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Inhomogeneities in the velocity field of a moving fluid are dampened by the inherent viscous behavior of
the system. Both bulk and shear effects, related to the divergence and the curl of the velocity field, are
relevant. On molecular time scales, beyond the Navier-Stokes description, memory plays an important role.
Using molecular and overdamped Brownian dynamics many-body simulations, we demonstrate that
analogous viscous effects act on the acceleration field. This acceleration viscous behavior is associated with
the divergence and the curl of the acceleration field, and it can be quantitatively described using simple
exponentially decaying memory kernels. The simultaneous use of velocity and acceleration fields enables
the description of fast dynamics on molecular scales.
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The viscous force determines the resistance of a moving
fluid to change the magnitude and the direction of the flow.
Such a viscous response, originated by the interparticle
interactions, is relevant in, e.g., lubrication [1], protein
dynamics in biological solvents [2,3], viscotaxis [4,5],
magnetic [6] and quantum [7] fluids, lava flows [8], cardio-
vascular events [9,10], food manufacturing [11], and cosmo-
logical models [12,13]. Viscous effects are associated with
inhomogeneities in the velocity field of the fluid. The viscous
force fvisðr; tÞ experienced by a particle of a fluid at position r
and time t contains bulk fbðr; tÞ and shear fsðr; tÞ contribu-
tions, i.e., fvis ¼ fb þ fs. These contributions are associated
with the divergence∇ · v (bulk) and the curl∇ × v (shear) of
the velocity field vðr; tÞ, respectively. Specifically, fvis in the
Navier-Stokes [14] equations is

ρfvis ¼ ηb∇∇ · v − ηs∇ × ð∇ × vÞ; ð1Þ

where ρðr; tÞ is the density profile and ηα with α ¼ b, s are
transport coefficients known as bulk and shear viscosities.
Here, we demonstrate the occurrence in simple fluids

of analog viscous contributions, but generated by the
divergence and the curl of the acceleration field aðr; tÞ.
We use custom flow [15,16] to design specific flows
(driven by external forces) in which we can unambiguously
single out the acceleration contribution of the viscous force.
We consider inhomogeneous and rapidly changing flows.
Hence, memory effects and inhomogeneities of the density
profile cannot be ignored and need to be included in
Eq. (1). We propose the following expressions for bulk and
shear viscous forces of an inhomogeneous simple fluid,

fbðr; tÞ ¼
1

ρ

Z
t

0

dt0½Kv
bðt − t0Þ∇ðρρ0∇ · v0Þ

þ Ka
bðt − t0Þ∇ðρρ0∇ · a0Þ�; ð2Þ

fsðr; tÞ ¼
−1
ρ

Z
t

0

dt0½Kv
sðt − t0Þ∇ × ðρρ0∇ × v0Þ

þ Ka
s ðt − t0Þ∇ × ðρρ0∇ × a0Þ�; ð3Þ

where we leave out the dependence on r and t, primed
quantities are evaluated at t0, e.g., ρ0 ¼ ρðr; t0Þ, and KΓ

α

(with α ¼ b; s and Γ ¼ v; a) are exponentially decaying
memory kernels

KΓ
αðt − t0Þ ¼ cΓα

τΓα
e−ðt−t0Þ=τΓα ; ð4Þ

with constant amplitudes cΓα and memory times τΓα . The first
terms of Eqs. (2) and (3) are the familiar bulk and shear
viscous forces in the Navier-Stokes equations, Eq. (1), for
flows with inhomogeneous density profiles and with the
addition of a memory kernel. The second terms have
identical structure but replacing v by a and represent
therefore a viscous response generated by an inhomo-
geneous acceleration field. The viscous force in Eq. (1)
with viscosities ηα ¼ cvαρ2 follows from the velocity con-
tributions of Eqs. (2) and (3) by ignoring the effect of both
memory and an inhomogeneous density profile. Our
specific form for fvis arises in power functional theory
[17–19] by retrieving the first terms of an expansion in
acceleration gradients; see additional details in the
Supplemental Material [20].
To demonstrate the occurrence of viscous effects asso-

ciated with the acceleration field, we need to disentangle
the velocity and the acceleration contributions from the
total viscous force. This requires a complete control over
the characteristics of the flow, which we achieve using
custom flow [15,16]. Custom flow uses particle-based
simulations to find numerically the spatially and temporally
resolved external field required to generate the desired
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dynamics of a many-body system. The one-body density
ρðr; tÞ and current Jðr; tÞ ¼ ρðr; tÞvðr; tÞ profiles serve as
input target fields, while the external field fextðr; tÞ that
generates these targets is the output of the method. At each
time, fextðr; tÞ is constructed iteratively. At iteration kþ 1
we add to the external force of the previous iteration k a
term proportional to the difference between the target (J)

and sampled (JðkÞ) currents, i.e., fðkþ1Þ
ext ¼ fðkÞextþα0ðJ−JðkÞÞ.

Here, the parameter α0ðr; tÞ > 0 is chosen to ensure that
the difference between the target and sampled current
fields progressively shrinks. Details about custom flow
are provided in Refs. [15,16] and in the Supplemental
Material [20]. Custom flow is essential here to tailor the
dynamics of the system such that the viscous force can be
(i) easily measured and (ii) unambiguously split into
velocity and acceleration contributions. We use molecular
dynamics (MD) simulations to study a three-dimensional
system of particles of mass m interacting via the short-
ranged and purely repulsive Weeks-Chandler-Andersen
pair potential [21] with length and energy parameters σ

and ϵ, respectively. We work in units of σ, ϵ, and m. Hence,
the unit of time is τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2=ϵ

p
. We consider two different

flows that represent pure bulk (compressible) and shear
situations. In both flows the one-body current J factorizes
into a (vectorial) spatial part Jr and a (scalar) temporal part
Jt, i.e., Jðr; tÞ ¼ JtðtÞJrðrÞ.
The temporal part is common to both flows; see Fig. 1(a)

and the Supplemental Material [20] for the mathematical
expression. The current increases from the initial time until
t↑ ¼ 1τ, then remains constant (quasisteady state) until
tc ¼ 5τ, decreases until it vanishes at t↓ ¼ 6τ, and it stays
zero afterward. This setup helps to disentangle the velocity
and the acceleration contributions from fvis since v and a
are parallel to each other during the increase of J, but they
are antiparallel during the decrease of J. Both v and a stay
unchanged during the quasisteady state and during the final
evolution toward equilibrium which is useful to character-
ize memory effects.
Both flows are designed to have a stationary one-body

density during the whole time evolution, i.e., _ρðr; tÞ ¼ 0,

FIG. 1. (a) Temporal part of the current Jt vs time t common to the bulk (b) and shear (c) flows. Four times ti with i ¼ 1, 2, 3, and 4 are
highlighted with colored circles. The vertical dotted lines indicate the times t↑; tc, and t↓. (b),(c) The external force fext, density ρ,
velocity v, acceleration a, and viscous force fvis profiles as a function of x for the bulk and shear flows, respectively. To improve the
visualization, the external force has been smoothed by eliminating high-frequency Fourier modes (see details and raw data in the
Supplemental Material [20]). The thin black solid lines are the target fields that coincide (up to numerical accuracy) with the sampled
fields. The color of the profiles indicates the time t1 ¼ 0.5τ (red), t2 ¼ 4τ (blue), t3 ¼ 5.5τ (yellow), and t4 ¼ 6.05τ (purple), as
indicated in (a). The arrows indicate the direction of the vector field at specific locations (arrow position) and times (arrow color).
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where the overdot denotes a time derivative. This simplifies
the data analysis since as a direct consequence the viscous
forces in Eqs. (2) and (3) also factorize into spatial and
temporal terms [20]

fαðr; tÞ ¼ CαðtÞfr;αðrÞ; α ¼ b; s: ð5Þ

Bulk flow.—Here, by construction ∇ × v ¼ 0 and
∇ × a ¼ 0 but ∇ · v ≠ 0 and ∇ · a ≠ 0. Hence, only bulk
effects contribute to the viscous force, i.e., fvis ¼ fb. We
take the one-body density to be inhomogeneous, but only
along the x direction. The one-body current has only an x
component which is taken to be constant in space:

ρðr; tÞ ¼ ρðxÞ ¼ ρ0 − ρ1 cos ð4πx=LxÞ; ð6Þ

Jðr; tÞ ¼ JðtÞ ¼ J0JtðtÞêx; ð7Þ

with average density ρ0σ3¼0.15625, amplitude ρ1σ3¼0.1,
side length of the simulation box Lx=σ ¼ 4, and maximum
value of the current J0τσ2 ¼ 0.01. Both the velocity
v ¼ J=ρ and the acceleration a ¼ _v ¼ _J=ρ (where the
second equality holds here since _ρ ¼ 0) are inhomo-
geneous in space even though the current is homogeneous.
The external force that produces this bulk flow together

with density, velocity, and acceleration profiles sampled in
MD are shown in Fig. 1(b) for four selected times. The
viscous force fvis [also shown in Fig. 1(b)] is the part of the
internal force that changes sign under flow reversal [20,22].
The four times selected in Fig. 1 represent the different
regimes of the time evolution imposed by Jt; see Fig. 1(a).
At t1 ¼ 0.5τ, i.e., t1 < t↑, the current increases, and both v
and a point in the same direction. At t2 ¼ 4τ, i.e.,
t↑ < t2 < tc, the system is in a quasisteady state with
negligible memory effects (we know this by monitoring the
viscous force which does not change with time). The
acceleration vanishes everywhere, and the velocity profile
remains unchanged in this time interval. At t3 ¼ 5.5τ,
i.e., tc < t3 < t↓ the current decreases. The velocity and the
acceleration profiles have opposite sign everywhere.
Finally, at t4 ¼ 6.05τ, i.e., t4 > t↓, both v and a vanish
everywhere. However, due to memory effects the system
has not reached equilibrium yet; there is, for example, a
viscous force generated by the history of v and a.
A visual inspection of the viscous force fvis, in Fig. 1(b),

reveals two strong indications that the acceleration profile
contributes to the viscosity. First, at t4 the viscous force
points in the opposite direction than at the previous times.
Hence, the history of the acceleration profile must be
dominating the viscosity since the velocity profile does not
change its sign during the whole time evolution. Only a
changes sign during the decrease of the current [compare
the acceleration profiles at times t1 and t3 in Fig. 1(b)].
Second, the profiles fvis at times t1 and t3 are similar.
At these two times the velocity profiles are identical by

construction; see Figs. 1(a) and 1(b). However, a and the
history of both v and a are different. Since the viscosity at a
given time depends on the history of the system, the
contribution to the viscosity due to the acceleration must
be canceling the contribution due to the history of the
velocity profile. Otherwise, the viscous force at these times
would differ.
The temporal part CbðtÞ for the bulk flow [see Eq. (5)]

can be understood as the variation of the strength of the
viscous force over time. Results are shown in Fig. 2(a).
Clearly, Cb achieves larger values than at the quasisteady
state for times around t↑, and smaller (negative) values than
in equilibrium (Cb ¼ 0) for times around t↓. The accel-
eration is responsible for the overshoot and the undershoot
around the times t↑ and t↓ because a is the only field that
flips its sign during the increase and during the decrease of
the current. Note that if a does not contribute to the bulk
viscous force, then the negative values ofCb would indicate
an unphysical negative viscosity.
We next compare the MD data to our expression for

the viscous force fb, Eq. (2), to obtain the kernel param-
eters; see the Supplemental Material [20] for details.

FIG. 2. (a) Temporal dependency of the bulk viscous force Cb
as a function of time t in molecular dynamics simulations (thick
black line) and theoretically (violet) for the bulk flow. The
vertical dotted lines indicate the times t↑; tc, and t↓. The time
t3 ¼ 5.5τ is highlighted with a yellow circle. The light gray line
fluctuating around the horizontal line is the difference between
simulation (thick black) and theory (violet). (b) Bulk viscous
force fvis as a function of x at time t3 ¼ 5.5τ according to MD
(yellow) and theory (violet). The force points along the x axis.
The colored arrows indicate the direction of the corresponding
force at selected positions. The contributions of the velocity
(green) and of the acceleration (blue) to the total signal (violet)
are also shown in (a) and (b). The bottom panels (c) and (d) show
the same data as the top panels, but using overdamped Brownian
dynamics instead of MD. In BD only the velocity field contrib-
utes to the viscosity.
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The amplitudes are cvb=ðϵσ3τÞ¼0.63, cab=ðϵσ3τ2Þ ¼ 0.044,
and the memory times are τvb=τ ¼ 0.043, τab=τ ¼ 0.56. The
partial contributions of the velocity and the acceleration
fields to Cb and fvis are shown in Figs. 2(a) and 2(b),
respectively. The sum of both contributions agrees quanti-
tatively with the MD data.
To assure that the overshoot and the undershoot in Cb are

indeed due to the acceleration field, we performed over-
damped Brownian dynamics (BD) simulations for exactly
the same flow (using BD custom flow [15,20] and the usual
assumption that the random force does not depend on the
external force [23]). Since the system is overdamped, the
acceleration does not play any role, and indeed, there is no
overshoot or undershoot in Cb [Fig. 2(c)]. Both Cb and
fvis are well reproduced theoretically using only the
velocity field, Figs. 2(c) and 2(d), with kernel parameters
cvb=ðϵσ3τÞ ¼ 0.117 and τvb=τ ¼ 0.041.
Shear flow.—We next consider a flow in which∇ · v ¼ 0

and ∇ · a ¼ 0 but ∇ × v ≠ 0 and ∇ × a ≠ 0. Hence, only
shear effects contribute to the viscous force, i.e., fvis ¼ fs.
Using custom flow we set the density profile to be
homogeneous and the current to be a shear wave pointing
in the y direction with modulation along the x direction,

ρðr; tÞ ¼ ρ0; ð8Þ

Jðr; tÞ ¼ Jðx; tÞ ¼ J0 sin ð2πx=LxÞJtðtÞêy; ð9Þ

with ρ0σ
3 ¼ 0.15625, Lx=σ ¼ 4, and J0τσ2 ¼ 0.01.

Figure 1(c) shows the external force required to produce
the flow along with results for ρ, v, a, and fvis at the same
four different times as in the previous flow. A visual
inspection of the data does not reveal the acceleration
contribution since (i) for times t1 ¼ 0.5τ and t3 ¼ 5.5τ
the curves are different (suggesting either a large memory
time of the velocity contribution or a strong effect of the
acceleration) and (ii) fvis does not flip the sign after the one-
body current vanishes. Also, in contrast to the bulk flow, no
apparent over- or undershoot is present in CsðtÞ, i.e., the
temporal part of fvis [see Fig. 3(a) and Eq. (5)]. For the
shear flow we find that the amplitudes cvs=ðϵσ3τÞ ¼ 0.56
and cas=ðϵσ3τ2Þ¼0.059, and the memory times τvs ¼ 0.24τ,
τas ¼ 0.23τ yield quantitative agreement between simula-
tion data and our theory for both the temporal, Fig. 3(a),
and the spatial dependence of fvis, Fig. 3(b). In contrast to
the bulk flow, the memory times of a and v are now
comparable, which partially hides the effect of the accel-
eration. To demonstrate the importance of awe use only the
velocity contribution and obtain cvs=ðϵσ3τÞ ¼ 0.56 and
τvs=τ ¼ 0.13 as the optimal kernel parameters. The resulting
curve for Cs [see Fig. 3(a)] deviates from the MD data
around the times t↑ (curve above MD data) and t↓ (curve
below MD data). This indicates that a indeed contributes
since its sign change around these times can correct these
deviations.

To further ascertain the reality of the acceleration con-
tribution, we use the obtained parameters for the amplitudes
and the memory times to describe a variation of the flow.
Instead of decreasing the one-body current after tc, we keep
the amplitude of the current unchanged and let the shear
wave travel in the positive x direction. Specifically, after time
t ¼ 2τ > t↑ we replace the x coordinate in Eq. (9) by x − vst
with constant velocity vs ¼ 4τ=σ. Hence, the acceleration
field is shifted by π=2 with respect to the velocity field; see
Fig. 3(c). The phase difference between v and a has an effect
on the viscous force; see Fig. 3(d). Using the kernel
parameters for the previous flow and both the velocity
and the acceleration contributions we reproduce the simu-
lation data. In contrast, using the parameters obtained only
with the velocity contribution results in a clear phase
shift compared with the MD data. See the Supplemental
Material [20] for more details.

FIG. 3. (a) Temporal dependency of the shear viscous force Cs
as a function of time t in MD simulations (thick black line) and
theoretically (violet) for the shear flow. The light gray line
fluctuating around the horizontal line is the difference between
simulation (thick black) and theory (violet). (b) Shear viscous
force fvis as a function of x at time t3 ¼ 5.5τ according to MD
(yellow) and theory (violet). The force points along the y axis.
(c) Illustrative velocity (green) and acceleration (blue) profiles vs
x for the traveling shear wave (t ¼ 2.7τ). Note that a and v are not
in phase. (d) Viscous force vs x for the traveling shear wave
according to MD (thick black) and theory (violet) (t ¼ 2.7τ). The
colored arrows indicate the direction of the corresponding field at
the selected positions. The theoretical contributions of v (green)
and a (blue) to the total signal (violet) are also shown in panels
(a), (b), and (d) together with the theoretical predictions using
only the velocity field (dashed green line). The colored circles
over the x axis in (d) indicate the position of the minimum of fvis
according to MD (gray), and theory using both contributions
(violet) or only the velocity contribution (green).
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Our results demonstrate the existence of shear and bulk
acceleration viscous forces generated by inhomogeneities
of the acceleration field. These forces act in addition to the
usual viscous response associated with the velocity field. In
our examples the contribution of the acceleration to the
viscous force is quantitatively significant. Acceleration
viscous forces might be also relevant in flows with rapid
temporal changes of the velocity field such as in shock
waves [24–28], turbulent flows [29–31] including atmos-
pheric and oceanic flows [32], inertial microfluidics
[33–35], the description of flows at the nanoscale [36–38],
mudflows [39], single-bubble sonoluminescence [40,41],
and viscous cosmological models [12,42].
We did not use a thermostat due to the low heat production

in both flows (the temperature increase was less than 2%
from the initial to the final state [20]). However, custom flow
can be used with thermostats [16], and it would be interest-
ing to compare the effect of the acceleration viscosities in
thermalized and nonthermalized flows.
We use here a rather simple kernel as compared with

other approaches [43–46]. The use of simple memory
kernels that decay exponentially in time is only possible
because we use all physically relevant variables, i.e., both v
and a. Since a and v are related to each other, it should be
possible to describe fvis using only v or a together with a
complicated kernel. Such a kernel would be tailored to the
specific flow instead of being general to every situation. For
example, it might be possible to describe the viscous force
of the bulk flow using only v and a complex memory kernel
with a negative tail.
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The Supplementary Material contains the expression
for the temporal contribution of the current, (A), the de-
scription of the calculation of the kernel parameters (B),
details about molecular (C) and Brownian (D) dynamics
simulations, summaries of the custom flow method (E),
the splitting of internal forces into viscous and structural
contributions (F) and power functional theory (G), as
well as supplementary data on the shear flow in Brown-
ian dynamics (H) and on the traveling shear wave (I).

A. Time evolution of the current

The temporal contribution to the current, shown in
Fig.1(a) of the main text, is set to

Jt(t) =


0.5 [1− cos (πt/t↑)] , 0 < t ≤ t↑
1, t↑ < t ≤ tc
0.5
[
1 + cos

(
π t−tc
t↓−tc

)]
, tc < t ≤ t↓

0, t↓ < t,

(S1)

with t↑ = 1τ , tc = 5τ , and t↓ = 6τ .

B. Calculation of the kernel parameters

To obtain the memory times and the amplitudes of
the viscosity kernels we proceed as follows. For the bulk
and the shear flows considered here, the one-body density
is by construction time-independent ρ(r, t) = ρ(r) and
the one-body current J factorizes into time- and space-
dependent parts J(r, t) = Jr(r)Jt(t). Hence, the time
derivative of the current also factorizes into time- and
space-dependent parts

J̇(r, t) = Jr(r)J̇t(t), (S2)

and it has the same spatial form Jr(r) as the current
itself. Since the expressions for the shear fs and bulk fb
viscous forces are linear in both v = J/ρ = JtJr/ρ and

a = v̇ where here v̇ = J̇/ρ = J̇tJr/ρ [see Eqs. (1) and
(2) of the main text], the viscous forces also factorize into
time- and space-dependent parts:

fα(r, t) = Cα(t)fr,α(r), α = b, s, (S3)

where the space-dependent parts are

fr,b =
1

ρ
∇
[
ρρ∇ ·

(
Jr

ρ

)]
, (S4)

fr,s = −1

ρ
∇×

[
ρρ∇×

(
Jr

ρ

)]
, (S5)

and the temporal parts are

Cα(t) =

t∫
0

dt′
(
Kv
α(t− t′)Jt(t′) +Ka

α(t− t′)J̇t(t′)
)
,

(S6)
with α = b for bulk and α = s for shear. The kernels are

KΓ
α (t) =

cΓα
τΓ
α

exp(−t/τΓ
α ), (S7)

with the superscript Γ labeling either the acceleration
Γ = a or the velocity Γ = v contributions. The fac-
torization of the viscous force into temporal- and spatial
parts, Eq. (S3), which facilitates the analysis of the data,
is not general and holds only if the one-body current
also factorizes. Custom flow is therefore an essential tool
here since it allows to carefully prescribe the features of
the flow. We show in Supplementary Fig. 1 the space-
dependent parts of the bulk and shear viscous forces at
different times according to simulations. As expected,
the curves for different times collapse into a single curve.

The process to calculate the kernel parameters uses
two steps. In step one, at every time t we compare the
simulation data for fvis to Eq. (S3) using the expressions
in Eqs. (S4) and (S5) for the spatial part of the viscous
forces. As a result, we obtain the curve Cα(t) in sim-
ulations. In the second step, the kernel parameters are
obtained by finding the values of cΓα and τΓ

α in Eq. (S6)
that best reproduce the curve Cα(t) that results from
step one.

C. Molecular dynamics simulations

We use molecular dynamics (MD) to simulate a
dynamical ensemble of ∼ 106 instances of a three-
dimensional system consisting of N = 50 particles inter-
acting via the purely repulsive Weeks-Chandler-Andersen
interparticle-interaction potential [1]

φ(rij) =

4ε

[(
σ
rij

)12
−
(
σ
rij

)6]
if rij ≥ rc

0 otherwise.
(S8)
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Supplementary Figure 1. Space-dependent parts of (a) the
bulk fr,b and (b) the shear fr,s viscous forces as a function of
the x-coordinate obtained with MD simulation data. Three
different times are shown, as indicated by the color of the
lines. The arrows indicate the direction of the vector field at
the selected positions.

Here, rij = |ri−rj | is the distance between particle i and

j, and rc = 2
1
6 σ is the cutoff radius, which is located at

the minimum of the Lennard-Jones potential. We work
in units of the length scale σ, the energy scale ε, and the
mass of one particle m. Hence, the derived time scale is
τ =

√
mσ2/ε.

The equations of motion for the ith particle are

dri
dt

=
pi
m
, (S9)

dpi
dt

= −∇iu(rN ) + fext(ri, t), (S10)

where ri denotes the position of the ith particle, and
pi = mvi its momentum, with vi its velocity. The to-
tal force acting on the particle is made of an external
contribution fext(ri, t), and an internal one, −∇iu(rN ).
Here, ∇i is the partial derivative with respect to ri and
u(rN ) = 1

2

∑
i

∑
j 6=i φ(rij) is the total interparticle po-

tential energy with, rN = {r1 . . . rN} the complete set of
particle positions.

We integrate the many-body equations of motion in
MD using the standard velocity-Verlet algorithm with
time step dt = 10−4τ . The simulation box is a cuboid
with lengths Lx = 4σ, Ly = 10σ and Lz = 8σ and peri-
odic boundary conditions. To spatially resolve the one-
body fields we discretize the system in the x-coordinate
with bins of size 0.05σ.

The particle positions are initialised randomly with the
constraint that no interparticle interaction occur. The
particle velocities are initialised following a Maxwell-
Boltzmann distribution with absolute temperature T .
For the initial equilibration of the shear flow (homoge-
neous density) we let the system evolve for 1 τ without
external force. To initialize the compressible flow (inho-
mogeneous density profile), we use custom flow to grow
the density inhomogeneity and then let the system equi-
librate for 4 τ such that memory effects decay. The start-
ing temperature, calculated from the kinetic energy using
the equipartition theorem, is set to kBT/ε = 0.59 (com-
pressible flow) and kBT/ε = 0.486 (shear flow). Here, kB

is the Boltzmann constant. The temperatures of the final
equilibrium states are kBT/ε = 0.60 and kBT/ε = 0.492
for the compressible and the shear flows, respectively.
These values are slightly higher than the initial values due
to the heating induced by the external driving. Since the
temperature increase was small (below 2%) we did not
use a thermostat. Note however that custom flow can
also be implemented together with a thermostat [2].

The one-body fields of interest are resolved in space
and in time. For example, the one-body density and
current profiles are given by

ρ(r, t) =

〈
N∑
i=1

δ (r− ri)

〉
, (S11)

J(r, t) =

〈
N∑
i=1

δ(r− ri)vi

〉
, (S12)

with δ(r) being the three dimensional Dirac delta distri-
bution, and r being the position vector. The statistical
average, denoted by the brackets 〈·〉 is done at each time
t over different realizations of the initial conditions (the
positions and the velocities of the particles at the initial
time t = 0). Specifically, we average over 2 · 106 different
realizations (initial states).

D. Brownian dynamics simulations

For the overdamped Brownian dynamics simulations
we use the standard Euler algorithm to integrate the
equation of motion of the ith particle

ri(t+ dt) = ri(t) +
dt

γ
[−∇iu(rN ) + fext(ri, t)] + ηi(t),

(S13)

where ηi is a delta-correlated Gaussian random displace-

ment with standard deviation
√

2dtkBT/γ in accordance
with the fluctuation-dissipation theorem and γ is the fric-
tion coefficient against the (implicit) solvent. We hence
use in Eq. (S13) the standard assumption that the ran-
dom force does not depend on the external force [3].
The integration time step is set to dt = 10−4τb with
τb = σ2γ/ε the BD unit of time. In BD we work in units
of σ, ε, and γ. We average over 4 · 106 trajectories, i.e.
twice than in MD, due to the larger statistical noise gen-
erated by the random force. The velocity of particle i
at time t, required to e.g. sample the current following
Eq. (S12), is calculated as the central derivative of the
position vector [4]:

vi(t) =
ri(t+ dt)− ri(t− dt)

2dt
. (S14)

All further parameters of the simulation, i.e. tempera-
ture, number of particles, and target fields, are the same
as in MD.

Since the external driving is time-dependent, the over-
damped approximation that underlies Eq. (S13) might
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not be accurate. However, we use here overdamped BD
only as a reference system in which inertial effects are
eliminated by construction. This allows us to highlight
the inertial effects that occur in MD.

E. Custom flow

Custom flow is a numerical method that finds the ex-
ternal force corresponding to prescribed density, velocity,
and acceleration fields (the target fields). A complete de-
scription of the method is given in Refs. [2, 4]. Here, we
only summarize the main ideas of custom flow in molecu-
lar dynamics. The external force is found iteratively. At
each iteration, the external force is the same as in the
previous iteration plus a term that aims to correct the
differences between sampled and target fields,

f
(k+1)
ext (r, t) = f

(k)
ext(r, t) +

m

ρ(r, t)∆t

(
J(r, t)− J(k)(r, t)

)
.

(S15)

Here, k is the iteration index. Hence, f
(k)
ext(r, t) and

J(k)(r, t) denote the external force and the current sam-
pled at iteration k, whereas ρ(r, t) and J(r, t) are the tar-
get fields. The convergence of the iteration scheme (S15)
is achieved when the external forces at iterations k + 1
and k coincide within a given tolerance (in practice less
than ten iterations are usually enough to achieve conver-
gence). The whole iteration scheme needs to be repeated
at time intervals separated by ∆t which we set to be
∆t = 10dt, i.e., ten times bigger than the time step of
the simulation dt. At each time, we initialize the external
force according to

f
(0)
ext(r, t) =

mJ̇(r, t)

ρ(r, t)
, (S16)

which follows from the exact one-body force balance
equation (S30) by making the internal force fint and the
transport term ∇ · τ zero everywhere.

Using Eq. (S15), custom flow MD minimizes the dif-
ference between target and sampled one-body currents.
This results in very accurate (essentially noise free) sam-
pled currents. The noise, which in standard MD simu-
lations usually occurs in the sampled fields, appears in
custom flow in the external force which is tailored to the
initial set of microstates (we use 2 · 106 different initial
states), see Supplementary Figure 2. For a better vi-
sual representation we show in the main paper and also
in Supplementary Figure 2 smooth external force profiles
which result from removing the high Fourier modes of the
raw signal. Both, the external force that follows directly
from custom flow and its smoothed version produce very
similar dynamics [2].

Supplementary Figure 2. External force fext produced by MD
custom flow (solid thick lines) as a function of x for (a) bulk
and (b) shear flows at times 0.5τ (red) and 5.5τ (yellow).
The smoothed external forces, obtained by removing the high
frequency modes, are also shown with dashed lines. Custom
flow minimizes the statistical noise that usually occurs in the
sampled fields like the density and the velocity profiles. As a
result, the external forces obtained with custom flow appear
to be noisy. The colored arrows indicate the direction of the
force at the selected positions.

F. Viscous and structural internal forces

In non-equilibrium, the total internal force fint, which
is solely generated by the interparticle interactions, con-
tains structural and flow contributions [5]. The struc-
tural part is able to e.g. sustain gradients in the den-
sity profile, whereas the flow contribution represents
the viscous response of the system. The total internal
force is easily accessible in computer simulations since
fint(r, t) = Fint(r, t)/ρ(r, t) with Fint being the internal
force density

Fint(r, t) = −

〈
N∑
i=1

δ(r− ri)∇iu
(
rN
)〉

. (S17)

To extract the viscous forces from the total internal force,
we use that the viscous forces are sensitive to the direc-
tion of the flow. Hence, reversing the direction of the
flow, i.e., v → −v and a → −a while keeping the den-
sity profile unchanged, flips the sign of the viscous forces
and leaves the structural forces unchanged [5]. The sign
change of fvis by reversing the direction of the flow is
apparent in Eqs. (1) and (2) of the main text.

Hence, the total viscous force of the system can be
calculated as [5]

fvis(r, t) =
fint(r, t)− f rint(r, t)

2
, (S18)

where f rint(r, t) indicates the internal force in the reverse
system, i.e. a system with flow velocity −v(r, t), accel-
eration −a(r, t), but the same density profile ρ(r, t) as
the original forward system [in which the flow is given by
+v(r, t) and +a(r, t) and the internal force is fint(r, t)].

Using Eq. (S18) to measure the viscous force is always
possible if the density profile is time-independent, such
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as e.g. steady states and the full non-equilibrium flows
designed here. If the density varies in time, then tempo-
ral changes of the density profile affect the flow (via the
continuity equation). In such cases finding the reverse
system to unambiguously measure the viscous force is in
general not possible. This again highlights the impor-
tance of custom flow that allows us to generate flows in
which the viscous response can be unambiguously mea-
sured.

To create the reverse system we follow two indepen-
dent methods which give the same results. The first
method simply uses custom flow to prescribe the re-
spective reverse flow and find the corresponding external
force. The second method makes use of symmetry argu-
ments to compute the reverse flow from the forward flow
and hence obtain f rint from fint. This second possibility,
which we describe in detail in what follows, is possible
only due to the specific characteristics of the flows. In
the general case the first method is required to find the
reverse system.

Bulk flow. Let us consider a virtual flow in which
we reverse at each time t only the x-component of every
particle in the original flow, i.e. we perform the operation
xi(t) → −xi(t) while keeping the other two components
unchanged. Hence, the x-component of the current in
this virtual system, Jvx , is

Jvx =

〈
N∑
i=1

δ(x− (−xi))
d(−xi)
dt

〉

= −

〈
N∑
i=1

δ(x+ xi)v
x
i

〉
= −Jx(−x, t). (S19)

By construction, the bulk flow has the symmetry
Jx(x, t) = Jx(−x, t). Hence, in combination with
Eq. (S19) above we conclude that Jvx (x, t) = Jrx(x, t).
Also by construction, the other components of the cur-
rent vanish and the density profile has also the same sym-
metry ρ(x, t) = ρ(−x, t). Therefore, we can construct
the reverse system of the bulk flow by simply using the
trajectories of the forward system and performing the
operation xi(t)→ −xi(t).

Hence, for the bulk flow the x-component of the inter-
nal force density in the reverse system is

F rint,x(x, t) =

〈
N∑
i=1

δ(x+ xi)
∂φ(rij)

∂(−xi)

〉
(S20)

= −

〈
N∑
i=1

δ(x+ xi)
∂φ(rij)

∂xi

〉
(S21)

= −Fint,x(−x, t), (S22)

where we have used that the interparticle distance rij is
not affected by the transformation xi → −xi. Due to the
spatial symmetry of the density profile ρ(x, t) = ρ(−x, t),
the internal force fint has the same symmetry as the in-
ternal force density Fint, i.e. frint,x(x, t) = −frint,x(−x, t)
because Fint = fint/ρ. Therefore, for the bulk flow the

viscous part of the total internal force, see Eq. (S18),
can be obtained from the forward bulk flow as a simple
arithmetic mean

fvis,x(x, t) =
fint,x(x, t) + fint,x(−x, t)

2
. (S23)

Shear flow. Here, the flow is directed along the y-
axis and the density is homogeneous ∇ρ = 0. Therefore,
by construction, the y-component of the internal force is
only of viscous nature (no structural term). We arrive
at the same conclusion by considering a virtual flow in
which we reverse at each time the y-component of all
particles, i.e. yi(t)→ −yi(t). Hence, the y-component of
the current in the virtual system Jvy is

Jvy (x, t) =

〈
N∑
i=1

δ(x− xi)
d(−yi)
dt

〉
(S24)

= −

〈
N∑
i=1

δ(x− xi)vyi

〉
= −Jy(x, t), (S25)

which is precisely the y-component of the current in the
reverse system Jry (x, t) = Jvy (x, t). Given that the other
two components of the current vanish and that the den-
sity profile is stationary, we conclude that the reverse
system can be obtained from the forward flow by simply
using the operation yi(t) → −yi(t) and performing the
desired averages.

The y-component of the internal force density in the
reverse system is therefore

F rint,y(x, t) =

〈
N∑
i=1

δ(x− xi)
∂φ(rij)

∂(−yi)

〉
(S26)

= −

〈
N∑
i=1

δ(x− xi)
∂φ(rij)

∂yi

〉
(S27)

= −Fint,y(x, t). (S28)

Hence, using Eq. (S18), the viscous part is

fvis,y(x, t) =
fint,y(x, t) + fint,y(x, t)

2
= fint,y(x, t).

(S29)

That is, as expected, the flow-direction of the internal
force in a shear flow contains only viscous terms pro-
vided that there is no density inhomogeneity in the flow
direction.

G. Power functional theory

Power functional theory (PFT) is a variational theory
that describes the dynamics of interacting many-body
overdamped [6] and inertial [7] systems at the level of
one-body fields. A variational principle produces by con-
struction the exact one-body force balance equation of
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the system. For a classical system of particles following
the equations of motion (S9) and (S10), the exact one-
body force balance equation reads [7]

mJ̇(r, t) = ρ(r, t) [fext(r, t) + fint(r, t)]+∇·τ (r, t), (S30)

where the last term involves the divergence of the second
rank kinetic stress tensor τ and it describes transport
effects that arise due to the one-body description of the
dynamics. In thermal equilibrium this term reduces to
diffusive transport ∇ · τ = −kBT∇ρ. In simulations, τ
can be sampled via

τ (r, t) = −m

〈
N∑
i=1

δ(r− ri)vivi

〉
, (S31)

where vivi indicates the dyadic product of the velocity
of particle i with itself.

Within PFT each term of the force balance equa-
tion (S30) is generated via a functional derivative of a
corresponding functional generator with respect to the
time derivative of the current or alternatively with re-
spect to the acceleration field. The density profile ρ, the
current J (or the velocity v = J/ρ), and the time deriva-

tive of the current J̇ (or the acceleration a = v̇ = J̇/ρ,
where the second equality holds only if ρ̇ = 0 like in the
present work) are the natural functional dependencies of
the generator functionals. One important task in PFT
is to find an approximated functional that generates via
functional differentiation the internal force field.

The simplest approximation based on an expansion in
terms of the acceleration gradient ∇a that is (i) com-
patible with the symmetry requirements of the viscous
force (the force must flip sign under flow reversal) and
that (ii) respects the rotational invariance of the system
under global rotations is

Gb[ρ,v,a] =

∫
dr

∫ t

0

dt′Kv
b (t− t′)ρ′(∇ · v′)(∇ · a)ρ

+

∫
dr

∫ t

0

dt′Ka
b (t− t′)ρ′(∇ · a′)(∇ · a)ρ,

(S32)

Gs[ρ,v,a] =

∫
dr

∫ t

0

dt′Kv
s (t− t′)ρ′(∇× v′) · (∇× a)ρ

+

∫
dr

∫ t

0

dt′Ka
s (t− t′)ρ′(∇× a′) · (∇× a)ρ,

(S33)

where we have omitted the dependencies of the one-body
fields, e.g. ρ = ρ(r, t), primed fields are evaluated at t′,
e.g. ρ′ = ρ(r, t′), and the spatial integral runs over the
whole system. Analogue expressions arise in overdamped
Brownian dynamics based on an expansion in terms of
the velocity gradient ∇v [8].

The shear fs and bulk fb viscous forces shown in Eqs.
(1) and (2) of the main text are then generated via the

Supplementary Figure 3. (a) Temporal dependency of the
shear viscous force Cs as a function of time t in Brownian dy-
namics simulations (thick black line) and theoretically (green)
for the shear flow described in the main text. The vertical dot-
ted lines indicate the times t↑, tc, and t↓. The time t3 = 5.5τ
is highlighted with a yellow circle. The light grey line fluc-
tuating around the horizontal line is the difference between
simulation (thick black) and theory (violet). (b) Shear vis-
cous force fvis as a function of x at time t3 = 5.5τ according
to BD (yellow) and theory (green). The force points along
the y-axis. The colored arrows indicate the direction of the
force at the selected positions.

functional derivative

fα(r, t) = − δGα

δJ̇(r, t)
= −1

ρ

δGα
δa(r, t)

, α = b, s, (S34)

where the derivative is taken at time t with respect to ei-
ther J̇ or a and considering that the fields ρ(r, t′),v(r, t′),
and a(r, t′) are kept fixed at their real physical values for
all previous times t′ < t. Hence, the functional derivative
in Eq. (S34) acts only on the unprimed terms a(r, t) of
Eqs. (S32) and (S33) but not on the primed a′ = a(r, t′)
ones.

H. Shear flow in Brownian dynamics

As in the case of the compressible flow, we have also
analysed the shear flow using Brownian dynamics sim-
ulations. Since the acceleration field does not play any
role in overdamped Brownian dynamics, the velocity field
alone reproduces the complete shear viscous force. We
show in Supplementary Fig. 3 the temporal part Cs(t)
of the viscous force vs time, and the viscous force vs
the x-coordinate for a given time obtained in Brownian
dynamics simulations along with the corresponding theo-
retical predictions [kernel parameters cvs/(εσ

3τ) = 0.081
and τvs /τ = 0.059]. The parameters of the flow are iden-
tical to those used in MD (see main text).

I. Traveling shear wave

For the traveling shear wave, the current follows up to
t = 2τ the same time evolution as in the shear case, see
Eqs. (8) and (9) of the main text. After t = 2τ , the shear
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Supplementary Figure 4. Density (a), velocity (b), and acceleration (c) profiles vs the x-coordinate for the shear flow with a
traveling wave. Three different times 0.5 τ (red), 1.5 τ (blue), and 2.3 τ (yellow) are shown. Solid lines are simulation data
sampled using custom flow and thin black-dashed lines are the corresponding target fields. The inset in (a) shows the temporal
dependency of the current with the three different regimes highlighted using different color and the selected times indicated by
colored circles. The amplitude of the current increases until t/τ = 1 (red) and then it remains constant until the simulation
ends. The shear wave is stationary at first (blue) and then it starts to travel for t/τ > 2 (yellow). Panels (d),(e), and (f) show
the shear viscous force at different times (as indicated) obtained in simulations (thick solid lines) along with the theoretical
prediction using the acceleration and the velocity contributions (violet) and also using only the velocity contribution (dashed
green). The individual contributions of the velocity (solid green) and of the acceleration (blue) to the total signal (violet)
are also shown. Once the shear wave is traveling (f) there is a clear phase shift between the simulation data (yellow) and the
prediction using only the velocity (dashed green). Using both contributions (violet) the simulation data is correctly reproduced.
The color arrows indicate the direction of the respective vector field at the selected positions.

wave starts to move with constant velocity vs = 4σ/τ and
constant amplitude, i.e.

J(r, t) = J0 sin

(
2π(x− vst)

Lx

)
êy, t > 2τ, (S35)

where, as in the non-traveling shear case, Lx/σ = 4 and
J0τσ

2 = 0.01. Representative states for each of the
regimes of the traveling shear flow are shown in Sup-
plementary Fig. 4. The density (a) remains constant in
space at every time. The amplitudes of the velocity (b)
and of the acceleration (c) increase until t = 1τ . To
relax memory effects, the velocity profile remains sta-
tionary from 1τ to 2τ . Hence, the acceleration vanishes
everywhere in that time period. Then, the traveling wave
begins to move and the velocity field changes its phase
with constant speed. Therefore, the acceleration field
has a constant instantaneous phase shift of π/2 with re-
spect to the velocity field. This is different from what we

considered in the static shear wave and allows us to test
our model for the shear viscous force. The shear viscous
forces at three different times are shown in panels (d),(e),
and (f) of Supplementary Fig. 4. We show the data sam-
pled in molecular dynamics simulations along with the
theoretical predictions which we calculate with the same
kernel parameters previously obtained for the static shear
wave flow. The agreement between simulation and the-
ory is excellent, not only before the wave starts to travel
(d,e), which was expected from the static shear case, but
also during the traveling wave (f). The phase shift be-
tween v and a has an effect on the viscous force that is
theoretically reproduced. In contrast, if we use only the
velocity dependent part of the viscous force and the same
kernel parameters as for the static case, there is a phase
shift between the theoretical predictions and the simula-
tion data. The acceleration field is therefore required to
describe the data accurately.
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