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Sedimentation of colloidal plate-sphere mixtures and inference of particle characteristics
from stacking sequences
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We investigate theoretically the effect of gravity on a plate-sphere colloidal mixture by means of an
Onsager-like density functional to describe the bulk, and sedimentation path theory to incorporate gravity.
We calculate the stacking diagram of the mixture for two sets of buoyant masses and different values of
the sample height. Several stacking sequences appear due to the intricate interplay between gravity, the
sample height, and bulk phase separation. These include the experimentally observed floating nematic se-
quence, which consists of a nematic layer sandwiched between two isotropic layers. The values of the
thicknesses of the layers in a complex stacking sequence can be used to obtain microscopic information
of the mixture. Using the thicknesses of the layers in the floating nematic sequence we are able to in-
fer the values of the buoyant masses from the colloidal concentrations and vice versa. We also predict
new phenomena that can be experimentally tested, such as a nontrivial evolution of the stacking sequence
by increasing the sample height in which new layers appear either at the top or at the bottom of the
sample.
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I. INTRODUCTION

With remarkable exceptions [1–3], experiments on col-
loidal science are performed on Earth. Hence, the colloidal
particles are subject to a gravitational field that can have
a strong effect on the system. The effect of gravity is par-
ticularly strong if the suspension contains particles with
significantly different buoyant masses, such as e.g., the case of
strongly polydisperse and multicomponent colloidal systems.
On the other hand, theoretical studies of colloidal systems are
often focused on bulk properties and disregard the effect of
gravity on the system.

This paper aims at bridging the gap between
sedimentation-diffusion-equilibrium experiments and
theoretical studies of bulk phenomena in colloidal
plate-sphere mixtures. Experimental works include studies
on the structure [4] and the rheology [5] of mixtures of
silica nanospheres and kaolinite plates, the observation of a
slowdown of the crystallization transition of spheres due to the
addition of plates [6], the occurrence of isotropic-columnar
coexistence in charged mixtures of gibbsite plates and silica
spheres [7,8], enhanced density fluctuations of the spheres
due to the addition of plates in dilute suspensions [9], the
formation of an arrested glass state in gibbsite platelets

*Matthias.Schmidt@uni-bayreuth.de
†delasheras.daniel@gmail.com; www.danieldelasheras.com

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

and silica sphere mixtures [10], and several sedimentation
experiments in which a floating nematic layer sandwiched
between two isotropic layers [11–13] was observed. From a
theoretical point of view, the bulk properties of plate-sphere
mixtures have been investigated via free-volume theory [14],
density functional theory in the Onsager approximation
with [15–17] and without [18] rescaling of the second virial
coefficient as well as using fundamental measure density
functional theory [15,19–21], with explicit approximations to
the configurational partition function [22], and via a density
expansion on the work required to insert particles to the
mixture [23].

The effect of gravity on a colloidal plate-sphere mix-
ture has received little theoretical attention, with notable
exceptions that have analysed the floating nematic stacking
sequence [11,24,25]. We use here sedimentation path the-
ory [26] to connect bulk and sedimentation phenomena in
colloidal plate-sphere mixtures. The theory is based on the
so-called sedimentation paths, which are straight lines in the
plane of chemical potentials. The paths represent the linearly
varying local chemical potentials along the vertical axis in
a sample that is subject to gravity. An interface between
two layers of different bulk phases appears in a cuvette if a
sedimentation path crosses a bulk binodal. Several stacking
sequences can occur by varying the control parameters of the
mixture such as the colloidal concentrations and compositions
but also as a result of changing the sample height [27,28]. The
set of stacking sequences for a given mixture can be grouped
in a stacking diagram, which depicts all possible stacking
sequences in the plane of experimentally relevant quantities,
such as the overall packing fraction for each species. The
stacking diagram is in sedimentation-diffusion-equilibrium,
the analog of the bulk phase diagram in equilibrium.
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The stacking diagrams of several colloidal mixtures have
been calculated with sedimentation path theory using both
the infinite sample height limit [26,29–32] and also the case
of finite sample height [27–29]. The later allows to carry
out a direct comparison with experimental findings. Excellent
agreement of results from the sedimentation path theory and
the experimental observations by van der Kooij and Lekkerk-
erker [33,34] has been recently found in mixtures of plates
and rods [28].

Here, we use sedimentation path theory to study theoreti-
cally the effect of gravity on a colloidal plate-sphere mixture
and compare with corresponding sedimentation experiments
[11]. In the experiments [11] only isotropic and uniaxial
phases were reported. We hence restrict the bulk study to
phases without positional order using a simple microscopic
density functional theory. The isotropic-nematic bulk binodal
has an inflection point in the plane of chemical potentials. The
occurrence of an inflection point affects the sedimentation-
diffusion equilibrium by enriching the set of possible stacking
sequences. We study how the stacking diagram changes by
varying both the buoyant masses of the species and the height
of the sample. We also demonstrate how to use the macroscop-
ically observed stacking sequences in the experiments to infer
microscopic information about the colloidal particles, such as
their buoyant masses. Our methodology is general and can be
used in other colloidal mixtures to both obtain the stacking
diagram and infer particle characteristics from macroscopic
stacking behavior.

II. THEORY

A. Plate-sphere particle model

Lyotropic liquid crystals are often modelled using hard
particles [35] for which the pairwise interparticle potential
is infinite if two particles overlap and zero otherwise. We
use here a mixture of hard plates and hard spheres to model
the experimental colloidal particles of Ref. [11]. In the ex-
periments only isotropic (I) and uniaxial nematic (N) bulk
phases were reported. Hence, we restrict the bulk study to
phases without positional order. The nematic phase is rich
in the anisotropic particles, i.e., the plates. A schematic of
both phases is shown in Fig. 1. The uniaxial order parameters
Sp of the plates (see Appendix A) characterizes the isotropic
(Sp = 0) and the nematic (Sp > 0) phases. In what follows, we
use subscripts p and s to designate the plates and the spheres,
respectively.

The gravitational length of species i = p, s is ξi =
kBT/(mig) with mi the buoyant mass of the species, g the
gravitational acceleration, kB Boltzmann’s constant, and T ab-
solute temperature. In the experimental study [11], the plates
were made of gibbsite (mass density 2.42 g/cm3) and the
spheres of alumina-coated silica (2.30 g/cm3). The particles
were sterically stabilized with a polymer coating of a few
nanometer thickness and suspended in an aqueous solvent
(1.00 g/cm3). Here we use cylinders of diameter 184 nm and
thickness 2 nm together with spheres of diameter 74 nm to
model the cores of the plates and of the spheres, respectively.
The core dimensions are relevant to calculate the buoy-
ant masses, and thus the gravitational lengths. The effective

FIG. 1. Dimensions of the hard spheres (green) and hard cylin-
ders (orange) used to model the colloidal plate-sphere mixture,
together with a sketch of a cuvette of height h under a gravitational
field g. The stacking sequence is a floating nematic phase INI ,
i.e., top isotropic, middle nematic, and bottom isotropic. Both the
stacking sequence and the thickness of the layers are consistent with
one of the experimental samples reported in Ref. [11]. Schematics
of the particles in the isotropic (no orientational order Sp = 0) and
in the uniaxial nematic (orientational order Sp > 0) phases are also
shown.

dimensions of the coated particles are obtained by adding
10 nm to the core dimensions, as estimated experimentally
by neutron scattering [11]. Hence, we use plates of diameter
194 nm and spheres of diameter 84 nm for the hard particle-
particle interactions, see Fig. 1. Gibbsite plates are usually
polydisperse. For example, in a similar system, the uncertainty
in the thickness of the plates is approximately 20% [33,34].
We therefore use the effective plate thickness as an adjustable
parameter to match the properties of the isotropic-nematic
transition of the monocomponent system of plates between
theory and experiments. In the experimental study [11] the
packing fractions at the isotropic-nematic coexistence in a
pure system of plates are 0.045 and 0.049, respectively. We
study the bulk of the mixture with an Onsager-like [36] classi-
cal density functional theory [37], see details in Appendix A.
We find an effective plate thickness of 2 nm to be the optimal
value such that the average between the isotropic and the
nematic coexisting densities of a pure system of plates are the
same in the theory and in the experiments. The theory however
overestimates the density jump at the transition: The predicted
coexisting isotropic-nematic packing fractions are 0.042 and
0.052.

We estimate the buoyant masses using only the volumes
of the cores. That is, we neglect the effects of the poly-
mer coating since its mass density (1.02 g/cm3) is close to
the density of the aqueous solvent. With the above values
of the mass densities and particle dimensions of plates and
spheres, we obtain the gravitational lengths ξp = 5.34 mm and
ξs = 1.49 mm. Hence, the buoyant mass ratio in our system is

s = ms

mp
= ξp

ξs
≈ 3.58. (1)
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Our estimate of the gravitational length of the plates
(5.34 mm) is larger than that in Ref. [11] (2.92 mm) due to the
adjustable value of the plate thickness. Recall that the effective
plate thickness is the only adjustable parameter that we use in
our theoretical study. The remaining particle dimensions as
well as the mass densities are directly taken as reported in the
experimental study [11].

B. Sedimentation path theory

To incorporate gravity we employ a local density approxi-
mation (LDA) that approximates each horizontal slice of the
system at height z by a bulk equilibrium system with local
chemical potentials μi(z) given by [26,27,29]

μi(z) = μ̄i − mig

(
z − h

2

)
, i = p, s. (2)

Here 0 � z � h is the vertical coordinate measured from
the bottom of the sample, h is the height of the sample,
μ̄i with i = p, s are the chemical potentials in the absence
of gravity, and migz are the gravitational potentials (linear
in z). The LDA is justified if all correlation lengths are small
compared to both gravitational lengths, which is the case
in many colloidal systems including the current one. Note
that the LDA is used here only to incorporate gravity to
the underlying bulk theory. Hence, the LDA does not affect
the theoretical treatment of the bulk. The description of the
bulk can be done with a simple Onsager theory like we
use here, but also with more sophisticated density functional
theories [35,38] and other approaches such as perturbation
theory [39].

Equation (2) describes a line segment in the plane of chem-
ical potentials. The position (i.e., the statepoint) along the line
segment is parameterized by z. We refer to such line segments
as sedimentation paths [26,27]. Eliminating z for the binary
mixture in Eq. (2) yields

μs(μp) = sμp + a = s(μp − b), (3)

which is the equation of a line segment in the plane of
μp and μs with slope given by the buoyant mass ratio s =
ms/mp = ξp/ξs, intersect a = μ̄s − sμ̄p, and root b = μ̄p −
μ̄s/s [see Fig. 2(a)]. The midpoint of the sedimentation path
is (μ̄p, μ̄s ), conveniently translated by the constant terms
migh/2 in Eq. (2). The length of the path in the plane of
μp and μs is β�μi = h/ξi, with �μi = μi(0) − μi(h) and
β = 1/(kBT ).

The significance of the sedimentation path is that whenever
a path crosses a bulk binodal, an interface between the two
bulk phases that coexist at the binodal appears in the cuvette,
see Fig. 2(a). The crossings between the sedimentation path
and the binodal provide therefore the sequence of layers in
the sample, i.e., the stacking sequence. Moreover, the value of
the parameter z at the crossing dictates the vertical position of
the interface in the sample.

C. Stacking diagram

Depending on the position, the slope, the length, and the di-
rection of the sedimentation path, different stacking sequences

FIG. 2. (a) Model bulk phase diagram in the plane of chemical
potentials μ1 and μ2. The phases A and B coexist along a binodal
(black-solid line) that ends at a critical point (empty circle). The
line segments are finite sedimentation paths. The gray path crosses
the binodal and corresponds to a stacking sequence AB (from top
to bottom). The grey arrow indicates the direction of all paths from
top to bottom. Illustrative examples of paths that form boundaries
between different stacking sequences are depicted: (i) paths that start
(red) or end (yellow) at the binodal, (ii) paths tangent (blue) to
the binodal, and (iii) paths that cross (orange) the critical point. A
displacement of any of such paths can alter the stacking sequence.
The dotted-gray line is a sedimentation path in the limit of infinite
height (a and b are the intersects of the path with the μ2 and the μ1

axes, respectively). (b) Stacking diagram, plane of average chemical
potentials μ̄1 and μ̄2, of the bulk phase diagram depicted in (a). Each
region is a different stacking sequence, as indicated. The boundary
lines between sequences are sedimentation binodals of type I (solid
lines) or type II (dashed-blue line), and a terminal line (dotted-orange
line). A sedimentation path in (a) is a point in (b) given by the
coordinates of the average chemical potentials along the path. See,
e.g., the grey circle in (b) that corresponds to the gray sedimentation
path (finite height) in (a).

can occur. The stacking sequences can be grouped in a stack-
ing diagram. Similar to the bulk phase diagram, the stacking
diagram admits several representations that differ in the vari-
ables that are kept constant. To compare with experiments we
fix the buoyant mass ratio s and the path length, i.e., we fix the
buoyant masses of both species and the sample height h.

To illustrate the construction of a stacking diagram, we plot
in Fig. 2 a hypothetical bulk diagram and its corresponding
stacking diagram. In bulk, two phases A and B coexist along a
binodal that ends at a critical point, Fig. 2(a). We construct
the stacking diagram by finding the sedimentation paths in
the bulk phase diagram that form the boundaries between two
stacking sequences in the stacking diagram. There exist three
types of boundaries [27,28]. The first type, so-called sedimen-
tation binodals of type I, corresponds to sedimentation paths
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FIG. 3. Bulk phase diagram in the plane of chemical potential of plates μp and spheres μs (a), and also in the plane of packing fractions
of plates ηp and spheres ηs (b). The solid-black line in (a) is the binodal at which the isotropic I and the nematic N phases coexist. Dotted
lines in (b) are tie lines connecting coexisting points along the binodal (solid-black line). The grey area is the two-phase region. The pink line
in (a) is a sedimentation path corresponding to the INI stacking sequence with layer thicknesses of 9.3 mm, 16.5 mm, and 9.6 mm as found
experimentally in Ref. [11]. The pink curve in (b) is the same sedimentation path in the plane of packing fractions. The pink arrows indicate
the direction of the path from the top to the bottom of the sample. Stacking diagram in the plane of average chemical potential of plates μ̄p

and spheres μ̄s [(c)–(e)], and in the plane of average packing fractions of plates η̄p and spheres η̄s [(f)–(h)] for three different sample heights:
h = 5 mm [(c),(f)], 10 mm [(d),(g)], and 30 mm [(e),(h)]. Each colored region correspond to a different stacking sequence (except the pure
sequences I and N depicted in white). The sequences are labeled from the top to the bottom of the sample. The black crosses in panels (e) and
(h) indicate the position of the sedimentation path plotted in panels (a) and (b). In the stacking diagram, sedimentation binodals of type I (type II)
are represented with solid (dashed)-black lines.

that either start or end at a bulk binodal [red and yellow paths
in Fig. 2(a)]. Paths that cross an ending point of a binodal,
e.g., a triple point or a critical point [orange path in Fig. 2(a)],
also form a boundary in the stacking diagram, known as a
terminal line. The third type, known as sedimentation binodal
of type II, corresponds to paths tangent to a binodal, see the
blue path in Fig. 2(a). An infinitesimal displacement of the
midpoint (μ̄1, μ̄2) of the path can alter the stacking sequence
in each of the three cases.

The coordinates (μ̄1, μ̄2) for each of these special paths are
then represented in a diagram to produce the stacking diagram
in the plane of μ̄1 and μ̄2, see Fig. 2(b). However, in the
experiments the relevant quantities are usually the colloidal
packing fractions. Hence, in our plate-sphere mixture we
transform the stacking diagram in the plane of μ̄p and μ̄s by
averaging the packing fraction of each species, i.e., ηi = ρivi,
along the sedimentation path to obtain (η̄p, η̄s ). Here vi is
the particle volume of species i. For this transformation we
need to compute ηi for each point (μp, μs ) along the path (see
[Appendix A]). In both planes, the μ̄pμ̄s-plane and the η̄pη̄s-
plane, each point of the stacking diagram represents a sedi-
mentation path, i.e., one sample in sedimentation-diffusion-
equilibrium.

III. RESULTS

A. Bulk and stacking diagrams

The bulk phase diagram according to our microscopic
density functional theory is shown in Figs. 3(a) and 3(b)
in the planes of chemical potentials and packing fractions,
respectively. We restrict the study to phases without positional
order. Two phases occur: isotropic (I) with no orientational
order of the plates (Sp = 0) and uniaxial nematic (N) with
plates aligned on average along the director (Sp > 0). The
mixture does not show any critical behavior, nor does it show
isotropic-isotropic demixing. Critical and triple points are
therefore not present in the bulk phase diagram. The curvature
of the binodal in the plane of chemical potentials changes,
leading to an inflection point. We see below how the inflection
point affects the sedimentation-diffusion-equilibrium of the
mixture.

A sedimentation path (h = 35 mm and s = 3.58) corre-
sponding to a floating nematic stacking sequence INI is
depicted in the chemical potential representation of the bulk
diagram, see Fig. 3(a). To illustrate the advantage of using
the chemical potentials in the description of sedimentation-
diffusion equilibrium, we also depict the path in the plane of
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packing fractions, see Fig. 3(b). The simple form of the path
in the plane of chemical potentials (line segments) is lost in
other representations of the bulk diagram. In the plane of η̄p

and η̄s the path discontinuously jumps from the isotropic to the
nematic phase, and vice-versa, along the tie lines that connect
coexisting points in bulk. For a detailed study of sedimenta-
tion paths in the plane of packing fractions see Ref. [31].

The finite height stacking diagram in the plane of chem-
ical potentials and also in the plane of packing fractions is
shown in Figs. 3(c)–3(e) and Figs. 3(f)–3(h), respectively,
for three sample heights: 5 mm, 10 mm, and 35 mm. In all
cases the buoyant mass ratio is fixed to s = 3.58. There are
five different stacking sequences, namely I , N , IN , NI , and
INI . We label the sequences from the top to the bottom of
the sample. For example, NI indicates a top nematic layer
and a bottom isotropic layer. The occurring sequences are
all possible ordered subsets of the sequence INI . We can
arrive at the sequence I by removing from the sequence INI
the two top layers, the two bottom layers, or the middle N
layer. Since no isotropic-isotropic demixing is observed, the
resulting sequence (I) through any of these routes is the same.
Note that the observation of two isotropic layers in the INI
sequence does not imply the occurrence of isotropic-isotropic
demixing in bulk.

There is no topological change by varying the sample
height from 5 mm to 35 mm. However, the region occupied by
a given stacking sequence changes with h. Hence, the stacking
sequence of two sedimentation-diffusion-equilibrium samples
that share either the same (μ̄p, μ̄s ) or the same (η̄p, η̄s) can
change with the sample height h. All regions corresponding
to stacking sequences with multiple layers grow in the plane
of μ̄p and μ̄s with increasing h. In contrast, in the plane of η̄p

and η̄s only the INI region grows in size. All the other regions
shrink with increasing h. In the limit of h → ∞ only the
stacking sequences I and INI remain. This is confirmed by the
calculation of the stacking diagram in the infinite height limit,
see Sec. III E. That only two sequences remain if h → ∞
can be also concluded from the bulk diagram in Fig. 3(a)
by lengthening the depicted sedimentation path. The resulting
path either lies entirely in the I phase or it transitions into the
N phases and hence cuts the binodal twice giving rise to the
INI sequence (note that the binodal does not end at a critical
point and that the path is an infinite line in the limit h → ∞).

B. Reading microscopic information
from experimental photographs

A prominent result of sedimentation-diffusion-equilibrium
experiments is the stacking sequence. Sometimes, the se-
quence can be easily read from direct visual inspection of the
sample using crossed polarizers. Between crossed polarizers,
isotropic layers appear dark whereas layers in which the par-
ticles posses orientational order are bright. Even two layers of
different phases with orientational order, such as, e.g., nematic
and columnar, can be differentiated by their relative brightness
and color [34,40]. We explore here the possibility of obtaining
microscopic information about the particles by using from the
experiments only the stacking sequence and the thicknesses of
the occurring layers.

The thicknesses of the layers in stacking sequences provide
information to locate the corresponding sedimentation path in
the plane of chemical potentials. To contain sufficient amount
of information and hence be useful for the analysis, such
sequences need to possess at least three layers. That is, at least
two crossings between the corresponding path and the bulk
binodal(s) are required. For example, in Fig. 3(a) we construct
the sedimentation path such that its slope is s = 3.58 and its
stacking sequence is INI with layer thicknesses of 9.3 mm
(bottom isotropic), 16.5 mm (middle nematic), and 9.6 mm
(top isotropic). The values of the thicknesses are chosen to
reproduce the experimental sample in Ref. [11] with 74 nm
spheres and average packing fractions (η̄s, η̄p) = (0.05, 0.05).

A path is defined by four values and its direction (given
by the sign of the buoyant mass of one species). For example,
a path is defined by the position of the two endpoints in the
plane of chemical potentials, or by the set of variables s,
�μp, μ̄p, and μ̄s. The slope and the value of the three layer
thicknesses in the INI sequence give in total four constrains,
and hence properly define a unique sedimentation path, see
Fig. 3(a).

To locate the path in the previous example, we used fixed
values of the buoyant masses. The buoyant masses determine
the slope and, together with the sample height, the length of
the sedimentation path. Determining experimentally the buoy-
ant masses might be a difficult task since it requires detailed
measurements of the particle dimensions and mass densities.
We show next that using as input only the experimentally re-
ported thicknesses of the layers in the INI stacking sequence,
one can infer a range of gravitational lengths (and also a range
of average colloidal concentrations) in which such sample
can exists. We therefore pretend that the gravitational lengths
are unknown, and consider a wide range of candidate values
for both ξp and ξs. For each pair of ξp and ξs, we find the
sedimentation path that produces the INI sequence with layer
thicknesses equal to those in the experiments, see sketch in
the inset of Fig. 4(a). The gravitational lengths fix the length
and the slope of the path. Hence, we only vary the position
of the path (μ̄p, μ̄s ) until the correct layer thicknesses are
reproduced. If a solution exists, the path is unique.

The results are summarized in Fig. 4. Each point corre-
sponds to a path with the sequence INI and layer thicknesses
9.3 mm, 16.5 mm, and 9.6 mm. Illustrative paths of different
slope and length in the plane of μp and μs are shown in the
inset of Fig. 4(a). All the paths give rise to the desired INI
stacking sequence with the correct layer thicknesses. Note that
paths of different lengths in the plane of chemical potentials
can represent samples with the same height if the paths have
different gravitational lengths since h = β�μiξi.

Once a sedimentation path with the right sequence and
layer thicknesses is found, we calculate the corresponding
overall packing fractions by integrating the local packing frac-
tion along the path. Figures 4(a) and 4(b) show for each pair
(ξp, ξs) the corresponding values of η̄p and η̄s (see color bars).
Above the red-dotted line it is not possible to find an INI
sequence because the paths there are too flat (small slope)
to cross the bulk binodal twice. From the slope of the bulk
binodal at its inflection point, we determine the minimum
slope for an INI sequence to occur to be smin ≈ 1.7. For slopes
s > smin it is always possible to find an INI sequence, but
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FIG. 4. Average packing fraction of plates η̄p (a) and spheres η̄s (b) indicated by the color map as a function of the gravitational lengths of
plates ξp and spheres ξs. Each point in the diagrams represents a sedimentation path that produces an isotropic-nematic-isotropic (INI ) stacking
sequence with layer thicknesses of 9.3 mm, 16.5 mm, and 9.6 mm, from top to bottom. Illustrative paths together with a sketch of the sample
are shown in the inset of panel (a). No solution exists above the red-dotted line in panels (a) and (b) due to the path being too flat to cross the
binodal twice. The inverse relations, i.e., gravitational lengths as a function of average packing fractions, are depicted in panels (c) and (d).
The samples labeled 1 – 3 correspond to the paths shown in the inset of panel (a). The samples labeled 4 – 7 are close to the boundaries of the
diagrams shown in panels (a) and (b). The black crosses in (a) and (b) indicate the value of the gravitational lengths used here.

there is a small region in which there is no INI sequence with
the desired thicknesses (region indicated as “no solution” in
Fig. 4). For the remaining values of gravitational lengths an
INI sequence with the desired thicknesses always exists. In
Fig. 4 we show only solutions for s < 10, which covers a
vast range of experimentally realisable buoyant mass ratios.
For s > 10 the path is almost parallel to the vertical region of
the binodal, which makes it difficult to numerically find the
solution. The region in which solutions with s > 10 can occur
is indicated in Figs. 4(a) and 4(b)

The inverse relation to Figs. 4(a) and 4(b) is shown in
Figs. 4(c) and 4(d). There, for each pair (η̄p, η̄s) the grav-
itational lengths, ξp and ξs, required to obtain the correct
layer heights are depicted via a color map. This representation
clearly shows that given a specific set of layer thicknesses,

not every combination of packing fractions is possible. Also,
the set of possible values of η̄p is limited to the narrow range
[0.0415, 0.052]. The possible concentration of spheres varies
in a wider range of approximately [0.05, 0.13]. We expect
these ranges to slightly increase if solutions with s > 10 are
also considered.

The four-sided shape of the point cloud in the plane of
ξp and ξs in Fig. 4(a) is deformed when transformed into
the plane of η̄p and η̄s in Fig. 4(c). A nonlinear function
governs this transformation from gravitational lengths to aver-
age packing fractions. Despite the nonlinearity, the clockwise
order of the points labeled 4 – 7 is preserved under this
transformation.

Using the experimental values for the layer thicknesses in
the INI sequence together with the values of the gravitational
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lengths known from the synthesis of the particles, we can use
Figs. 4(a) and 4(b) to infer the values of the packing fractions.
The opposite also holds: If the packing fractions are known
from the preparation of the samples, but the microscopic grav-
itational lengths are unknown, we can use Figs. 4(c) and 4(d)
to infer their values.

For the gravitational lengths calculated with our particle
model, ξp = 5.34 mm and ξs = 1.49 mm [marked in Figs. 4(a)
and 4(b) with black crosses], we predict using Figs. 4(a) and
4(b) that the average packing fractions of the sample are
η̄p = 0.047 and η̄s = 0.11. This is in almost perfect agreement
for the plates (the packing fraction used in the experimen-
tal study [11] is η̄p = 0.05). For the spheres, our predicted
concentration differs by a factor of two (in the experimental
study [11] η̄s = 0.05). The difference might be due to our
simple theoretical description of the bulk and also to intrinsic
characteristics of the experiments, such as polydispersity and
the uncertainties in the dimensions of both the particles’ cores
and the thickness of the coating polymer layer. Note that our
discrepancy of a factor of two in the packing fraction of the
spheres can be explained with a change in the diameter of the
spheres of approximately 3

√
2 ≈ 1.26. This value is compati-

ble with the variance in the distribution of the diameter of the
spheres (26%) due to polydispersity [9].

Using the stacking diagram, e.g., Figs. 3(g)–3(i), we can
choose the packing fractions that produce a given stacking
sequence for fixed buoyant mass ratio s. The type of analysis
done in Fig. 4 allows us to choose the parameters that produce
not only the sequence but also the desired layer thicknesses
within the sequence.

C. Effects of a bulk inflection point on the stacking diagram

The Onsager-like density functional theory used here
predicts that in the plane of chemical potentials the isotropic-
nematic bulk binodal presents an inflection point. The
fundamental measure theory applied to a mixture of infinitely
thin plates and spheres [15,20] also predicts the occurrence of
an inflection point [11], which therefore seems to be a robust
feature of the system.

The inflection point does not have any qualitative effects
on the stacking diagram for a slope of s = 3.58. However, for
slopes of the path comparable to the slope of the bulk binodal
at the inflection point, the inflection point induces topological
changes to the stacking diagram due to the occurrence of new
sequences.

The maximum number of layers that can appear in a stack-
ing sequence is [26]

lmax = 3 + 2(nb − 1) + ni, (4)

with nb the number of bulk binodals and ni the total number
of inflection points in all the binodals. The occurrence of
several layers in sedimentation-diffusion-equilibrium is un-
related to bulk coexistence in which the Gibbs phase rule
dictates the maximum number of phases that can coexist si-
multaneously (with the notable exceptions found recently in
colloid-polymer mixtures [41–43] in which by fine-tuning the
interparticle interactions it is possible to find bulk multiphase
coexistence involving more than three different phases). Un-
der gravity, the maximum number of layers in a sequence,

Eq. (4), is achieved if a path crosses each binodal for the
maximum number of possible times (i.e., two plus the number
of inflection points of the binodal). Whether or not a sequence
with lmax layers can actually occur depends on the position
of the binodals relative to each other in bulk. Here nb = 1
and ni = 1, which yields lmax = 4. To confirm the general
argument presented above, we see below that in our mixture
the sequence with lmax layers is ININ . This sequence occurs
in the range of buoyant mass ratios s ∈ [1.7, 2.5] provided
that the path is long enough. The slope must be larger than
the slope of the binodal at the inflection point (s � 1.7) but
also smaller than the slope of the binodal in the limit as both
chemical potentials approach infinity (s � 2.5).

We choose a buoyant mass ratio of s = 2, i.e., slightly
above the slope of the binodal at the inflection point. The
stacking diagram in the plane of average chemical potentials
and average packing fractions for sample heights 20 mm,
32 mm, and 40 mm is shown in Fig. 5. A prominent feature is
the presence of the four layer stacking sequence ININ [11,24]
for the sample heights 32 mm and 40 mm. This sequence can
only occur for sufficiently large samples (h � 30 mm) since
the sedimentation path needs to start in the I phase, enter the
N , reenter the I phase again, and finally end in the N phase.
For h = 20 mm the path is not long enough and it can either
start in the I phase but not reach the ultimate N phase (giving
rise to the sequence INI) or end in the N phase without having
started in the I phase (resulting in NIN).

Hence, from h = 20 mm to h = 32 mm a topological
change in the stacking diagram occurs. The type I sedimen-
tation binodal that separates the sequences NI from INI , and
the type I sedimentation binodal that separates NI from NIN
cross each other, c.f. panels (d) and (e) in Fig. 5. This gives rise
to the ININ sequence. The same two sedimentation binodals
no longer cross for h = 40 mm, which eliminates the sequence
NI entirely in favor of ININ , cf. panels (e) and (f) in Fig. 5.
Both topological changes can also be observed in the plane
of μ̄p and μ̄s. For h = 20 mm the two type I sedimentation
binodals (same shape as the bulk binodal) intersect each other
twice due to the inflection point, see Fig. 5(a). For h = 32 mm
one of the intersection points has moved over to the other side
of one of the points of tangency, see inset of Fig. 5(b), and
the ININ stacking sequence appears. The two intersections
between the two sedimentation binodals of type I merge ap-
proximately for h = 40 mm into a single point, see Fig. 5(c).
As a consequence the NI stacking sequence disappears. The
transition from h = 20 mm to h = 40 mm replaces therefore
the sequence IN by ININ but leaves the other sequences unal-
tered (except for changes in the shape of the regions occupied
by each sequence that are inherent to changes in the height).

Another notable feature of the stacking diagram is the pres-
ence of a reentrant IN stacking sequence. This sequence (blue
in Fig. 5) appears in significantly different and disconnected
regions of the stacking diagram corresponding to low and high
average packing fractions of colloids. The two IN regions
share in common a direct connection to both the I and the
N regions. This is clearly visible in the chemical potential
representation of the stacking diagram, see Figs. 5(a)–5(c).
Reentrant phenomena can occur in the bulk of mono- [44,45]
and multicomponent [46,47] systems, but also, as in the
present case, induced by external fields [48–50].
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FIG. 5. Stacking diagram in the plane of average chemical potential of plates μ̄p and spheres μ̄s [(a)–(c)] and also in the plane of average
packing fractions of plates η̄p and spheres η̄s [(d)–(f)] for sample heights of h = 20 mm [(a), (d)], 32 mm [(b), (e)], and 40 mm [(c), (f)].
The buoyant mass ratio is s = 2 in all cases. The crosses indicate at each height the location of the samples with average packing fractions
(η̄p, η̄s ) = (0.063, 0.14) labeled with white squares as samples 1, 2, and 3. The stacking sequences are labeled from top to bottom of the
sample. The inset in (b) is a close view of a small region of the stacking diagram. Sedimentation binodals of type I (type II) are represented
with solid (dashed)-black lines.

D. Dependency on sample height

The stacking diagram for buoyant mass ratio s = 2 shows
a strong dependency on the sample height. To further in-
vestigate the influence of the sample height on the stacking
sequence, we consider a set of samples with the same average
colloidal packing fractions, (η̄p, η̄s) = (0.063, 0.14), but dif-
ferent heights. This corresponds to an experimental setup with
a solution prepared with the desired concentrations, which is
then distributed into cuvettes filled to a different height. Only
a single colloidal solution needs to be prepared, and even if
there is a large uncertainty in the colloidal concentrations,
it is at least guaranteed that the concentrations are the same
throughout all cuvettes.

Here, we compute for each height h in a range from
2 mm to 42 mm the stable phase (I or N) that would be ob-
served in an experiment as a function of the elevation z. We
then plot the results in the plane of z and h, see Fig. 6. This
is a different representation of the stacking diagram in which

the colloidal concentrations are kept constant. Samples from
2 mm to 30 mm always show the same NI stacking sequence.
At 30 mm an additional isotropic layer evolves at the top of
the sample, followed by the emergence of a nematic layer at
the bottom of the sample from 38 mm onwards. In total two
additional layers form, one at the bottom (N) and one at the
top (I) of the sample, as compared to the initial NI sequence
for low heights.

E. Stacking diagram for samples with infinite height

So far, we have studied the stacking diagram for finite
height samples and for two fixed values of the buoyant mass
ratio, s = 3.58 and s = 2. We end the results section showing
that these two illustrative values of the buoyant mass ratio
give rise to the stacking diagrams with the two largest possible
number of stacking sequences. To this end, we use sedimen-
tation path theory for samples with infinite height [26,29]. In
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FIG. 6. Stacking diagram at fixed colloidal concentrations. Sta-
ble layer at elevation z as a function of the total sample height h
for samples with fixed concentrations (η̄p, η̄s ) = (0.063, 0.14). The
buoyant mass ratio is s = 2. The vertical-dashed lines mark the
samples 1, 2, and 3 with heights 20 mm, 32 mm, and 40 mm. The
same samples are also labeled and marked with crosses in Fig. 5.
The solid-black line indicates the sample-air interface.

the limit of infinite height, a sedimentation path is a straight
line (not a segment as in the finite case) that can therefore be
described using only the slope s, the root b [see Eq. (3) and
Fig. 2] and the direction of path.

Similarly to the finite height case, there exist special paths
that are boundaries between two different stacking sequences
[26,29]: paths tangent to a binodal, paths crossing an ending
point of a binodal, and paths parallel to the asymptotic behav-
ior of the binodal at μi → ±∞. Plotting the coordinates of the
special paths results in a stacking diagram for infinite height,
which gives a global overview of sedimentation phenomena
for all possible buoyant mass ratios.

For the plate-sphere mixture considered here, the stacking
diagram for infinite height in the plane of 1/s and βb is
shown in Fig. 7. Note that we use 1/s to represent the slope,
since paths parallel to the binodal in the limit μs → −∞ are
vertical, i.e., s → ∞. For convenience, we also indicate the
slope s in the auxiliary x axis of Fig. 7.

From s ≈ 1.7 to s ≈ 2.5 we find the four layer stacking
sequence ININ , which we investigated in detail for the illus-
trative slope s = 2 in Fig. 5. For all negative slopes (s < 0) the
sequence NI is the only possible stacking sequence. Positive
slopes up to s ≈ 1.7 exclusively produce the IN stacking
sequence. For s � 2.5 we find the stacking sequences INI and
I , depending on the root of the sedimentation path.

The stacking sequences that occur in finite samples are
always subsequences of the infinite height limit. Hence, we
conclude from Fig. 7 that s = 2 and s = 3.58 capture the
essence and all the interesting phenomenology of the binary
mixture of plates and spheres. This includes, among others,
floating nematic phases INI , a four-layer stacking sequence
ININ , and the occurrence of an IN reentrant sequence.

FIG. 7. Stacking diagram for samples in the limit of infinite
height in the plane of inverse slope 1/s and root b of the sedimen-
tation path. The auxiliary-horizontal axis indicates the value of the
slope s. Each region corresponds to a different stacking sequence
in the limit of infinite height. Sequences are labeled from top to
bottom of the sample if mp > 0 and from bottom to top if mp < 0.
Black-solid lines are sedimentation binodals formed by the paths that
are tangent to the bulk binodal. Vertical-dashed lines are asymptotic
terminal lines formed by the two sets of paths that are parallel to
the bulk binodal in the limits μs → −∞ (1/s = 0) and μs → +∞
(1/s ≈ 0.39).

IV. CONCLUSIONS

We have studied the sedimentation-diffusion-equilibrium
of a simple binary mixture with only one anisotropic species
and restricting the bulk to isotropic and uniaxial nematic
phases (i.e., no positional order). The corresponding stacking
diagram is substantially richer than the bulk phase diagram,
with stacking sequences made of up to four layers and the
occurrence of reentrant sequences. The topology of the stack-
ing diagram depends on the sample height and on the buoyant
mass ratio. An analysis of the stacking diagram in the limit
of samples with infinite height reveals that the two buoyant
mass ratios considered here, s = 2 and s = 3.58, capture most
of the sedimentation phenomenology of the mixture. Experi-
mentally, it might be possible to alter the buoyant mass ratio
by changing the material of the colloidal cores and/or the
solvent mass density. Alternatively, using magnetic colloidal
spheres [51,52] and an external magnetic field parallel to the
gravitational field should effectively have the same effect as
varying the buoyant mass ratio of the mixture.

Analysing the effect of the sample height, we have seen
that layers appear in a stacking sequence at both the top
and the bottom of the sample by increasing the height while
keeping the colloidal concentrations constant. Layers can also
disappear from the sequence in the middle of a sample [28]
such that formerly separated layers merge by changing the
sample height. The vanishing of a middle layer has not been
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observed here for the considered heights and buoyant mass
ratios. The phenomenology found here is therefore comple-
mentary to the observation in Ref. [28] and highlights again
the relevance of the sample height in sedimentation experi-
ments [27]. Moreover, it shows that a priori one does not know
where the next layer will form or vanish when transitioning
from one sequence to another.

Stacking sequences with three or more layers are often
found in sedimentation experiments on colloidal mixtures
[11,33,34,53,54]. If both the buoyant masses and the bulk
of the mixture are known, the value of the thicknesses of
the layers in one of such multi layer sample is enough to
uniquely locate the corresponding sedimentation path [11,28].
Knowledge of the particle dimensions is required to construct
a theory for the bulk. We have shown here that it is also
possible to use the layer thicknesses and the bulk diagram
to find the set of all possible sedimentation paths associated
to the sample. The set of paths can then be used to estimate
the buoyant masses via the colloidal concentrations and vice
versa. Including the dimensions of the particles as additional
free parameters (i.e., allowing the bulk behavior of the mix-
ture to change) is also possible. Then, a set of experimental
samples that differ in their sample heights could provide suf-
ficient information to estimate microscopic parameters such
as the particle dimensions and buoyant masses. The required
information from the experiments would simply consist of the
layer thicknesses, which might be directly measured from the
sample images.

The hard particle models used here for both the spheres
and the plates are monodisperse. However, size- and therefore
mass-polydispersity are inherent to essentially any colloidal
system. Several works have considered the effect of poly-
dispersity on the bulk phenomena of a system, see, e.g.,
Ref. [55] for a review. In contrast, very little is known
about the interplay between polydispersity and gravity in
sedimentation-diffusion-equilibrium. We will report on the
extension of sedimentation path theory to polydisperse col-
loidal systems in a future publication.

Sedimentation path theory is based on a local equilibrium
condition. A sample under gravity is described as a collection
of bulk systems with local chemical potentials fixed according
to the value of the vertical coordinate. The theory can be used
to describe sedimentation in any colloidal mixture, including
polymer-colloid mixtures. The addition of polymers to a col-
loidal suspension can be used to tune the bulk phase behavior
of the colloids [56,57] and therefore also the stacking diagram.

An approach conceptually similar to sedimentation path
theory that also relies on local equilibrium conditions has been
recently used to study sedimentation profiles of molecular sys-
tems in centrifugal fields [58]. Even though the gravitational
field is not constant under centrifugation, the sedimentation
paths are still lines in the space of chemical potentials. Hence,
following the ideas of sedimentation path theory it should be
possible to construct the stacking diagrams of both colloidal
[59] and molecular mixtures under centrifugation.
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APPENDIX: METHODS

Bulk phase behaviour. We use classical density functional
theory (DFT) [37] to obtain the thermodynamic bulk equilib-
rium states of our plate-sphere mixture. The total Helmholtz
free energy F is comprised of the ideal and the excess con-
tributions (F = F id + F exc). The ideal contribution to F at
temperature T for a mixture is given exactly by

βF id =
∑

i

∫
dr

∫
dωρi(r,ω)

[
ln

(
ρi(r,ω)�3

i

) − 1
]
, (A1)

where the sum runs over both species, �i is the thermal
wavelength of species i = p, s, and ρi(r,ω) is the one-body
density profile of species i at position r and orientation spec-
ified by the unit vector ω. Since we consider only phases
without positional order, we average out all positions r and
introduce the angular distribution function ψi(ω) of species
i via ρi(r,ω) = ρiψi(ω) and normalization

∫
dωψi(ω) = 1.

For spheres the general formalism simplifies by using a uni-
form angular distribution function ψs = 1/(4π ). Hence, ρi is
the number density of species i and we obtain

βF id

N
=

∑
i

xi

∫
dωψi(ω)

[
ln

(
ψi(ω)ρi�

3
i

) − 1
]
, (A2)

where N is the total number of particles in the system and xi

is the composition of species i.
For the excess (over ideal) contribution to the free energy

F exc, we use an Onsager-like approximation with Parsons-Lee
[60,61] rescaling:

βF exc

N
= 
(η)ρ

∑
i, j

xix j

∫
dω

∫
dω′

×ψi(ω)ψ j (ω
′)V ex

i, j (ω,ω′), (A3)

with total density ρ = ∑
i ρi and V ex

i, j (ω,ω′) being the ex-
cluded volume (i.e., the volume inaccessible to one particle
due to the presence of another particle) between particles
of species i and j with orientations ω and ω′, respectively.
Here 
(η) is a scalar function of the total packing fraction
η = ρ

∑
i xivi = ∑

i ηi, with vi being the particle volume of
species i.

The plates are modelled using hard cylinders (see Fig. 1).
For all types of interparticle interactions, (i.e., cylinder-
cylinder, cylinder-sphere, and sphere-sphere) there exist
analytical expressions for the excluded volumes [17,36,62].
The excluded volume between a cylinder and a sphere, and
that between two spheres are independent of the orientation
of the particles.

We restrict ourselves to uniaxial situations as reported in
the experimental study [11]. Also, in the closely related sys-
tem of hard cut spheres, the uniaxial nematic is the only stable
nematic phase for thickness-to-diameter aspect ratios � 0.1
[63] (note that in our system the aspect ratio is 0.001). Only
for aspect ratios � 0.15 the cubatic phase was found to be
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more stable than the uniaxial nematic [63]. Hence, the angular
distribution function of plates depends only on the polar angle
θ (measured with respect to the director)

ψp(θ ) = 1

2π

∫ 2π

0
dϕψp(ω). (A4)

We, therefore, average in advance the excluded volume over
the azimuthal angle ϕ and only retain the polar dependency,
V ex

i, j (θ, θ ′).
The prefactor 
(η) in front of the excess free energy in

Eq. (A3) rescales the second virial coefficient in the original
Onsager’s expression [36] by the Carnahan-Starling equa-
tion of state [64] of a reference system of hard spheres at the
same packing fraction


(η) = 4 − 3η

8(1 − η)2
. (A5)

The topology of the bulk phase diagram does not change with
the scaling, which serves to improve the agreement of the
I − N transition densities compared to computer simulations
[65]. Note that in the low density limit we recover the second
virial coefficient, like in the original Onsager expression [36],
since 
(η → 0) = 1/2. Onsager-like density functional theo-
ries rely on two-body correlations and can fail to describe the
bulk if the symmetries of the stable bulk phases are the result
of three- and higher-body correlations [66]. This is not the
case here since the excluded volume between two cylinders is
minimal if both particles are parallel to each other, i.e., like in
the uniaxial nematic phase. We therefore expect the functional
to properly describe the topology of the bulk phase diagram.

Minimization of the functional. We perform a numerical
Picard [67] iteration to minimize the total Helmholtz free
energy with respect to the discretized angular distribution
function of plates ψp(θ ) on a one dimensional grid with 160
points.

We calculate the uniaxial order parameter according to

Sp =
∫

dθ
3 cos2(θ ) − 1

2
ψp(θ ). (A6)

Bulk Coexistence. To obtain the bulk phase diagram we use
the Gibbs ensemble and numerically minimize the Gibbs free
energy per particle

gb = F

N
+ P

ρ
, (A7)

where P is the osmotic pressure and ρ = ρp + ρs is the total
number density. For phase coexistence we need mechanical,
thermal and chemical equilibrium. The first two conditions
are fulfilled in the Gibbs ensemble by construction (P and
T are fixed). To find chemical equilibrium we search for a
common-tangent construction on gb(xs), with xs = ρs/ρ the
composition of spheres. Hence, we numerically minimize the
Gibbs free energy per particle gb with respect to the total
density ρ and the orientational distribution function of plates
ψp(θ ) for fixed values of P, T , and xs, and then search for a
common tangent.

Average colloidal packing fractions in a sample. To find
the colloidal packing fractions along a sedimentation path we
work in the grand canonical ensemble since the paths are lines
in the plane of chemical potentials. We minimize the grand
canonical potential  per unit of volume



V
= F

V
− ρ

∑
i

μixi, (A8)

with respect to ψp(θ ), xi, and ρ at fixed values of the chemical
potentials. We repeat the minimization for each point along
the sedimentation path. From the values of the packing frac-
tions ηi = xiviρ at each point along the path we obtain the
average packing fractions η̄i, i = p, s in the corresponding
sample.
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