÞR̂ðrN; ṽN; tÞ: ð314Þ

Owing to its quadratic structure, Rt is minimized by the true
velocity

δRt

δṽiðrN; tÞ
¼ 0 ðminÞ; ð315Þ

and hence at the minimum ṽi ¼ vi ≡ γ−1ftoti ; i.e., the true
dynamics is recovered. This can be seen by calculating the
functional (time-slice) derivative as follows:

δRt

δṽi
¼ ðγṽi − ftoti ÞΨ; ð316Þ

where arguments rN; t have been omitted for clarity. As
ΨðrN; tÞ ≠ 0 in general, the proposition follows.
A constrained search for the minimum yields the one-body

power functional

Rt½ρ; J� ¼ min
ṽN→ρ;J

Rt. ð317Þ

See Schmidt and Brader (2013) for the full treatment, as well as
the relationship to the time derivative of the many-body
Mermin functional; see also Chan and Finken (2005) and
Lutsko and Oettel (2021). We describe in Sec. IV.C progress in
formulating concrete approximations for the power functional.

3. Quantum power functional theory

The quantum case is somewhat similar in mathematical
structure to the previously described classical Hamiltonian
power functional treatment. The additional quantum effects
both arise in explicit, ℏ-dependent terms and affect the
structure of the nontrivial parts of the functional generator.
We follow Schmidt (2015).
We introduce complex-valued trial acceleration fields

aN ≡ a1ðrN; tÞ;…; aNðrN; tÞ and define a many-body power
rate functional

Gt ¼
Z

drN
X
i

jðf̂i −maiÞΨj2
2m

−
Z

dr
m

2hn̂i
�
dĴ
dt

�
2

; ð318Þ

where in the second term the trial fields aN do not enter.
Because of the quadratic structure of Gt, at the minimum the
modulus squared expression vanishes, and hence

maiðrN; tÞΨðrN; tÞ ¼ f̂iðrN; tÞΨðrN; tÞ ð319Þ

for the specific set aN at the minimum. (This fixes the
dynamics if Eq. (319) is known at all times.) Hence, the
time-slice derivative satisfies
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δGt

δaiðrN; tÞ
¼ 0 ðminÞ: ð320Þ

Furthermore, Gt is a one-body generator via

δGt

δq _Aðr; tÞ ¼
_Jðr; tÞ: ð321Þ

We introduce a one-body constraint

_Jðr;tÞ¼
�X

i

�
aiþa�i

2
δiþ

∇ · τ̂i
m

þ ℏ2

4m2
∇∇2n̂i

��
; ð322Þ

where the left-hand side constitutes a prescribed target and aN

are trial fields in position representation. The constrained
search is

Gt½n; J; _J� ¼ min
aN→n;J;_J

Gt: ð323Þ

The true time evolution is still at the global minimum, and
hence

δGt½n; J; _J�
δ_Jðr; tÞ

����
n;J

¼ 0 ðminÞ; ð324Þ

where the derivative is functional in position and at fixed time
(time slice). We split the total power rate functional into
intrinsic and external contributions according to

Gt½n;J; _J� ¼ Gint
t ½n;J; _J�−

Z
dr_J ·

�
qJ×B

n
− q _A−∇Vext

�
;

ð325Þ

where the intrinsic contribution Gint
t ½n; J; _J� is independent of

the external forces; we have omitted the arguments r and t
for compactness of notation. From the minimization con-
dition (324) one obtains

δGint
t ½n; J; _J�
δ_J

¼ qJ × B
n

− q _A −∇Vext; ð326Þ

where the left-hand side is intrinsic and the right-hand side
constitutes the external force field. We split further into ideal
and excess contributions according to

Gint
t ½n; J; _J� ¼ Gid

t ½n; J; _J� þ Gexc
t ½n; J; _J�; ð327Þ

where the ideal contribution (Brütting et al., 2019) is

Gid
t ½n; J; _J� ¼

Z
dr

_J
n
·

�
m_J
2

−∇ · τid −
ℏ2

4m
∇∇2n

�
; ð328Þ

with the factorized dyadic form

τid ¼ −m
JJ
n
−

ℏ2

4m
ð∇nÞð∇nÞ

n
: ð329Þ

The term Gexc
t ½n; J; _J� in Eq. (327) contains effects due to

internal interactions and possibly further transport terms. The
derivative of the ideal term is

δGid
t ½n; J; _J�
δ_J

����
n;J

¼ m
_J
n
−
1

n
∇ · τid −

1

n
ℏ2

4m
∇∇2n; ð330Þ

which we insert into the force balance equation (326). This
gives the final equation of motion

m_J ¼ −n
δGexc

t ½n; J; _J�
δ_J

þ∇ · τid þ
ℏ2

4m
∇∇2n

þ qJ ×B − nðq _Aþ ∇VextÞ: ð331Þ

Together with the continuity equation, Eq. (331) forms a
closed dynamical theory on the one-body level. This is a
formal (yet important) result, as Gexc

t is unknown in practice,
as this would require solution of the coupled many-body
dynamics under the action of arbitrary external fields Vextðr; tÞ
and Aðr; tÞ. However, (i) approximations can be found
(searched for) and (ii) the functional relationship
−ðδGexc

t =δ_JÞ½n; J; _J� is established.
The connection to time-dependent DFT is via the ground

state energy functional

E½n� ¼ min
Ψ→n

hΨjĤjΨi −
Z

drnðr; tÞVextðr; tÞ: ð332Þ

In Eq. (332) E½n� is the intrinsic (kinetic and internal
interaction) contribution; often the interaction part is split
further into Hartree, exchange, and correlation terms. The first
and second time derivatives are

d
dt

E½n� ¼
Z

drJ · ∇ δE½n�
δn

; ð333Þ

d2

dt2
E½n�¼

Z
dr_J ·∇δE½n�

δn
þ
Z

drdr0J0J∶∇∇0δ
2E½n�
δnδn0

; ð334Þ

where n0 ¼ nðr0; tÞ and J0 ¼ Jðr0; tÞ. The corresponding force
field is alternatively obtained via

−
δË½n�
δ_Jðr; tÞ

����
n;J

¼ −
δ _E½n�
δJðr; tÞ

����
n
¼ −∇ δE½n�

δnðr; tÞ : ð335Þ

Splitting Gexc
t ½n; J; _J� ¼ Ë½n� þ Gsup

t ½n; J; _J� and insertion into
the equation of motion yield

m_J ¼ −n
δGsup

t ½n; J; _J�
δ_J

− n∇ δE½n�
δn

þ∇ · τid

þ ℏ2

4m
∇∇2nþ qJ × B − nðq _Aþ∇VextÞ; ð336Þ

where Gsup
t ½n; J; _J� describes nonequilibrium effects beyond

the adiabatic ground state; see Brütting et al. (2019) for an
explicit model calculation.
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C. Superadiabatic free power approximations

Recall that the one-body equation of motion (280) for
overdamped BD, as formulated by Schmidt and Brader
(2013), taken together with the continuity equation, provides
a formally exact description of the dynamics provided that the
internal interaction contributions Fexc½ρ� and Pexc

t ½ρ; J� are
known. The equation of motion is closed; i.e., no further
higher-order correlators are required. The adiabatic force field
stems from the equilibrium excess free energy density func-
tional Fexc½ρ�; the superadiabatic force field is generated from
the superadiabatic free power functional Pexc

t ½ρ; J�. Both
functionals depend only on the internal interaction potential
uðrNÞ, and they are unknown in practice. Fexc½ρ� is, however, a
well-studied object (although many mysteries remain).
What can we say about Pexc

t ½ρ; J�? It certainly needs to
provide mechanisms to slow down the dynamics in typical
situations, as DDFT (where Pexc

t ½ρ; J�≡ 0) is often too fast.
The superadiabatic free power functional hence should both
describe the dissipative, irreversible effects and provide a
genuine structure-forming mechanism that occurs in non-
equilibrium. Reversible effects are already accounted for by
the adiabatic contribution (via the total time derivative _F½ρ�).
A series of studies have demonstrated that the superadiabatic

free power functionalPexc
t ½ρ; J� is indeed amenable to analytical

approximations (de las Heras and Schmidt, 2018a, 2020;
Stuhlmüller et al., 2018; Treffenstädt and Schmidt, 2020,
2021). de las Heras and Schmidt (2018a) showed that it is
possible to use the local velocity gradient instead of the current
distribution as the relevant kinematic variable; their central
ideas are presented later. By considering higher than quadratic
contributions to the power functional, the velocity gradient
concept was shown by Stuhlmüller et al. (2018) to also describe
structural nonequilibrium forces, i.e., nonequilibrium force
contributions that sustain density gradients. This approach
was fully developed by de las Heras and Schmidt (2020) in
their splitting of the force balance into flow and structural
components. Treffenstädt and Schmidt (2020) demonstrated
how to describe the spatially and temporally nonlocal nature of
viscous forces. Treffenstädt and Schmidt (2021) applied this
approach to the dynamical two-body structure of the bulk hard
sphere fluid, i.e., its van Hove function.
Microscopic stress tensor.—Let σðr; tÞ be the total inter-

action stress (we do not need to consider the kinetic stress in
overdamped BD). We then have

γJðr; tÞ ¼ ∇ · σðr; tÞ: ð337Þ

To be fully explicit, the right-hand side of Eq. (337) expresses
the divergence of a tensor field with components ð∇ · σÞβ ¼P

d
α¼1 ∂σαβ=∂rα, where α; β ¼ 1;…; d labels the Cartesian

components and rα is the αth component of r. Note that the
interaction stress differs from the kinetic stress τðr; tÞ
described in Sec. II.B in the context of molecular dynamics.
Rather than the transport mechanism that τðr; tÞ provides, the
interaction stress σðr; tÞ arises from the forces that act in the
system; for detailed background information, see the accounts
of Balucani and Zoppi (1994) and (in a polymer context) Bird,
Armstrong, and Hassager (1987).

Strongly influenced by the formulation of mode-coupling
theory on the level of the stress tensor and the strain rate tensor
[see the review by Brader (2010)], de las Heras and Schmidt
(2018a) showed that

δRt

δ∇vsolðr; tÞ ¼ σðr; tÞ; ð338Þ

where γvsolðr; tÞ is the external force field that is induced by
solvent flow. Hence, building the divergence yields

∇ ·
δRt

δ∇vsolðr; tÞ
¼ ∇ · σðr; tÞ ¼ γJðr; tÞ; ð339Þ

where we have used Eq. (337). We choose an inverse operator
to ∇ of “electrostatic form” defined as operating on some test
function fðrÞ via the convolution

∇−1fðrÞ ¼
Z

dr0
r − r0

4πjr − r0j3 fðr
0Þ: ð340Þ

The convolution kernel is a radial, inverse square distance
vector field (equivalent to the electric field of a point charge).
The application of ∇−1 creates a vectorial dependence via
the distance vector r − r0 on the right-hand side of Eq. (340).
Note that ∇ ·∇−1fðrÞ ¼ fðrÞ, which can readily be seen by
observing that δðrÞ ¼ ∇ · r=4πjrj3.
A well-known alternative to Eq. (340) is the Irving-

Kirkwood form of the stress tensor as it applies to pairwise
forces (Irving and Kirkwood, 1950). It is important to realize
that the stress tensor is a nonunique quantity (Schofield and
Henderson, 1982), as only the corresponding force density,
i.e., the divergence of the stress tensor, is an observable
quantity; see Eq. (337). The presence of the derivative allows
significant freedom in the particular choice of definition of the
stress tensor.
Using the electrostatic form, we obtain the specific

expression

σðr; tÞ ¼
Z

drNΨðrN; tÞ
X
i

ðr − riÞftoti ðrN; tÞ
4πjr − rij3

; ð341Þ

where the numerator is a dyadic product of relative distance
and the force on particle i. Further significance for the
form (341) comes from considering the integrated stress as
follows:

ΣðtÞ ¼
Z

drσðr; tÞ ð342Þ

¼ −
1

3

Z
drNΨðrN; tÞ

X
i

riftoti ðrN; tÞ: ð343Þ

Hence, the averaged Clausius virial is then simply −trΣðtÞ.
One-body level.—We start by using the splitting of the

power functional into ideal dissipative, superadiabatic, revers-
ible, and external contributions, Rt ¼ Pid

t þ Pexc
t þ _F − Xt.

Here the external power is
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Xt ¼
Z

dr½Jðr; tÞ · fextðr; tÞ − ρðr; tÞ _Vextðr; tÞ� ð344Þ

¼ −
Z

dr½σextðr; tÞ∶∇vðr; tÞ þ ρðr; tÞ _Vextðr; tÞ�; ð345Þ

where we have introduced the external stress tensor field

σextðr; tÞ ¼ ∇−1ρðr; tÞfextðr; tÞ: ð346Þ
The colon in Eq. (345) indicates a double tensor contraction;
for two matrices A and B this is defined as
A∶B ¼ P

ij AijBji ¼ trA · B.
Hence, we can generate the velocity gradient tensor field via

δRt

δσextðr; tÞ
¼ ∇vðr; tÞ: ð347Þ

We can express the ideal dissipation and the adiabatic power
contributions via

Pid
t ½ρ; v� ¼ −

1

2

Z
drσðr; tÞ∶∇vðr; tÞ; ð348Þ

_F½ρ� ¼
Z

drσadðr; tÞ∶∇vðr; tÞ; ð349Þ

where σðr; tÞ, as before, is the total stress distribution; see
Eq. (337). The adiabatic stress distribution is

σadðr; tÞ ¼ −∇−1ρðr; tÞ∇ δF½ρ�
δρðr; tÞ : ð350Þ

We can now reformulate the variational principle δRt=δJ ¼ 0

in tensor form as follows:

∇ ·
δRt

δ∇vðr; tÞ
����
ρ

¼ 0 ðminÞ ð351Þ

at the physical dynamics. An equivalent form is obtained by
integration as follows:

δRt

δ∇vðr; tÞ
����
ρ

¼ σstatðr; tÞ; ð352Þ

where σstatðr; tÞ is a static (artificial) stress with vanishing
divergence, ∇ · σstat ¼ 0.
To make this framework more explicit, first consider

δPid
t

δ∇vðr; tÞ ¼ −σðr; tÞ: ð353Þ

We can now collect all stress tensor contributions
σ ¼ σad þ σsup þ σext þ σstat, where the superadiabatic stress
tensor distribution is

σsupðr; tÞ ¼ ∇−1Fsupðr; tÞ ð354Þ

¼ −∇−1ρðr; tÞ δPexc
t

δJðr; tÞ
����
ρ

ð355Þ

≡ δPexc
t

δ∇vðr; tÞ
����
ρ

: ð356Þ

Hence, we have alternative forms of dependence on ρðr; tÞ
and on Jðr; tÞ, vðr; tÞ, or ∇vðr; tÞ, and hence Pexc

t ½ρ; J�≡
Pexc
t ½ρ; v�≡ Pexc

t ½ρ;∇v�. In particular, the velocity gradient
form is useful as a starting point for introducing approxima-
tions, as this ensures consistency with spatial translational
invariance according to Noether’s theorem; see Hermann and
Schmidt (2021).
The most general bilinear form (assuming the existence of a

power series) is

Pexc
t ½ρ; v� ¼ kBT

Z
dr

Z
dr0

Z
t

0

dt0ρðr; tÞ∇vðr; tÞ∶
Mðr − r0; t − t0Þ∶∇vðr0; t0Þρðr0; t0Þ: ð357Þ

Note that terms linear in ∇vðr; tÞ are already accounted
for in the adiabatic term, and also that local contributions
are contained in the ideal dissipation functional. The kernel
Mðr − r0; t − t0Þ is a dimensionless fourth-rank tensor that
depends on the internal interaction potential uðrNÞ. We can
approximate further using a spatially local and Markovian
form. Owing to rotational symmetry, this is

Pexc
t ½ρ; v� ¼ 1

2

Z
drρ½nrotð∇ × vÞ2 þ ndivð∇ · vÞ2�; ð358Þ

where the constants nrot and ndiv possess units of energy ×
time. The dynamic shear viscosity is η ¼ ρnrot and the bulk (or
volume) viscosity is ζ ¼ ρndiv. For cases where ρ ¼ const the
resulting superadiabatic force density is

Fsupðr; tÞ ¼ −
δPexc

t ½ρ; v�
δvðr; tÞ ð359Þ

¼ η½∇2vðr;tÞ−∇∇ ·vðr;tÞ�þζ∇∇ ·vðr;tÞ; ð360Þ

which is identical to the Stokes form of hydrodynamic
friction.
Higher-order terms.—Consider only rotational shear com-

ponents and a spatially local form (Stuhlmüller et al., 2018)

Pexc
t ½ρ; v� ¼

Z
dr

�Z
t

0

dt0ntt0 ð∇ × vÞ · ð∇ × v0Þ

−
Z

t

0

dt0
Z

t

0

dt00mtt0t00 ð∇ · vÞð∇ × v0Þ · ð∇ × v00Þ
	
;

ð361Þ

where further terms involving ∇ · v have been omitted. The
temporal convolution kernels ntt0 and mtt0t00 depend only on
the time differences t − t0 and t − t00 (and hence t0 − t00). The
resulting superadiabatic force density is

Fsupðr; tÞ ¼
Z

t

0

dt0∇ · ntt0∇v0

−
Z

t

0

dt0
Z

t

0

dt00∇mtt0t00 ð∇× v0Þ · ð∇× v00Þ ð362Þ

¼ η∇2v − χ∇ð∇ × vÞ2; ð363Þ
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where the form of Eq. (363) holds in steady state, with
coefficients given by

η ¼ lim
t→∞

Z
t

0

dt0ntt0 ; ð364Þ

χ ¼ lim
t→∞

Z
t

0

dt0
Z

t

0

dt00mtt0t00 . ð365Þ

In Eqs. (364) and (365) η is the coefficient of shear viscosity
and χ is the coefficient of the migration force, which is a
structural (nondissipative) force field that can sustain and
generate density gradients in nonequilibrium, both in steady
state and in time-dependent situations. See Stuhlmüller et al.
(2018) for explicit numerical results for a fluid under
inhomogeneous shear flow. That novel types of transport
coefficients, such as the migration coefficient χ, arise is
natural and follows inherently from the kinematic point of
view. Obtaining a quantitative and systematic understanding
of how χ depends on density, temperature, etc., would be an
interesting topic for future work. We return to the physics
under shear flow in Sec. IV.G.

D. Nonequilibrium Ornstein-Zernike relation

We give an abrideged version of the dynamical Ornstein-
Zernike theory of Brader and Schmidt (2013). The derivation
of the full tensorial version of the nonequilibrium Ornstein-
Zernike equation was given by Brader and Schmidt (2014).
We recall the static Ornstein-Zernike theory (Sec. III.G) as a
template for relating probabilistic and direct correlation
function hierarchies to each other. The power functional
concept provides a time-dependent analog.
In nonequilibrium it is natural to go from the pair

correlation function gðr; r0Þ to the van Hove function
GvHðr1; t1; r2; t2Þ≡GvHð1; 2Þ, where we have used compact
notation for spacetime points 1≡ r1; t1 and 2≡ r2; t2. The
van Hove function measures the probability of finding a
particle at point 2 given that a particle is at point 1. Even in a
bulk fluid at equilibrium the van Hove function is nontrivial
due to the time lag between the two events; see Treffenstädt
and Schmidt (2021) and Treffenstädt, Schindler, and Schmidt
(2022) for recent work. The requirements for a nonequili-
brium Ornstein-Zernike relation are as follows.

(i) It should determine GvHð1; 2Þ.
(ii) It is not a hierarchy involving higher (three-body,

etc.) correlators.
(iii) An analog of the direct correlation function c2ðr; r0Þ

should occur.
We resort to the microscopic dynamics as specified via

the Smoluchowski equation. Averages are built according to
OðtÞ¼hÔðrN;tÞi¼ R

drNÔðrN;tÞΨðrN;tÞ. Examples include
ρðr; tÞ ¼ hρ̂i and Jðr; tÞ ¼ hĴi, with _ρðr; tÞ ¼ −∇ · Jðr; tÞ.
The van Hove function is defined as

GvHð1; 2Þ ¼ ρð1Þ−1hρ̂ð1Þρ̂ð2Þi; ð366Þ

where we take the two times to be ordered (t1 ≥ t2). The two-
time average is taken over the distribution at the earlier time t2,
with the conditional probability of finding the state at the later

time t1. For a quiescent bulk fluid, Eq. (366) reduces to the
standard form [see Hansen and McDonald (2013)] such that
the dependence is only on the moduli jt1 − t2j and jr1 − r2j.
Besides introducing the inhomogeneous general form (366),
Brader and Schmidt (2013) also considered the front van Hove
current defined as

JfvHð1; 2Þ ¼ hĴð1Þρ̂ð2Þi; ð367Þ

where the first, “front,” factor in the correlator is the current
operator. Brader and Schmidt (2014) also considered a
corresponding van Hove current-current correlator hĴð1ÞĴð2Þi.
The two-body continuity equation relates the two-body

correlators according to

∂
∂t1 ρð1ÞGvHð1; 2Þ ¼ −∇1 · JfvHð1; 2Þ; ð368Þ

where ∇1 indicates the derivative with respect to r1. In formal
analogy to the static case, here we consider dynamical
functional derivatives. We rewrite the Smoluchowski
equation as

∂
∂tΨ ¼ Ω̂ðtÞΨ; ð369Þ

with the Smoluchowski time evolution operator [Eq. (63)]

Ω̂ðtÞ ¼ −
X
i

∇i · v̂i; ð370Þ

where both ∇i and v̂i act via differentiation and the velocity
operator is γv̂i ¼ −ð∇iuÞ − kBT∇i − ð∇iVext;iÞ þ fnc;i. The
formal solution of Eq. (369) is

ΨðrN; tÞ ¼ eþ

R
t

t0
dsΩ̂ðsÞ

ΨðrN; t0Þ; ð371Þ

where t0 is an initial time and the time-ordered exponential is
defined via its power series

e

R
t

t0
dsΩ̂ðsÞ

þ ¼ 1þ
Z

t

t0

dsΩ̂ðsÞþ
Z

t

t0

ds1

Z
s1

t0

ds2Ω̂ðs1ÞΩ̂ðs2Þ

þ
Z

t

t0

ds1

Z
s1

t0

ds2

Z
s2

t0

ds3Ω̂ðs1ÞΩ̂ðs2ÞΩ̂ðs3Þþ � � � :

ð372Þ

Hence, the time arguments build a succession t0; s3; s2; s1; t
along increasing time. This order of labels allows one to write
the nested time integrals in a natural way; note that times
with increasing subscripts s1; s2;… can be naturally ordered
according to increasing temporal distance into the past,
viewed from the time t at present. An excellent, accessible
account of the calculus of time-ordered exponentials was
given by Brader, Cates, and Fuchs (2012).
We use the following three ingredients.
(i) Time-dependent functional derivatives satisfy

δũðr;tÞ=δũðr0;t0Þ¼δðr−r0Þδðt− t0Þ, where ũðr; tÞ
is a test function; see also Appendix A.2.
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(ii) The chain rule is

δ

δũðr; tÞ e
R

t2
t1

dsΩ̂ðsÞ
þ

¼
Z

t2

t1

dse

R
t2
s

ds0Ω̂ðs0Þ
þ

δΩ̂ðsÞ
δũðr; tÞ e

R
s

t1
ds0Ω̂ðs0Þ

þ : ð373Þ

(iii) The general definition of the two-time correlator
between operators âð1Þ and b̂ð2Þ is

hâð1Þb̂ð2Þi

¼
Z

drNâð1Þe
R

t1
t2

dsΩ̂ðsÞ
þ b̂ð2Þe

R
t2
t0

dsΩ̂ðsÞ
þ ΨðrN; t0Þ:

ð374Þ

Using (i)–(iii) one can show the following relations, for
which we define the field

Vð2Þ ¼
Z

t2

t0

dt02D∇2
2Vextð20Þ; ð375Þ

where 20 ≡ r2; t02, the free diffusion constant is D ¼ kBT=γ,
and Vð2Þ has units of energy. The relationships are

δJð1Þ
δβVð2Þ ¼ Ið1; 2Þ þ ∂

∂t2 J
f
vHð1; 2Þ; ð376Þ

δρð1Þ
δβVð2Þ ¼ ρð1Þ ∂

∂t2 GvHð1; 2Þ: ð377Þ

The instantaneous contribution is

Ið1; 2Þ ¼ −γ−1ρð1Þ δ∇Vextð1Þ
δβVð2Þ : ð378Þ

The consistency with the equilibrium result from DFT can be
seen by integrating Eq. (377) in time and assuming that
decorrelation happens at long times,

Z
t2

−∞
dt02

δρð1Þ
δβVð20Þ ¼

Z
t2

−∞
dt02ρð1Þ

∂
∂t02 GvHð1; 20Þ ð379Þ

¼ hρ̂ðr1Þρ̂ðr2Þi − ρðr1Þρðr2Þ ð380Þ

¼ δρðr1Þ
δβVextðr2Þ

����
eq
: ð381Þ

Note that the equilibrium result here is obtained via a
dynamical mechanism that differs from the standard static
route; see Sec. III.G.
To proceed, we first consider the adiabatic contribution to

the current (DDFT approximation), which is

JDDFTð1Þ ¼
ρð1Þ
γ

�
−∇ δF½ρ�

δρð1Þ −∇Vextð1Þ þ fncð1Þ
�
: ð382Þ

We calculate the derivative δJð1Þ=δβVð3Þ and use Eqs. (376)
and (377) to obtain

Jf;DDFTvH ð1;3Þ ¼ Jð1ÞGvHð1;3Þ−Dρð1Þ∇1

�
GvHð1;3Þ

−
Z

dr2c2ð1;21Þρð21Þ½GvHð21;3Þ− ρð3−∞Þ�
	
;

ð383Þ

where the notation is ρð3−∞Þ ¼ ρðr3;−∞Þ and 21 ≡ r2; t1.
Hence, c2ð1; 21Þ ¼ c2ðr1; r2; t1Þ is an equal-time object (as is
appropriate for adiabatic correlations). We then have

c2ðr1; r2; t1Þ ¼ −β
δ2Fexc½ρ�

δρðr1Þδρðr2Þ
����
ρ¼ρðr;t1Þ

: ð384Þ

Equilibrium is obtained as a special limit Jð1Þ ¼ 0 ∀ t and
the equal-time limit t1 ¼ t3. Using the condition that at equal
times GvHð1; 31Þ ¼ ρð31Þ½hð1; 31Þ þ 1� þ ρð1Þδðr1 − r3Þ, we
obtain

Jf;DDFTvH ð1;3Þ¼−Dρð1Þ∇1

�
δðr1−r3Þ

þρð31Þ
�
hð1;31Þ−c2ð1;31Þ

−
Z

dr2c2ð1;21Þρð21Þhð21;31Þ
�	

:

ð385Þ

For short times, the first term in the square brackets alone
already gives the exact result for the decay. Hence, the term in
parentheses needs to vanish, which proves the equilibrium
OZ relation (236). This dynamical method hence provides an
alternative way to derive the static identity.
Considering next the superadiabatic contribution, we split

the total front van Hove current according to

JfvHð1; 3Þ ¼ Jf;DDFTvH ð1; 3Þ þ Jf;supvH ð1; 3Þ: ð386Þ

The superadiabatic contribution satisfies

Jf;supvH ð1;3Þ ¼ Jf;supvH ð1;3−∞Þ− ρð1Þ
Z

t3

−∞
dt03∇3 ·Mð1;30Þρð30Þ

þ ρð1Þ
Z

d2fMð1;2Þ · ½JfvHð2;3Þ− Jð2Þρð3−∞Þ�

þmð1;2Þρð2Þ½GvHð2;3Þ− ρð3−∞Þ�g; ð387Þ

with mð1; 2Þ the vectorial time direct correlation function and
Mð1; 3Þ the tensorial time direct correlation function.
From the general equation of motion

Jð1Þ ¼ JDDFTð1Þ −
ρð1Þ
γ

δPexc
t1 ½ρ; J�
δJð1Þ ; ð388Þ

one can identify
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mð1; 2Þ ¼ −γ−1
δ

δρð2Þ
δPexc

t1 ½ρ; J�
δJð1Þ ; ð389Þ

Mð1; 2ÞT ¼ −γ−1
δ

δJð2Þ
δPexc

t1 ½ρ; J�
δJð1Þ : ð390Þ

This forms a connection from the dynamic pair structure to the
superadiabatic power functional. A more general relationship
can be obtained by considering sourced dynamics, as intro-
duced by Brader and Schmidt (2014). Furthermore, functional
line integration (Brader and Schmidt, 2015b) provides a
systematic means to obtain nonequilibrium identities and,
in particular, formulate dynamical versions of common liquid
state perturbation techniques. Hermann and Schmidt (2021,
2022) formulated exact sum rules for forces and correlations
on the basis of Noether’s theorem, which allows one to exploit
symmetries in variational calculus. These Noether sum rules
involve time direct correlation functions, and they express
their interdependence with and relationship to averaged
dynamical correlators.

E. Dynamical test-particle limit and mixtures

The dynamical test-particle limit provides a formally exact
route to the time-dependent pair structure. It hence constitutes
an alternative to the nonequilibrium Ornstein-Zernike route;
see Sec. IV.D. The concept relies on identifying the van Hove
function with a correspondingly constructed one-body density
profile and suitable initial conditions. The van Hove current is
related to a nonequilibrium one-body current. The dynamical
test-particle limit generalizes the static test particle of Percus
(1962) to both equilibrium pair dynamics (say, in a homo-
geneous fluid) and the time-dependent nonequilibrium pair
structure.
The dynamical test-particle concept was first introduced

by Archer, Hopkins, and Schmidt (2007) on the basis of
dynamical density-functional theory and exemplified in a
system of Gaussian core particles; this model has become
central to the study of interpenetrable soft matter (Archer and
Evans, 2001; Archer, Evans, and Roth, 2002). Hopkins et al.
(2010) carried out a thorough test-particle study for the hard
sphere fluid. Brader and Schmidt (2015a) overcame the DDFT
limitations by providing the formally exact closed equations
of motion for the van Hove function based on power func-
tional theory (Schmidt and Brader, 2013). Schindler and
Schmidt (2016) showed, by analyzing BD computer simu-
lation results, that the superadiabatic contributions that deter-
mine the dynamics of the van Hove function are comparable in
magnitude to the adiabatic contributions (i.e., those that are in
principle accounted for in dynamical DFT).
For the hard sphere fluid, Treffenstädt and Schmidt (2021)

recently specified the superadiabatic forces that drive the
equilibrium van Hove function as consisting of drag, viscous,
and structural contributions. These force types are relevant in
active Brownian particles, liquids under shear, and lane-
forming mixtures, respectively. The explicit power functional
approximation reproduces these universal force fields in
quantitative agreement with Brownian dynamics simulation
results. Treffenstädt and Schmidt (2021) and Treffenstädt,
Schindler, and Schmidt (2022) argued that these findings

demonstrate the existence of close interrelationships between
equilibrium and nonequilibrium hard sphere properties, as
expected from the general power functional point of view.
We give an outline of the dynamical test-particle theory in
the following.
We use the following splitting into so-called self and

distinct parts:

GvHð1; 2Þ ¼ Gs
vHð1; 2Þ þ Gd

vHð1; 2Þ; ð391Þ

JvHð1; 2Þ ¼ JsvHð1; 2Þ þ JdvHð1; 2Þ; ð392Þ

where the self part (superscript s) refers to the autocorrelation
of particle i ¼ j and the distinct part (superscript d) refers to
pairs of different particles (i ≠ j). Hence,

Gs
vHð1; 2Þ ¼ ρð1Þ−1

X
i

hρ̂ið1Þρ̂ið2Þi; ð393Þ

Gd
vHð1; 2Þ ¼ ρð1Þ−1

X
ij

0hρ̂ið1Þρ̂jð2Þi; ð394Þ

where spacetime points are indicated as 1≡ r; t and 2≡ r0; t0,
the particle-labeled density operator is ρ̂ið1Þ ¼ δðr − riÞ, and
the primed sum indicates that the case i ¼ j has been omitted.
The dynamical test-particle method applies to general

nonequilibrium; here we limit ourselves to the description
of the equilibrium dynamics of a bulk fluid of density ρb. We
introduce two time-dependent one-body density distributions
ρsðr; tÞ and ρdðr; tÞ that represent the self and the distinct part
of the van Hove function, respectively. Here we reuse the
symbols r and t to indicate the difference between the bare
variables r − r0 → r and t − t0 → t, as is appropriate for a bulk
fluid. Consider the initial state (t ¼ 0) to be such that

ρsðr; 0Þ ¼ δðrÞ; ð395Þ

ρdðr; 0Þ ¼ ρbgðrÞ; ð396Þ

where gðrÞ is the static pair correlation function; see
Sec. III.G. The self initial condition (395) describes the
“tagged” particle as being located at the origin at the initial
time (or, equivalently, the origin of the coordinate system as
being moved to the position of the tagged particle at time
t ¼ 0). The distinct initial condition (396) is the density
profile of all other particles in the fluid according to the static
test-particle limit (Percus, 1962); see Rosenfeld (1993) for
details on enforcing self-consistency with the Ornstein-
Zernike route and Thorneywork et al. (2014) for a comparison
to experimental results.
In the dynamical test-particle limit, we identify the time

evolution of the self and distinct one-body fields with that of
the self and distinct part of the van Hove function as follows:

Gs
vHðr; tÞ ¼ ρsðr; tÞ; ð397Þ

Gd
vHðr; tÞ ¼ ρdðr; tÞ; ð398Þ

where calculating the right-hand sides constitutes a dynamical
one-body problem.
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To perform this task, we need to generalize power func-
tional theory to mixtures. We sketch in the following the
presentation by Brader and Schmidt (2015a). The generali-
zation to orientational degrees of freedom by Krinninger,
Schmidt, and Brader (2016) is closely related; Krinninger
and Schmidt (2019) gave a comprehensive account.
Applications of the rotational version were presented by
Hermann, de las Heras, and Schmidt (2019), Hermann et al.
(2019), and Landgraf, Schmidt, and de las Heras (2022).
The many-body Smoluchowski dynamics for general mix-

tures is obtained by keeping the continuity equation (13) _Ψ ¼
−
P

i ∇i · viΨ but introducing γi as the friction constant of
particle i and relating the configurational velocity of particle i
to the forces via

γivi ¼ −kBT∇i lnΨ −∇iuðrNÞ þ fext;iðri; tÞ; ð399Þ

where fext;iðr; tÞ is the external field that acts individually on
particle i. We recover the one-component version [Eq. (14)]
when we set γi ¼ γ and fext;iðr; tÞ ¼ fextðr; tÞ ∀ i. In the one-
component system, we have the further requirement that
uðrNÞ is invariant under permutations of the particle indices,
which is not necessarily implied in Eq. (399).
From this most general dynamics of havingN particles with

distinct properties, we specialize to mixtures by introducing
sets N α of particle labels i that contain identical particles of
the same species α. We can then obtain the species-resolved
density and current operators, respectively, by restricting the
particle summation to those particles of the same species as
follows:

ρ̂α ¼
X
i∈N α

δðr − riÞ; Ĵα ¼
X
i∈N α

δðr − riÞvi: ð400Þ

The species-resolved density and the current profile are
obtained by the standard averages ραðr; tÞ ¼ hρ̂αi and
Jαðr; tÞ ¼ hĴαi. And as the particle identities are fixed in
the course of time, the continuity equation is _ραðr; tÞ ¼
−∇ · Jαðr; tÞ. We also bin the friction constants such that
there is a unique friction constant γα for each species; formally
one can express this as γi ¼ γα ∀ i ∈ N α. Similarly, for the
external potential fext;iðr; tÞ ¼ fαextðr; tÞ ∀ i ∈ N α, where
fαextðr; tÞ is the external force field acting on species α, with
conservative contribution −∇Vα

extðr; tÞ.
The power functional framework generalizes the generating

functional Rt to remain a single object (Brader and Schmidt,
2015a; Krinninger and Schmidt, 2019), but one that depends
on the set of all species-resolved profiles fρα0 ðr; tÞ; Jα0 ðr; tÞg,
where α0 labels the species of the set. The extremal principle is

δRt½fρα0 ; Jα0 g�
δJαðr; tÞ

¼ 0 ðminÞ ∀ α: ð401Þ

The power functional for a mixture splits into intrinsic and
external contributions according to

Rt½fρα0 ; Jα0 g� ¼
X
α

ð _Fid½ρα� þ Pid
t ½ρα; Jα� − Xt½ρα; Jα�Þ

þ _Fexc½fρα0 g� þ Pexc
t ½fρα0 ; Jα0 g�; ð402Þ

where the ideal adiabatic, ideal dissipative, and external
contributions are given, respectively, by

_Fid½ρα� ¼ kBT
Z

drJαðr; tÞ ·∇ ln ραðr; tÞ; ð403Þ

Pid
t ½ρα; Jα� ¼

γα
2

Z
dr

J2αðr; tÞ
ραðr; tÞ

; ð404Þ

Xt½ρα; Jα� ¼
Z

dr½Jαðr; tÞ · fαextðr; tÞ − _Vα
extðr; tÞραðr; tÞ�:

ð405Þ

Inserting these forms into the free power decomposition (402)
and using the minimization principle (401) yield the equations
of motion

γαvαðr; tÞ ¼ −kBT∇ ln ραðr; tÞ þ fαadðr; tÞ
þ fαsupðr; tÞ þ fαextðr; tÞ; ð406Þ

where the microscopic velocity profile of species α is
vαðr; tÞ ¼ Jαðr; tÞ=ραðr; tÞ and the adiabatic and superadia-
batic force fields acting on species α are given, respectively, by

fαadðr; tÞ ¼ −∇ δFexc½fρα0 g�
δραðr; tÞ

; ð407Þ

fαsupðr; tÞ ¼ −
δPexc

t ½fρα0 ; Jα0 g�
δJαðr; tÞ

: ð408Þ

We return to the physics of mixtures in Sec. IV.I when we
consider differential and total motion.
Applying this general framework to the dynamics of the

van Hove function in its test-particle representation gives the
following two-body equation of motion:

∂
∂tG

α
vHðr;tÞ¼D∇2Gα

vHðr;tÞ
−γ−1∇ ·Gα

vHðr;tÞ½fαadðr;tÞþfαsupðr;tÞ�; ð409Þ

where the species index α ¼ s; d labels the self and distinct
parts and D ¼ kBT=γ is the diffusion constant, with an
identical friction constant for the self and distinct par-
ticles (γ ≡ γs ¼ γd).
Results obtained from the adiabatic approximation

fαsupðr; tÞ ¼ 0, i.e., from DDFT, for the repulsive Gaussian
core model fluid (Archer, Hopkins, and Schmidt, 2007)
indicate that, for the chosen state point, the DDFT gives a
good account of the simulation data. This is not true in
general, as was shown on the basis of BD simulation results
for the van Hove current for the dense Lennard-Jones bulk
liquid of Schindler and Schmidt (2016). They split the total
van Hove current by explicitly constructing the adiabatic state
in simulations into adiabatic and superadiabatic contributions.
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The results indicate that both contributions are of comparable
magnitude and that they are distinctly different in form, i.e., in
the variation with distance. Recently a comparison of DDFT
results with experimental data, obtained in a quasi-two-
dimensional hard sphere dispersion using video microscopy,
was performed by Stopper et al. (2018). They modified the
“bare” DDFT and obtained results that were in good agree-
ment with the experimental data.
The test-particle concept was applied to investigate self-

diffusion in a model system of rodlike particles in the smectic
(or lamellar) phase by Grelet et al. (2008). A corresponding
experimental system was a colloidal suspension of filamen-
tous fd virus particles, which allowed the direct visualization
at the scale of the single particle of mass transport between the
smectic layers. Grelet et al. (2008) found that self-diffusion
takes place preferentially in the direction normal to the
smectic layers and occurs in steps of one rod length, which
is reminiscent of a hopping type of transport. The probability
density function was obtained experimentally at different
times and found to be in qualitative agreement with theoretical
predictions based on a dynamical density-functional theory.
Closely related DDFT work was carried out by Bier and van
Roij (2007, 2008) and Bier et al. (2008).
Most of the previously mentioned empirical corrections to

the DDFT dynamics in effect replace the bare diffusion
constant D (and γ accordingly) with a reduced value, which
is an input to the theory. In their recent investigation for the
hard sphere van Hove dynamics, Treffenstädt and Schmidt
(2021) proceeded differently. They instead showed that the
superadiabatic force contributions generate the slowdown of
the dynamics. Their quantitative power functional description
of the superadiabatic force contributions yields results that are
in good agreement with the BD simulation data. By consid-
ering the total and also the differential motion of the van Hove
function, i.e., the difference of self and distinct parts, they
were able to uniquely identify force contributions that also
arise in nonequilibrium; see also Treffenstädt, Schindler, and
Schmidt (2022).

F. Custom flow algorithm

The custom flow algorithm constitutes a method to create a
desired spatiotemporal pattern of density and velocity by
constructing (iteratively) the necessary external force field that
creates this prescribed motion. As a causal relationship, one
would view the external forces as being at the origin of the
motion [fextðr; tÞ → fρðr; tÞ; Jðr; tÞg]. However, from power
functional theory (Schmidt and Brader, 2013) the functional
map is

fρðr; tÞ; Jðr; tÞg → fintðr; tÞ: ð410Þ

In the force balance relation the flow is given by

γvðr; tÞ ¼ −kBT∇ ln ρðr; tÞ þ fintðr; tÞ þ fextðr; tÞ; ð411Þ

where the external force field in general consists of
conservative and nonconservative contributions [fextðr; tÞ ¼
−∇Vextðr; tÞ þ fncðr; tÞ]. As fintðr; tÞ ¼ fintðr; t; ½ρ; J�Þ, the
force balance implies

fρðr; tÞ; Jðr; tÞg → fextðr; tÞ; ð412Þ

which constitutes a reversal of the causal relationship. One
might wonder whether this has consequences and whether
it can be exploited, say, on the level of BD simulations.
To investigate this point, we reorder the equation of motion
trivially as

fextðr; tÞ ¼ kBT∇ ln ρðr; tÞ − fintðr; tÞ þ γvðr; tÞ; ð413Þ

where the microscopic velocity field is vðr;tÞ¼Jðr;tÞ=ρðr;tÞ.
We first consider steady states, where there is no explicit

time dependence in the one-body fields. Hence,

fextðrÞ ¼ kBT∇ ln ρðrÞ − fintðrÞ þ γvðrÞ: ð414Þ

In Eq. (414) we know from power functional theory that the
right-hand side depends only on the density profile and
current, not directly on the external force field. In a BD
scheme, however, one needs to implement this relationship in
a computational way. This can be performed using the custom
flow iteration scheme of de las Heras, Renner, and Schmidt
(2019) to solve for fextðrÞ. Consider ρðrÞ and JðrÞ to be fixed
target fields and search for the form of fextðrÞ that generates, in
BD simulations, these targets in steady state. The targets need
to be physical, including the condition ∇ · ρðrÞvðrÞ ¼ 0 for a
steady state. The iteration step is

fðkÞextðrÞ ¼ kBT∇ ln ρðrÞ − fðk−1Þint ðrÞ þ γvðrÞ; ð415Þ

where k labels the steps and ρðrÞ and vðrÞ are the known
targets. The internal force field is sampled as

fðk−1Þint ðrÞ ¼ −
1

ρðrÞ
�X

i

δðr − riÞ∇iuðrNÞ
�
; ð416Þ

where the system is exposed to the action of the external force

field fðk−1Þext ðrÞ. The iteration can be started with the ideal gas
ansatz as follows:

fð0ÞextðrÞ ¼ kBT∇ ln ρðrÞ þ γvðrÞ: ð417Þ

de las Heras, Renner, and Schmidt (2019) formulated
convergence criteria and showed that in practice convergence
is fast and reliable and to a unique solution. This demonstrates
that for steady states Eq. (414) performs the functional
inversion from fextðrÞ → fρðrÞ; vðrÞg to fρðrÞ; vðrÞg →
fextðrÞ. Note that the splitting of the internal force field
into adiabatic and superadiabatic contributions, fintðrÞ ¼
fadðrÞ þ fsupðrÞ, has not been used here. [As a striking
example of the method, one can keep ρðrÞ fixed and vary
vðrÞ only; see de las Heras, Renner, and Schmidt (2019).]
As a special case, for inverting in equilibrium, where

vðrÞ ¼ 0, the force balance (414) simplifies to

fextðrÞ ¼ kBT∇ ln ρðrÞ − fintðrÞ: ð418Þ

In Eq. (418) the iteration step is
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fðkÞextðrÞ ¼ kBT∇ ln ρðrÞ − fðk−1Þint ðrÞ; ð419Þ

with the iteration start at the ideal gas solution

fð0ÞextðrÞ ¼ kBT∇ ln ρðrÞ. The sampling provides fðk−1Þint ðrÞ from
carrying out Eq. (416) under the action of fðk−1Þext ðrÞ. This
provides a powerful method to perform the adiabatic con-
strution in practice (Sec. III.A). If the sampling is performed
as a Monte Carlo calculation, then one needs the external
potential that, in effective one-dimensional situations of planar
geometry (space coordinate x), can be obtained from inte-
gration as follows:

VðkÞ
ext ðxÞ ¼ −kBT ln½ρðxÞΛd� þ

Z
dxfðk−1Þint;x ðxÞ: ð420Þ

In more general situations, one needs to use an inverse ∇−1

operator to perform the integration; see Borgis et al. (2013)
and de las Heras and Schmidt (2018b).
From the DFT context (Sec. III.C), we know that the

internal force field can be expressed as

fintðrÞ ¼ −∇ δFexc½ρ�
δρðrÞ : ð421Þ

Hence, the force balance is

fextðrÞ ¼ kBT∇ ln ρðrÞ þ ∇ δFexc½ρ�
δρðrÞ ; ð422Þ

where the right-hand side is a density functional. Hence, the
Mermin-Evans map ρðrÞ→ fextðrÞ, with fextðrÞ ¼ −∇VextðrÞ.
The method of Fortini et al. (2014) can be derived from the
present scheme, as shown by de las Heras, Renner, and
Schmidt (2019). They also summarized three different meth-
ods to sample the current distribution in BD simulations. This
includes (i) using the force density balance; (ii) the method of
the centered finite time difference, where the velocity of
particle i is given as viðtÞ ¼ ½riðtþ ΔtÞ þ riðt − ΔtÞ�=ð2ΔtÞ,
with Δt the time step in the BD algorithm; and (iii) using the
continuity equation. These methods can be implemented
separately, and hence provide valuable consistency checks.
Having restricted ourselves to steady states in the previous

description of custom flow, the method is amenable to time-
dependent problems; see de las Heras, Renner, and Schmidt
(2019). Here a coarse-graining time step is introduced and the
previously described steady state strategy is performed in each
step. Figure 5 shows corresponding illustrative results of a
density peak that grows in time (top row) and that is then sped
up to proceed at twice its original speed (bottom row).10

Recently Renner, Schmidt, and de las Heras (2021) considered
the problem of prescribed flow in the context of molecular
dynamics. They proposed a generic formulation of iterative
custom flow methods and demonstrated that a particularly
simple variant indeed allows one to generate tailor-made flow.

(a1) (a2) (a3)

(b1) (b2) (b3)

FIG. 5. Custom flow method applied to a fluid of steeply repulsive particles of size σ and strength of repulsion ϵ. Shown are the density
profile (left column), the local current (middle column), and the external force field (right column) at four consecutive times
0 < τ1 < τ2 < τ3 < τ4. The system is initially in a homogeneous bulk fluid state (constant density and vanishing external force). In the
original system, at times t ≥ 0 a density inhomogeneity (a1) and corresponding flow (a2) develop due to the action of a sinusoidal
external force (a3) that is instantaneously switched on at t ¼ 0. Eventually the system practically reaches a new equilibrium at t ¼ τ4
with almost zero current. In the fast-forward system (second row) the density and the current are prescribed to evolve twice as fast as
in the original system. The resulting sequence of density profiles (b1) is identical to that in the original system (a1) when the time
label is rescaled by 0.5 (as indicated). Correspondingly, the amplitude of the current (b2) is twice as large as in the original system, but
it is otherwise unchanged. The superscript (k) indicates the iteration step. The custom flow method finds the external force field (b3)
that generates the prescribed slow time evolution. The resulting external force (b3) varies in the course of time, in contrast to the
behavior in the original system (a3). Adapted from de las Heras, Renner, and Schmidt, 2019.

10The Supplemental Material for de las Heras, Renner, and
Schmidt (2019) contains a video that is sped up by a factor of 3,
as also reflected in the accompanying shred guitar soundtrack.
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G. Viscous and structural forces

The rheology of colloidal systems is a rich and diverse
subject; see the excellent account given by Brader (2010). In
his seminal treatment Dhont (1996) provided detailed back-
ground information. Here we consider inhomogeneous shear
flow that is spatially oscillatory; see Fig. 6 for an illustration.
The external force field that generates the flow is assumed to
have the form

fextðyÞ ¼ f0 sinð2πy=LÞex; ð423Þ

where f0 ¼ const controls the strength of the driving, y is the
coordinate perpendicular to the driving, L is the system size in
the y direction, and ex is the unit vector in the x direction. Note
that the field acts along the x direction but varies its strength in
the orthogonal y direction, which constitutes a generic shear
situation, where no unique flow potential exists.
The steady state force balance relation is

γvðrÞ¼−kBT∇ lnρðrÞþfadðrÞþfsupðrÞþfextðrÞ: ð424Þ

The induced flow in steady state will also be along the x
direction and the system will be homogeneous in x. We can
hence split Eq. (424) into its vector components in the flow
(ex) and gradient (ey) directions, respectively, given by

γvðrÞ ¼ fviscðrÞ þ fextðrÞ; ð425Þ

0 ¼ −kBT∇ ln ρðrÞ þ fadðrÞ þ fstrucðrÞ. ð426Þ

In Eqs. (425) and (426) we have split the superadiabatic force
field into two mutually orthogonal contributions according to
fsupðrÞ ¼ fviscðrÞ þ fstrucðrÞ, where the viscous contribution is
parallel to the flow [fviscðrÞkex] and the “structural” force
contribution is perpendicular to the flow [fstrucðrÞkey].
We assume that the superadiabatic free power functional

consists of two parts that correspond to viscous and structural
effects,

Pexc
t ½ρ; v� ¼ Pvisc

t ½ρ; v� þ Pstruc
t ½ρ; v�: ð427Þ

The viscous contribution (358) is given by

Pvisc
t ½ρ; v� ¼ 1

2

Z
dr½ηð∇ × vÞ2 þ ζð∇ · vÞ2�; ð428Þ

where η and ζ are related to the shear viscosity and volume (or
“bulk”) viscosity, respectively. The present geometry has no
compressional flow component, i.e., ∇ · v ¼ 0, and hence
only the shear contribution contributes. Hence, the functional
derivative with respect to the velocity field −ρ−1δPvisc

t =δv
gives a viscous superadiabatic force field corresponding to
that in Stokes flow,

fviscðyÞ ¼ η∇2vðyÞ ≈ ∂2

∂y2
ηf0
γ

sinðkyÞex ð429Þ

¼ −
ηf0k2

γ
sinðkyÞex ¼ −

ηk2

γ
fextðyÞ; ð430Þ

where we have made the approximation vðrÞ ¼ fextðrÞ=γ in
Eq. (429) and have introduced the wave number k ¼ 2π=L
that characterizes the oscillatory shear field.
In the gradient direction, as described in Eq. (426), we

neglect the adiabatic interparticle interaction contribution over
the ideal diffusive part, as is appropriate at low densities.
Hence, fadðrÞ ≈ 0 and we obtain

kBT∇ ln ρðrÞ ¼ fstrucðrÞ; ð431Þ
where the structural force field is necessarily a kinematic
functional, i.e., in general fstrucðr; t; ½ρ; v�Þ.
We next assume the following form [Eq. (361)] of the

structural contribution to the superadiabatic functional:

Pstruc
t ½ρ; v�

¼ −
Z

dr
Z

t

0

dt0
Z

t

0

dt00mtt0t00 ð∇ · vÞð∇ × v0Þ · ð∇ × v00Þ;

ð432Þ
where the primed (double primed) velocity depends on t0 (t00)
and the position argument r has been omitted for clarity. We
obtain the structural force density distribution Fstrucðr; tÞ ¼
ρðr; tÞfstrucðr; tÞ via differentiation as follows:

Fstrucðr; tÞ ¼ −
δPstruc

t ½ρ; v�
δvðr; tÞ ð433Þ

¼−
Z

t

0

dt0
Z

t

0

dt00∇mtt0t00 ð∇×v0Þ ·ð∇×v00Þ ð434Þ

¼ −χ∇½∇ × vðrÞ�2; ð435Þ
where in the last step we have assumed that ρ ≈ ρb ¼ const
and that the system is in steady state. The amplitude of the
structural force is given by the moment

χ ¼ lim
t→∞

Z
t

0

dt0
Z

t

0

dt00mtt0t00 : ð436Þ

We next apply Eq. (435) to the form of the velocity field
v ≈ fext=γ ¼ f0 sinðkyÞex=γ, which is straightforward to do as
follows:

− χ∇½∇ × vðrÞ�2 ¼ −χ
∂
∂y

� ∂
∂y

f0
γ
sinðkyÞ

�
2

ey ð437Þ

¼ −
χf20k

2

γ2
∂
∂y cos

2ðkyÞey ð438Þ

¼ χf20k
3

γ2
sinð2kyÞey: ð439Þ

The result for the structural (“migration”) force displays a
striking period doubling effect; the force tends to push
particles into the two regions of low shear rate. We can
obtain the steady state density profile from Eq. (431), again
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under the assumption of the density profile having only small
deviations from its bulk value, as follows:

ρðyÞ ¼ ρb −
χf20k

2

2γ2kBT
cosð2kyÞ: ð440Þ

The shape of the density profile [Eq. (440)] agrees well with
results both from Brownian dynamics computer simulations
and with low-density results from an exact numerical solution
of the Smoluchowski equation (Stuhlmüller et al., 2018).
From fitting the amplitude to the simulation data, one can
obtain the value of the migration force amplitude χ. Note that
the structural force field causes no dissipation, as v · fstruc ¼ 0,
i.e., the force field is orthogonal to the flow direction.
de las Heras and Schmidt (2020) went further in system-

atically splitting the force balance relationship into flow and
structural parts, given, respectively, by

γvðr; tÞ ¼ fflowðr; tÞ þ fext;fðr; tÞ; ð441Þ

0 ¼ fidðr; tÞ þ fadðr; tÞ þ fstrucðr; tÞ þ fext;sðr; tÞ; ð442Þ

where fidðr; tÞ ¼ −kBT∇ ln ρðr; tÞ. Here both the superadia-
batic and the external force field are split into flow and
structural contibutions: fsupðr; tÞ ¼ fflowðr; tÞ þ fstrucðr; tÞ and
fextðr; tÞ ¼ fext;fðr; tÞ þ fext;sðr; tÞ. The different contributions
are characterized by their symmetry properties under motion
reversal, which then also determines the corresponding
analytical form of the power functional approximation.
Furthermore, a vectorial decomposition yields force compo-
nents parallel and perpendicular to the flow field, which then
can be rationalized separately; see de las Heras and Schmidt
(2020) for details.

H. Viscoelasticity and memory

In light of significant recent interest in the study of memory
kernels as fundamental objects for collective dynamics (Jung
and Schmid, 2016; Lesnicki et al., 2016; Jung, Hanke, and
Schmid, 2017), Treffenstädt and Schmidt (2020) considered
the hard sphere fluid exposed to transient switching phenom-
ena under shear. Both the spatial variation of the shear field
and its time dependence were highly idealized and chosen
to trigger a strong response of the system. The results were
obtained with event-driven BD simulations (Scala,
Voigtmann, and De Michele, 2007), and the output from
simulation was rationalized on the basis of an approximative
form of the superadiabatic free power functional. As both the
flow profile and the force profile are available from the
simulations, this strategy allows for an unambiguous test of
the theory. The shear protocol is specified by an external force
that varies as a step function in space, i.e., with an infinite
gradient at the shear plane(s) perpendicular to the flow
direction. This shear force field is first instantaneously
switched on, starting from a quiescent fluid, and then
instantaneously switched off after the system has reached a
steady shear state. Both transient processes, that after switch-
ing on and that after switching off, were analyzed on the basis

of the same viscoelastic power functional approximation.
(Recall that the sole input to any superadiabatic force is the
history of the kinematic fields, which are known in this case.)
Figures 1(b) and 1(c) show data from BD compared to the
results from the power functional approximation.
Different types of model forms for the memory kernel were

considered. The following first form constitutes a simple
reference, and it is local in space and has a purely exponential
temporal decay: KLðΔr;ΔtÞ¼ δðΔrÞτ−1M expð−Δt=τMÞΘðΔtÞ,
with τM indicating the memory time and Θð·Þ denoting the
Heaviside step function. Here Δr is the spatial difference
between the two coupled spacetime points and Δt is their
temporal difference. The second version is spatially nonlocal
and hence can account for spatial correlation effects. This
memory kernel is assumed to have a diffusing form,

KDðΔr;ΔtÞ ¼
e−Δr

2=ð4DMΔtÞ−Δt=τM

ð4πDMΔtÞ3=2τM
ΘðΔtÞ; ð443Þ

with memory diffusion coefficient DM. The memory time τM
again sets the timescale for the decay. In principle, the
parameters τM and DM are determined by the underlying
interparticle interactions. Adjusting these parameters to match
the simulation data leads to good agreement with the BD
results; see Figs. 1(b) and 1(c). In particular, the global motion
reversal after switching off the shear force field is captured
correctly. The theory hence provides an explanation for the
effect. The superadiabatic forces that oppose the externally
driven current arise due to memory after switching off. The
behavior is of a genuinely viscoelastic nature: in the sheared
steady state, viscous forces oppose the current, but they
elastically generate an opposing current after switch off. See
Treffenstädt and Schmidt (2020) for details on the theoretical
treatment and for further results and comparisons. The concepts
were also used by Treffenstädt and Schmidt (2021) to inves-
tigate the dynamics of the van Hove dynamical pair correlation
function, where again memory was found to play an important
role. Furthermore, the self and distinct splitting was comple-
mented by splitting into total and differential motion, as laid out
in the following in a different context.

I. Superdemixing and laning

The formation of lanes is a prominent effect that occurs
generically once two or more different species are driven
against each other. Such situations arise in a binary colloidal
mixture under sedimentation, where light particles cream up
and heavy particles settle down, or when oppositely charged
particles are exposed to a uniform electric field. Dzubiella,
Hoffmann, and Löwen (2002) presented an early pioneering
study of the effect. Experimental systems of magnetic colloids
that are placed above suitably patterned substrates offer highly
sophisticated control of driving protocols (Loehr et al., 2016,
2018). Geigenfeind, de las Heras, and Schmidt (2020)
analyzed the forces that occur in the Brownian dynamics of
a generic two-dimensional binary repulsive sphere model.
They recast the internal force density for binary mixtures (as
laid out in Sec. IV.E) as
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FðαÞ
int ðr; tÞ ¼ ραðr; tÞfintðr; tÞ �Gintðr; tÞ; ð444Þ

where the two cases � refer to species α ¼ 1; 2 and the force
field fint acts on the total density ρ1 þ ρ2 and the differential

force density Gint acts on the density difference ρ2 − ρ1. If the
internal interactions are independent of α (ideal mixture), then
the species-resolved superadiabatic force field is shown to
have the structure

fðαÞsupðr; tÞ ¼ fviscðr; tÞ �
Gdragðr; tÞ
ραðr; tÞ

þ fstrucðr; tÞ �
Gstrucðr; tÞ
ραðr; tÞ

; ð445Þ

where the viscous force field fviscðr; tÞ and the differential
drag force density Gdragðr; tÞ both act parallel to the flow
direction. The total structural force field fstrucðr; tÞ and the
differential structural force density Gstrucðr; tÞ act perpendicu-
larly to the flow. All four superadiabatic terms were modeled
by explicit kinematic functionals, which were shown to
reproduce the bare simulation data well. The force splitting
concept allows one to uniquely identify the physical mecha-
nism that generates the lane formation. It is the superadiabatic
demixing force density Gstrucðr; tÞ that drives the two species
apart and stabilizes the lanes. Figure 7 gives an illustration
of this effect, as well as of the action of all further forces
in the driven system. For details on the analytical treatment
of the problem, together with the explicit power functional
approximation, see Geigenfeind, de las Heras, and
Schmidt (2020).

J. Active Brownian particles

Active Brownian particles have become a prototypical
model for the study of collective nonequilibrium phenomena.

FIG. 7. Lane formation in a counterdriven binary mixture of purely repulsive particles. The blue (red) particles are driven in the upward
(downward) direction by a constant external force. (a) As a result two lanes that move against each other (white arrows) form
spontaneously. The blue (red) arrows indicate forces that act on the blue (red) species; green arrows indicate forces that act irrespective
of the particle color. Each species experiences drag and viscous forces that tend to be directed against the species’ local direction of
motion. The adiabatic and diffusive forces tend to mix the system (top arrows). The nonequilibrium structural forces (bottom arrows)
generate a superdemixing effect that stabilizes the laned state. (b) The diffusive force that acts on the red species tends to expand the red
lane. (c) The corresponding effect for the blue particles acts in the opposite direction. Both species are pushed toward the interface by a
small adiabatic force field (green arrows). (d) A structural nonequilibrium force fstruc acts on both species and sustains a density
depletion zone at the interface (light gray). (e) The differential superadiabatic force density Gstruc keeps each species inside of its lane
and hence stabilizes the inhomogeneous steady state. Adapted from Geigenfeind, de las Heras, and Schmidt, 2020.

FIG. 6. Prototypical inhomogeneous flow situation in which
both viscous (blue) and structural nonequilibrium forces (green)
occur in a fluid of repulsive particles (orange dots) that undergo
Brownian dynamics. The system is in steady state that results
from the action of an external force field fext (red) that is parallel
to ex (horizonal) and varies its magnitude sinusoidally in ey
(vertical). The induced flow (violet) is directed in the horizontal
ex direction. Because of the structural forces, the density profile
(orange) becomes inhomogeneous. The inhomogeneous density
induces ideal and adiabatic forces (yellow) that tend to homog-
enize the system but are counteracted by the structural non-
equilibrium force fstruc (green). For each vector field its
magnitude (curves) and direction (arrows) are indicated. See
also Stuhlmüller et al. (2018) and Jahreis and Schmidt (2020).
From de las Heras and Schmidt, 2020.
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The power functional framework is inherently set up to
describe such driven systems once the generalization to the
angular degrees of freedom (which describe the direction of
the active swimming) is performed. We detail the theoretical
layout in the following.
We first follow Krinninger, Schmidt, and Brader (2016) and

Krinninger and Schmidt (2019), who considered the drag
effect in active Brownian particles. Here the ith particle is
described by position ri and unit vector orientation ωi. We
consider two-dimensional systems in a volume V; the ori-
entation ω is parametrized by ω ¼ ðcosφ; sinφÞ, where φ is
the angle of the particle orientation against the x axis. The set
of orientations ω1;…;ωN ≡ ωN constitutes internal degrees
of freedom. The interparticle interaction potential uðrNÞ is
that of spherical particles, independent of ωN . The particles
are self-propelled with a body force field

fswimðr;ω; tÞ ¼ γsω; ð446Þ

which is formally an addition to the external one-body force
field. The force (446) propels the particles into their forward
direction with strength γs; the propulsion is homogeneous in
space and time. The parameter s has the interpretation of the
speed of free swimming (i.e., without the effects of collisions
with other particles). The one-body fields depend also on
orientation ω; hence, we have the density distribution
ρðr;ω; tÞ, the translational current distribution Jðr;ω; tÞ,
and the orientational current distribution Jωðr;ω; tÞ. As there
are no explicit torques acting in the system, the orientational
motion is purely diffusive,

Jωð1Þ ¼ −
kBT
γω

∇ωρð1Þ; ð447Þ

where 1≡ r;ω; t is a shorthand, γω is the friction constant for
the overdamped rotational motion, and ∇ω is the orientational
derivative, which in two spatial dimensions is simply
∇ω → ∂=∂φ. The rotational current features in the continuity
equation, which has the form

_ρð1Þ ¼ −∇ · Jð1Þ −∇ω · Jωð1Þ: ð448Þ
We consider steady states, and hence _ρð1Þ ¼ 0. Furthermore,
for isotropic, homogeneous fluid steady states ρðr;ω; tÞ ¼
ρb ¼ const and the current distribution is Jðr;ω; tÞ ¼ Jbω,
where ρb is the bulk fluid density and Jb is the strength of the
“forward” current (of the swimming motion in the ω direc-
tion). For constant density, the rotational current (447) clearly
vanishes [Jωð1Þ ¼ 0], and hence the continuity equation (448)
is satisfied.
The task is to find a relationship JbðρbÞ that would act like a

dynamical equation of state and determine the average current
given the fluid density of the system. We assume that the
superadiabatic free power contains the following dissipative
contribution:

Pexc
t ½ρ; J� ¼ γ

2

Z
d1

Z
d2ρð1Þρð2Þ½vð1Þ − vð2Þ�2Mð1; 2Þ;

ð449Þ

where 1≡ r;ω and 2≡ r0;ω0 are again shorthand notations
and Mð1; 2Þ is a density-dependent correlation kernel that
couples the two configurational points to each other and the
microscopic velocity field v is defined as usual [vð1Þ ¼
Jð1Þ=ρð1Þ]. Note that the squared velocity difference in
Eq. (449) is a scalar measure of the crossflow that occurs
in the system. (Particles with different orientations tend to
collide, given a suitable spatial setup.) The squared velocity
difference is in Eq. (449) multiplied by the density distribution
at both points in order to give a statistical weight to the actual
occurrence of such collisions. Hence, besides the fact that
Eq. (449) constitutes a simple low-order power series term,
we can find a clear physical interpretation of an interflow
dissipation measure.
Hermann et al. (2019) showed that motility-induced phase

separation into active gas and liquid phases is described when
taking into account further superadiabatic force contributions
besides drag, as previously considered. Primarily, these
consist of pressure and “quiet life” chemical potential terms.
Hermann, de las Heras, and Schmidt (2021) gave considerable
further background on the theory and, in particular, of the
angular Fourier decomposition methods, as also used for the
exact solution of ideal active sedimentation in two dimensions
(Hermann and Schmidt, 2018). The theory yields the inter-
facial tension in a natural way, as demonstrated by Hermann,
de las Heras, and Schmidt (2019) in a nonequilibrium
generalization of the classical square-gradient interfacial
theory (Rowlinson and Widom, 2002). Four different types
of superadiabatic force contributions are shown to be relevant
[Fsupðr;ωÞ ¼

P
3
α¼0 Fsup;αðr;ωÞ] in a full position- and ori-

entation-resolved description.
Both Fsup;0 and Fsup;1 describe drag, with the isotropic

component Fsup;0 leading to the reduction of the mean swim
speed in bulk. The anisotropic drag force density Fsup;1 occurs
in inhomogeneous situations and is smaller in magnitude than
Fsup;0. The force density Fsup;2 ¼ −∇Π2 is naturally expressed
as the gradient of a spherical superadiabatic pressure Π2. This
intrinsic term balances the swim pressure Pswim, with corre-
sponding force density −∇Pswim, that occurs due to the self-
propulsion force. The intrinsic quiet life force density Fsup;3 ¼
−ρ∇ν3 originates naturally from a nonequilibrium chemical
potential ν3, and it is this term that balances the strong
adiabatic repulsion that primarily occurs in the liquid phase.
Ultimately, ν3 drives the motility-induced phase separation
into dilute and dense steady states.
Figures 8 summarizes these results, including an illustration

of the nonequilibrium phase coexistence and direction of the
relevant forces [Fig. 8(a)], the theoretical bulk phase diagram
[Fig. 8(b)] as compared to simulation data, and the behavior
of the interfacial tension γgl [Fig. 8(c)] of the free interface
between the phase separated bulk phases. The theory yields
γgl ≥ 0, in contrast to the findings by Bialké et al. (2015); see
also Speck (2020) and de las Heras, Hermann, and Schmidt
(2022). Hermann and Schmidt (2020) derived an exact sum
rule that links the total interface polarization Mtot (i.e., the
overall degree of orientational order that particles near
the interface exhibit) to the value of the swim current in
the adjacent bulk phases, Mtot=L ¼ ðJg − JlÞ=ð2DrotÞ, where
L is the length of the interface, Jg (Jl) is the current in the

Matthias Schmidt: Power functional theory for many-body dynamics

Rev. Mod. Phys., Vol. 94, No. 1, January–March 2022 015007-48



active gas (liquid), andDrot is the rotational diffusion constant.
Hence, Hermann and Schmidt (2020) concluded that the
interface polarization is a state function; the power functional
approximation respects this exact property. The sum rule itself
was verified with a light-controlled Janus-type swimmer in the
vicinity of an abrupt activity step, both in an experimental
setup and using numerical solution of the underlying
Smoluchowski equation (Auschra et al., 2020; Söker et al.,
2020). On the basis of Noether’s theorem Hermann and
Schmidt (2021, 2022) clarified the role of interfacial forces
in motility-induced phase separation.

V. CONCLUSIONS AND OUTLOOK

In conclusion, I have described how to approach the
dynamics of coupled many-body systems in a functional
setting. The functional point of view allows for systematic

coarse graining, or synonymously integrating out degrees of
freedom, while retaining a microscopically sharp description
both in space and in time. The fundamental variational
variables are one-body fields that depend on time and on a
single space coordinate. The existence of a generating func-
tional ensures that the description is complete, i.e., that two-
and higher-body correlation functions, again microscopically
resolved in space and time, are contained in the treatment. The
benefits of this variational setup are the relative ease of
carrying out practical calculations, as well as the direct access
to physical effects, because the one-body fields corresponding
to local density, velocity, and acceleration both are manage-
able in terms of numerical representability and also admit
direct physical intuition to be exploited. The kinematic fields
represent the dynamical behavior of the system directly.
No coarse graining in a hydrodynamical sense of smoothening
is implied. Rather, correlations on the particle scale are

(a)

(c)(b) MIPS phase diagram interface tension

FIG. 8. Motility-induced phase separation of active Brownian particles. (a) Repulsive spheres that swim along an intrinsic orientation
ω phase separate spontaneously into a dilute (active gas) and a dense (active liquid) phase. Drag forces hinder the swimming and slow
down the motion (white circles). Thick arrows indicate different types of forces: The swim pressure arises from the interface polarization
and it is balanced by the intrinsic superadiabatic pressure Π2. The quiet life force compresses the liquid and balances the adiabatic force.
The interparticle interactions are of a purely repulsive Lennard-Jones type, with length scale σ and energy scale ϵ. (b) Phase diagram as a
function of the scaled density ρ̄σ2 and Peclet number Pe. Shown are the theoretical results for the binodal and the spinodal compared
against simulation data (symbols) for the binodal (Paliwal et al., 2018) and the spinodal (Stenhammar et al., 2013). (a),(b) Adapted from
Hermann et al., 2019. (c) Interface tension γgl as a function of Peclet number Pe, as obtained from the nonequilibrium square-gradient
power functional treatment of the problem. Here γgl ≥ 0, in contrast to the findings of Bialké et al. (2015). Three methods (nonlocal, no
profile, local) give a unique result: the scaling with mean-field exponent 3=2 is shown near the critical point. Adapted from Hermann, de
las Heras, and Schmidt, 2019.
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accessible. Concretely, for the case of two-body correlation
functions, both the dynamical test-particle limit and the
nonequilibrium OZ relations allow access.
While the existence of a generating functional guarantees

and defines the overarching theoretical structure, the approach
is not merely a formal one. This is, in particular, due to
the description of the dynamics as stemming from both
adiabatic and superadiabatic contributions, where the former
are treated within the well-established and powerful frame-
work of density-functional theory. The latter, superadiabatic
effects are generated from a unique and increasingly well-
characterized object, the free power functional. For the
dynamical system the free power plays a role similar to that
of the free energy in equilibrium.
While the power functional variational principle may appear

to be formal at first glance, it has deep roots in the Gibbs-Appell-
Gauss formulation of classical mechanics. The Euler-Lagrange
equation that results from the free power minimization principle
has the direct physical interpretation of a force balance relation-
ship (or Newton’s second law). This situation renders the task
of constructing approximations physically intuitive, as I have
shown for a number of nonequilibrium phenomena. Moreover,
the concept allows straightforward access to the physics via
particle-based simulation work. Here I have covered techniques
such as custom flow that allowone to access relevant information
for the genuine structure and innerworking of theory, i.e., for the
challenging task of finding approximations for the superadia-
batic free power functional.
I have described the essentials of density-functional theory

as an appropriate technique to describe the adiabatic state,
which is a reference concept that allows one to uniquely define
those contributions to the dynamics that can be understood on
the basis of an equilibrium free energy. This possibility might
seem surprising to some readers, given that the system is
genuinely driven out of equilibrium and no near-equilibrium,
linear response, or similar restriction applies. But within the
functional setting the adiabatic contribution is uniquely
identified as that part of the free power that is an instantaneous
density functional. The superadiabatic contributions to the
dynamics are of a genuine nonequilibrium character, as the
corresponding functional generator depends on the motion of
the system, as characterized by the flow, acceleration, and
time-dependent density profile. The functional dependence is
nonlocal in space and time, whereas the latter dependence is
causal and, as described in dynamical test-particle and
transient shear settings, the dependence can be modeled by
memory kernel techniques.
The custom flow concept and simulation algorithm, for both

BD and MD, allows one to implement directly the functional
point of view of many-body dynamics. Here the reversed map
from the motion of the system to the corresponding external
driving force field is readily explicitly constructed. The
technique solves the inherent inverse problem in an algorithmi-
cally straightforward and computationally efficient way. It
allows both for scrutiny of the functional concepts and for
giving a powerful means for testing and developing concrete
power functional approximations. I have described a range of
such concrete power functional approximations for dynamical
phenomena, ranging from the van Hove function that character-
izes the equilibrium dynamics of a quiescent bulk liquid to

viscoelastic, structural, and memory effects of sheared fluids, as
well as to nonequilibrium structure formation, such as laning in
counterdriven mixtures and motility-induced phase separation
of active Brownian particles.
The underlying power functional approximations are based

on the unifying concept of kinematic dependence on the flow.
Local, semilocal (i.e., those via gradients), and also genuine
spatiotemporal nonlocal functional dependencies are relevant.
As shown in the description of the adiabatic state, these
mathematical tools are formally akin to those used in classical
DFT, but with the important physical distinction of representing
kinematic functionals that operate on the motion of the system
rather than merely being functionally dependent on the density
profile. The kinematic dependence is grounded in the many-
body foundation of the theory, where the central minimization
principle is akin to the Gibbs-Appell-Gaussian formulation
of classical mechanics. Levy’s search method then facilitates
the construction of the reduced one-body description. The
theory requires a modest amount of functional calculus;
Appendixes A.1 and A.2 give the necessary background for
readers who want to increase their knowledge on the topic.
Much of the concrete power functional work has been

carried out to date for the case of overdamped Brownian
dynamics and tightly interwoven with simulation methodol-
ogy. These model dynamics are simple and they represent, in a
simple fashion, the motion of colloids. The generality of the
power functional approach is apparent through the quantum
and classical inertial dynamics, as represented by the
Schrödinger and Liouville equations, respectively. I have
presented significant background for readers who want to
access the original publications. The presented power func-
tional approximations both validate the variational concept
and demonstrate that the functional point of view allows one
to gain insight into the genuine physics at play. The involved
objects carry profound physical meaning well beyond the
functional nature. Examples thereof include the flow-structure
splitting of forces in Brownian dynamics (de las Heras and
Schmidt, 2020) and the total-differential decomposition of
forces in mixtures (Geigenfeind, de las Heras, and Schmidt,
2020). Furthermore, the memory structure is such that specific
combinations of the kinematic fields occur in the memory
integral (Treffenstädt and Schmidt, 2021).
The functional point of view both offers insight into the

deep structure of nonequilibrium dynamics and represents an
excellent candidate for providing a computational framework
for the systematic and comprehensive description and clas-
sification of many-body dynamics out of equilibrium, per-
forming a role similar to the one that DFT plays as the gold
standard for the behavior in equilibrium. As no universal
consensus on the description of nonequilibrium dynamics
has been reached, the material covered in this review puts
forward power functional theory as a competitive contender.
Significant potential exists for elucidating the mechanisms
that govern the crossover regimes between the considered
types of dynamics, i.e., from quantum to classical, and from
inertial to overdamped dynamics. There is much potential for
cross fertilization between these regimes. Furthermore, it is
highly relevant to address from a general point of view open
problems such as nonequilibrium phase transitions [see Lips,
Ryabov, and Maass (2018) for a striking recent case] and the
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foundations of nonequilibrium thermodynamics. On a prac-
tical level, it is easier to construct approximations for scalars
(Pexc

t ) than for force fields. Having a reliable theoretical
scheme also allows numerical results to be obtained faster
than is possible with simulation methods.
Significant work lies ahead, both in conceptual terms, of a

practical nature, and for concrete systems and physical
phenomena. We describe several potentially fruitful directions
in the following. It would be interesting to relate power
functional theory to the concept of quasiuniversality of simple
fluids, as pioneered by Dyre and co-workers [see Dyre (2016)
for a review], as well as to the Rosenfeld (1977) entropy
scaling; see Mittal, Errington, and Truskett (2006) and Mittal
et al. (2008) for applications and Dyre (2018) for a recent
review. It would be worthwhile to investigate superadiabatic
effects in processes such as spinodal decomposition (Evans,
1979; Archer and Evans, 2004) and in “gravitational” collapse
of colloidal monolayers (Bleibel et al., 2014). Exploring
possible connections to generalized Langevin equations
[see Amati, Meyer, and Schilling (2019) for recent work]
and to the use of rate equations [see Dixit, Schilling, and
Oettel (2018) for recent work] would be valuable. It would be
interesting to see how power functional theory could be useful
in going beyond classical nucleation theory (Lutsko, 2018),
investigating the “dynamical barrier” in many-body correla-
tions in hard spheres (Robinson et al., 2019), making
connections to stochastic thermodynamics (Seifert and
Speck, 2010; Seifert, 2012; Leonard et al., 2013), and, in
particular, to the concept of the entropy production rate; see
the insightful work by Speck (2016).
Furthermore, investigating nonisothermal conditions,

where recent work addressed the effects of fluctuating hydro-
dynamics on Brownian motion (Falasco and Kroy, 2016),
would be worthwhile. Relating to the behavior of memory
kernels in molecular dynamics (Jung and Schmid, 2016;
Lesnicki et al., 2016; Jung, Hanke, and Schmid, 2017) is
worthwhile. Identifying the superadiabatic force contributions
in driven mixtures of spheres and spherocylinders could be
revealing for the observed ordering phenomena in this system
(Lüders, Siems, and Nielaba, 2019). Applying power func-
tional theory to the task of classifying new states of active
matter (Menzel, 2016) lends an exciting perspective. Even
simple types of external fields such as gravity can induce
complex phenomena. Obtaining a predictive quantitative
framework for the sedimentation dynamics of colloidal
mixtures (de las Heras et al., 2012; de las Heras and
Schmidt, 2013, 2015; Hermann and Schmidt, 2018; Eckert,
Schmidt, and de las Heras, 2021) would be valuable.
It would be highly interesting to explore the consequences

of the nonequilibrium Ornstein-Zernike relation (Brader and
Schmidt, 2013, 2014) and, in particular, to apply it to concrete
problems. Given the central role of the equilibrium Ornstein-
Zernike equation for liquid state theory, one would expect its
nonequilibrium version to play a similarly crucial future role
in the description of dynamical phenomena in complex
liquids. When it is flanked by the dynamical test-particle
limit (Archer, Hopkins, and Schmidt, 2007; Hopkins et al.,
2010; Brader and Schmidt, 2015a), one appears to be well
equipped for a fresh view on the dynamical two-body
structure of complex systems and to explore fundamental

links to, say, mode-coupling theory [see Janssen (2018) for a
recent review] in order to investigate transient dynamics of
colloidal liquids (Zausch et al., 2008). The relationship to
recent progress beyond the usual hydrodynamic description
obtained in the Zwanzig-Mori projection-operator formalism
(Vogel and Fuchs, 2020) is also worth exploring. Furthermore,
the dynamical sum rules that follow from Noether’s theorem
(Hermann and Schmidt, 2021) provide valuable resources.
Finally, and arguably most importantly and also implicit

in all of the previously mentioned items, we point out the
importance of future developments of first-principles micro-
scopically based approximations to the excess power func-
tional. This task surely is highly challenging but has
significant potential for an ultimately high reward.
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APPENDIX: FUNCTIONAL CALCULUS

1. Variations and Hamilton’s principle

Consider a classical mechanical system with M degrees
of freedom represented by the generalized coordinates
q1;…; qM ≡ q and by the corresponding generalized velocities
_q1;…; _qM ≡ _q. The LagrangianLðq; _q; tÞ specifies the system
via the difference between total kinetic and potential energy.
The action integral is then defined as

S ¼
Z

t2

t1

dtL(qðtÞ; _qðtÞ; t) ðA1Þ

for given starting and ending configurations q1 ¼ qðt1Þ and
q2 ¼ qðt2Þ, i.e., as specified by all values of the generalized
coordinates at an initial time t1 and a final time t2.
There are several equivalent ways to carry out the variation

of the action integral. Often one introduces an auxiliary
function ϵðtÞ that “perturbs” the path via qðtÞ→qðtÞþϵðtÞ
and the corresponding change in velocity. Taylor expanding in
the perturbation to first order then gives the desired result.
The method via functional differentiation is more formal. To

calculate functional derivatives δ=δfðxÞ with respect to a
function fðxÞ, one often needs in practice two rules: First, the
rules of differentiation in several variables apply (upon replacing
sums over indices of variables by integrals over the argument x).
Second, δfðxÞ=δfðx0Þ¼ δðx−x0Þ¼δðx0−xÞ, where δð·Þ is the
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Dirac distribution (which is even). The method of functional
differentiationmight seem less intuitive at first glance, but as it is
entirely algebraic it is powerful in practice. Our account is fully
explicit in spelling out all function arguments. In practice, this
can be advantageous over commonly used, more compact
notation; see Hansen and McDonald (2013).
As a demonstration of functional differentiation, we apply

the functional derivative to the action integral as follows:

δS
δqðt0Þ ¼

δ

δqðt0Þ
Z

t2

t1

dtL(qðtÞ; _qðtÞ; t) ðA2Þ

¼
Z

t2

t1

dt
δ

δqðt0ÞL(qðtÞ; _qðtÞ; t) ðA3Þ

¼
Z

t2

t1

dt

� ∂L
∂qðtÞ ·

δqðtÞ
δqðt0Þ þ

∂L
∂ _qðtÞ ·

∂ _qðtÞ
∂qðt0Þ

�
ðA4Þ

¼
Z

t2

t1

dt

� ∂L
∂qðtÞ · 1δðt − t0Þ þ ∂L

∂ _qðtÞ ·
d
dt

δqðtÞ
δqðt0Þ

�
ðA5Þ

¼
Z

t2

t1

dt

� ∂L
∂qðtÞ δðt − t0Þ −

�
d
dt

∂L
∂ _qðtÞ

�
· 1δðt − t0Þ

	

þ ∂L
∂ _q δðt − t0Þ

����
t2

t1

ðA6Þ

¼ ∂L
∂qðt0Þ −

d
dt

∂L
∂ _q

����
t¼t0

; ðA7Þ

where 1 is the M ×M unit matrix. The boundary term in
Eq. (A6) vanishes for t1 < t0 < t2. Multiplication by 1
yields the vector to its left in Eq. (A6). Renaming the time
variable t0 as t and requesting stationarity, i.e., a vanishing
derivative, leads to the following Lagrange equations of
motion:

d
dt

∂L
∂ _q −

∂L
∂q ¼ 0: ðA8Þ

To illustrate the method further, we also derive Hamilton’s
equations of motion. Rewrite the action integral (A1) as

S ¼
Z

t2

t1

dt

�X
i

_qipi −Hðq;p; tÞ
�
; ðA9Þ

where Hðq;p; tÞ is the Hamiltonian and p1;…; pM ≡ p are
the generalized momenta corresponding to q. We vary the
action both in momentum and in coordinates independently of
each other (using, as before and as is common, “partial”
functional derivatives). We start as follows with the variation
in the jth generalized momentum:

δS
δpjðt0Þ

¼
Z

t2

t1

dt
δ

δpjðt0Þ
�X

i

_qipi −Hðq;p; tÞ
�

ðA10Þ

¼
Z

t2

t1

dt

�X
i

_qiðtÞ
δpiðtÞ
δpjðt0Þ

−
δHðq;p; tÞ
δpjðt0Þ

�
ðA11Þ

¼
Z

t2

t1

dt
X
i

�
_qiðtÞδijδðt− t0Þ− ∂H

∂piðtÞ
δpiðtÞ
δpjðt0Þ

�
ðA12Þ

¼ _qjðt0Þ −
∂H
∂pj

����
t0
; ðA13Þ

where we have used δpiðtÞ=δpjðt0Þ ¼ δðt − t0Þδij, with δij the
Kronecker symbol. We rename t0 as t, and by requesting
δS=δpðtÞ ¼ 0 we obtain

_q ¼ ∂H
∂p ; ðA14Þ

which is one part of Hamilton’s equations of motion.
We next vary the coordinates as follows:

δS
δqjðt0Þ

¼
Z

t2

t1

dt
δ

δqjðt0Þ
�X

i

_qipi −Hðq;p; tÞ
�

ðA15Þ

¼
Z

t2

t1

dt

�
−

δ

δqjðt0Þ
X
i

qi _pi −
∂H

∂qjðt0Þ δðt − t0Þ
�

þ δ

δqjðt0Þ
X
i

qipi

����
t2

t1

ðA16Þ

¼ −
∂H
∂qj

����
t0
− _pjðt0Þ þ pjδðt − t0Þjt2t1 ; ðA17Þ

where the boundary term11 vanishes for t1 < t0 < t2. After
imposing the requirement that δS=δqðtÞ ¼ 0, we conclude that

_p ¼ −
∂H
∂q ; ðA18Þ

which together with Eq. (A14) forms the complete set of
Hamilton’s equations of motion.

2. Spatiotemporal and time-slice functional derivatives

Functional dependencies can be on functions of a single
argument, such as on time, as described in Appendix A.1 for
the action integral. The more general case involves functions
of several variables, and we describe the generalization, which
is straightforward, in the following. We take the position
r ¼ ðx; y; zÞ as an example, where x, y, and z are the Cartesian
components. Consider a generic functional A½f�, where fðrÞ is
its argument function. The rules of functional differentiation
laid out in Appendix A.1 then continue to hold, including the
functional chain rule, etc. When building the functional
derivative of fðrÞ with respect to itself fðr0Þ, one has to take
account of the increased dimensionality of the arguments r
and r0. The result is δfðrÞ=δfðr0Þ ¼ δðr − r0Þ, where δð·Þ
indicates the Dirac distribution in three dimensions. The
dimensionality is implicit in the notation, as the argument
r − r0 is a three-dimensional vector. [More explicit notation is
δð3ÞðrÞ≡ δð1ÞðxÞδð1ÞðyÞδð1ÞðzÞ, where the superscript indicates
the dimension.]
Spatiotemporal functional derivatives with respect to a

function fðr; tÞ follow the same scheme, with δfðr; tÞ=
δfðr0; t0Þ ¼ δðr − r0Þδðt − t0Þ, where the spatial part of the

11For modern work on the status of the boundary values in
Hamilton’s principle, see Galley (2013).
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result is again a three-dimensional Dirac distribution (multi-
plied by a one-dimensional Dirac distribution in time). Note
that two distinct positions r and r0, as well as two distinct
times t and t0, are involved. Physically speaking, given
some functional A½f� of fðr; tÞ, functionally differentiating
[δA½f�=δfðr; tÞ] monitors the response of A½f� to a change in
argument function at the spacetime point r, t.
An important special case involves only a single time

argument. Consider again the situation of a time-dependent
function fðr; tÞ, but disregard the temporal dependence
and allow only position changes. A simple example is an
instantaneous position integral At½f� ¼

R
drfðr; tÞ, where

t is fixed and hence treated as a constant. The time-slice
functional derivative then yields δAt½f�=δfðr; tÞ ¼R
drδfðr; tÞ=δfðr0; tÞ ¼ R

drδðr − r0Þ ¼ 1 for an appropriate
integration domain. Hence, the fundamental rule for the time-
slice derivative is δfðr; tÞ=δfðr0; tÞ ¼ δðr − r0Þ, with no time
dependence on the right-hand side. Here the time-slice
derivative is notated by the same time argument (t) that
appears twice on the left-hand side.

3. Gibbs-Appell-Gaussian classical mechanics

We describe the Gibbs-Appell-Gaussian formulation of
classical mechanics following the presentation by Evans and
Morriss (2013); an excellent pedagogical account was given by
Desloge (1988). Consider Newton’s second law while using
Cartesian coordinates in a system with no constraints,

mi ̈riðtÞ ¼ fiðtÞ; ðA19Þ

where fi is the total force acting on particle i. Introduce the
acceleration

aiðtÞ ¼ ̈riðtÞ ðA20Þ

at time t. The task is to determine aiðtÞ. To do so, keep all
positions riðtÞ and all velocities viðtÞ ¼ _riðtÞ fixed at time t.
There are then two alternatives.

(i) Determine the acceleration from Newton’s second
law according to

aiðtÞ ¼
fiðtÞ
mi

; ðA21Þ

where the right-hand side is (and must be) known.
This fixes the dynamics and constitutes Newton’s
version of classical mechanics.

(ii) The alternative is to construct a scalar cost function
GtðrN; vN;aN; tÞ such that, at the minimum with
respect to all aiðtÞ, Newton’s second law holds. Here
the accelerations aiðtÞ are considered to be trial
functions. (Conceptually, this is a significant step in
addition to the thinking behind Hamilton’s princi-
ple.) Define the Gibbs-Appell Gaussian as

Gt ¼
X
i

�
mi

2
a2i ðtÞ − fiðtÞ · aiðtÞ

�
: ðA22Þ

At the minimum

∂Gt

∂aiðtÞ ¼ 0 ðminÞ; ðA23Þ

from which we conclude that

miaiðtÞ − fiðtÞ ¼ 0; ðA24Þ

as desired, i.e., Eq. (A21). Hence, the result is
analogous to that of method (i). In contrast to
method (i), here the accelerations have the status
of trial variables, i.e., they do not have to possess the
correct physical values at the stage of Eq. (A22).

When one puts things into context, classical mechanics
features three alternative variational principles, attributable to
d’Alembert:

P
iðmir̈i−fiÞ ·δri¼0, Jourdain:

P
iðmi ̈ri − fiÞ·

δ_ri ¼ 0, and Gibbs, Appell, and Gauss:
P

iðmi ̈ri − fiÞ·
δ̈ri ¼ 0. Here the variations are performed, respectively, in
position δri, velocity δ_ri, or acceleration δ ̈ri. See Evans and
Morriss (2013) for a thorough account, including the treat-
ment of constraints.
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Bechinger, 2018, “Oscillating modes of driven colloids in over-
damped systems,” Nat. Commun. 9, 999.

Bernreuther, E., and M. Schmidt, 2016, “Superadiabatic forces in the
dynamics of the one-dimensional Gaussian core model,” Phys. Rev.
E 94, 022105.
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