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Density-functional theory for structure and freezing
of star polymer solutions
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We use the soft fundamental measure theory~SFMT! to investigate a system of classical particles
interacting with the pair potential of star polymers in solution. To that end we calculate liquid and
solid structural properties, as well as freezing, solid-to-solid, and remelting phase transitions. Even
subtle physical effects, like deviations from Gaussian crystal peaks and an anomalous peak
broadening upon increasing density as well as a reasonable vacancy concentration are captured
correctly. Good overall quantitative agreement with simulation data is found, however, with a
tendency to overestimate the structural correlations. Furthermore, we demonstrate that all recent
developments of its hard core counterpart can be incorporated systematically into SFMT. ©2001
American Institute of Physics.@DOI: 10.1063/1.1349092#
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I. INTRODUCTION

The understanding of classical many-body systems
received a boost by the development of density functio
theory~DFT!.1 The density functional of a given system is a
extremely powerful object, from which a complete unde
standing of an equilibrium system can be gained. The th
modynamics and correlation functions up to an arbitrary
der are accessible in principle. Moreover, this is not only t
for the bulk but also for situations where an arbitrary infl
ence that can be modeled by an external potential energ
acting on the system. Apart from externally caused spa
inhomogeneities, DFT also accounts for self-sustain
density-waves that are present in a crystal. Thus, it is abl
describe the liquid and solid phases on an equal footing,
hence gives a physical explanation of the existence of
freezing phase transition.

As the free energy density functional~DF! is such a
powerful object, it may become obvious that it is unknow
for most realistic systems. To construct an approximation
the exact DF, the common strategy is to require that
approximative DF yields the correct behavior in situatio
where one can solve the system, at least approximativ
The more conventional approach uses the homogeneous
uid phase as this starting point, and requires that the appr
mative DF reproduces known results from liquid sta
theory, like the equation of state and correlation functio
These quantities can be considered asinput to the theory.

A newer approach utilizes situations of reduced spa
dimensionality as limiting cases that are captured correc
There one has the advantage that the system can be s
exactly in dimensions as low as one or even zero, so
approximations enter at that stage. The Rosenfeld h

a!Current address: Fachbereich Physik, Bergische Universita¨t Wuppertal,
D-42097 Wuppertal, Germany.
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sphere functional2 can be derived in this way,3 and improved
versions of it can be systematically obtained,4,5 as well as
functionals for parallel hard cubes.6,7 The approximation one
has to do is to construct a ‘‘functional interpolation’’5 be-
tween spatial dimensions. The fundamental measure fu
tionals yield the Percus–Yevick direct correlation functi
and equation of state for the bulk hard sphere liquid, g
excellent results for the coexistence densities and desc
the crystal structure up to close-packing excellently,8 as well
as the vanishingly small vacancy concentration.9 We note
that recently a similar approach was used to find a DFT
adhesive hard spheres.10

The idea that a three-dimensional functional can be c
structed by imposing its correct dimensional crossover
lower dimensions is not limited to hard interactions. It can
applied to penetrable spheres,11,12 the Asakura–Oosawa
colloid-ideal polymer mixture,13 and has been exploited t
derive a DFT for arbitrary soft pair interactions14,15 and ad-
ditive mixtures.16 This so-called soft fundamental measu
theory~SFMT! was demonstrated to predict the properties
the homogeneous liquid phase. The fluid equation of s
and pair correlation function are anoutputof the theory.

In this work we apply the SFMT to a system of st
polymers in a good solvent, which has attracted a lot
recent interest.17–22,24,25 The logarithmic pair interaction17

present in this system leads to an anomalous liq
structure18 and to a rich phase diagram19,20with various solid
phases and reentrant melting upon increasing density. P21

and triplet22 interactions have been investigated. Besid
computer simulations, liquid integral equations17,18 and
Einstein-crystal perturbation theory19,20have been employed
It is of great interest to investigate the system from the u
fying viewpoint that DFT provides. In addition, because
the richness of physical phenomena, star polymers provid
severe test to any DFT.
0 © 2001 American Institute of Physics

 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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Our results show that the SFMT stands this test. In p
ticular, the predicted bulk pair correlations are in good agr
ment with simulations over the whole range from ha
sphere-like to ultrasoft behavior. The DFT yield
thermodynamically stable face-centered cubic~fcc! and
body-centered cubic~bcc! crystals and reentrant melting. W
find that the lattice peaks have broader wings than Ga
ians. A peculiar decreasing of the Lindemann parame
upon increasing the density is captured correctly.

In Sec. II the SFMT functional is described. We al
give its refinements according to the latest development
FMT for hard spheres, and discuss briefly its properties. S
tion III defines the theoretical model for star polymer so
tions and gives explicit expressions for the quantities
volved in SFMT. In Sec. IV we present results for the liqu
and solid structure as well as the phase diagram. The pre
approach is discussed in the concluding Sec. V.

II. THE DENSITY FUNCTIONAL

A. Definition

The SFMT is a weighted density approximation. It em
ploys a set of weight functions which are independent of
density profile. The free energy density is a function of t
weighted densities and is analytically given.

The excess free energy is expressed as

Fexc~T,@r~r !# !5kBTE dxF~$na~T,x!%!, ~1!

whereT is the temperature, andkB is Boltzmann’s constant
The integrand is a reduced free energy densityF depending
on a set of weighted densities$na% indexed bya. Each
weighted density is given by a convolution of i
temperature-dependent weight functionwa with the density
profile,

na~T,x!5E drr~r !wa~T,x2r !. ~2!

Within the set of weight functions there is a hierarchy

w2~r !52
]w3~r !

]r
, ~3!

wv2~r !5w2~r !r /r , ~4!

ŵt2~r !5wv2~r !r /r , ~5!

w1~r !5w2~r !/~4pr !, ~6!

wv1~r !5w1~r !r /r , ~7!

w0~r !5w1~r !/r , ~8!

wherew2 , w1 , w0 are scalar quantities,wv1 , wv2 are vec-
tors, andŵt2 is a second rank tensor given by a dyadic pro
uct of a vector density and a unit spatial vector. The int
duction of the tensorial weightŵt2 is justified below. The
‘‘generating’’ weight functionw3 is determined so that a
deconvolution of the Mayer bondf (r )5exp@2bV(r)#21,
whereb51/kBT, is generated,

2 1
2 f ~r !5w0* w31w1* w22wv1* wv2 , ~9!
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where the convolution product, denoted by* , also implies
scalar products between vectors.

The free energy density is given byF5F11F21F3 ,
with the contributions

F152n0 ln~12n3!, ~10!

F25
n1n22nv1•nv2

12n3
. ~11!

The third term exists in various refined forms,

F3
FMT15

1

24p

n2
3~12~nv2 /n2!2!3

~12n3!2 , ~12!

F3
FMT25

9

8p

detn̂t2

~12n3!2 , ~13!

F3
FMT35

nv2•n̂t2•nv22n2nv2•nv22tr~ n̂t2
3 !1n2 tr~ n̂t2

2 !

~16p/3!~12n3!2 ,

~14!

where tr denotes the trace, and det is the determinant
second-rank tensor.

FMT1 ~Ref. 3! is the form that first gave a freezin
transition for hard spheres and was used in the proposa
SFMT14 FMT2 ~Ref. 8, 4! produces a far better descriptio
of the hard sphere solid, but gives less accurate direct co
lations for the liquid. FMT3~Ref. 5! is the latest improve-
ment combining the power of both ancestors. Each of th
forms is taken over from the corresponding hard sphere fu
tional. Our modification is the replacement of the ha
sphere weight functions with those for the soft potenti
This requires the introduction of a tensorial soft weight, do
in Eq. ~5!. The form of ŵt2 is unique in the current frame
work. This can be seen as follows. The numerator ofF3

FMT2

and F3
FMT3 is of third order in weighted densities. Hence

single weighted density has to have the dimension of inve
length to give an overall inverse volume, which is the dime
sion of the free energy density. Hence the tensorial wei
carries the indext2. The simplest way to construct such
weight function, so that the hard sphere case is respecte
by multiplying wv2 by a spatial unit vector, and Eq.~5! is
obtained.

B. Properties

The density functional defined above is exact in two e
treme limiting cases, the zero-dimensional~0D! and the low-
density limit. The 0D limit is a an extremely confined situ
tion, represented byr(r )5hd(r ). We note that as the exces
free energy functional does not depend on the external
tentialVext, there is no need to specify aVext that causes the
0D distribution. Nevertheless it might be useful to think of
small cavity that immobilizes a particle. There can be at m
one particle, because the pair interaction diverges at the
gin. The free energy can be calculated exactly.3 The SFMT
reproduces this solution.14

In the low-density limit, the functional becomes exact
to second order in the virial expansion. The reason is that
weight functions restore the Mayer function upon convo
tion. Details of the calculation can be found in Ref. 14.
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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III. STAR POLYMERS

Star polymers are macromolecular entities consisting
a functional center to whichf polymeric arms are attached
The arm-number or functionalityf is an integer ranging from
2 to values as high as 256. When soluted in a good solv
star polymers can be regarded as colloidal particles o
mesoscopic length scale, that is much larger than the mi
scopic scale of individual monomers building up the arm
The colloidal picture involves an effective pair21 or even
triplet22 interaction between the stars, which arises from
tropic effects due to reduction of the number of access
states if the stars are very close to each other. The resu
interaction is repulsive with a logarithmic law. For large d
tances it decays faster and a hybrid between logarithmic
a Yukawa form was proposed17 and validated by
simulations.21 The arm-number governs the softness rang
from ultra-soft for smallf to practically hard spheres fo
large f.

A. The potential

As a model interaction between star polymers we use
modified potential of Ref. 14 given by

bV~r !55
22q ln~r /R!1 lnS 2q

q D 0<r ,R

fq~r !1 lnS 2q
q D R<r ,2R

0 2R<r

, ~15!

where (q
2q) is the binomial coefficient. The crossover fun

tion between small and large distances is given by

fq~r !52 ln@~11j!2q2jq11Bq 2

3F1~1,12q;21q;2j!#, ~16!

wherej5(r /R)21, Bq52G(112q)G21(q)G21(21q), G
is the Euler gamma function, and2F1 is the hypergeometric
function. For integerq the crossover function can be simp
fied to a polynomial,fq(r )52 ln@(11j)2q2(j50

q (j
2q)jq#. The

parametersq and R are related to the arm-numberf and
length scale s of the log-Yukawa potential17 via q
5(5/36)f 3/2, and R/s5exp@(11Af /2)212(2q)21 ln(q

2q)#.
We define a dimensionless densityr* 5(2R)3N/V. The re-
lation h* 5(p/6)(2R/s)23r* holds, whereh* is the den-
sity of Ref. 17.

The log-hypergeometric form~15! for the potential is not
chosen on physical grounds. It only simplifies the actual c
culations, because the weight functions can be obtained
lytically. This makes the numerical work easier, as no in
curacies enter at that stage. We plot both interactions in
1. The forceF52dV/dr as well as the potential itself ar
shown for both functional forms and are compared to
simulation data by Jusufiet al.21,26 Both functions are math
ematically identical forr /R,1. On the scale of the plot
however, both forces coincide for larger distances up
r /R'1.5, where the cusp in the log-Yukawa force appea
The cusp is absent in the present case of the hypergeom
crossover. However, it falls off too quickly for larger dis
tances and even vanishes forr /R.2. There the simulations
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indicate a finite force that is well described by the lo
Yukawa potential. Nevertheless, we conclude that the gr
features are the same for both models and the use of
log-hypergeometric potential is justified for our investig
tions.

B. Setting up the density functional

The weight functions for star polymers are obtained
solution of the deconvolution Eq.~9!, and are explicitly
given by

w3~r !5u~R2r !@12~r /R!q#, ~17!

w2~r !5u~R2r !qrq21/Rq, ~18!

wv2~r !5u~R2r !@qrq21/Rq# r̂ , ~19!

ŵt2~r !5u~R2r !@qrq21/Rq# r̂ r̂ , ~20!

w1~r !5u~R2r !qrq22/~4pRq!, ~21!

wv1~r !5u~R2r !@qrq22/~4pRq!# r̂ , ~22!

w0~r !5u~R2r !qrq23/~4pRq!, ~23!

where r̂5r /r is a unit vector, andu is the Heaviside step
function. The weight functions do not depend on tempe
ture, because the pair interaction, Eq.~15!, is of entropic
origin, henceV(r )/kBT is constant with respect to temper
ture. As a quasithermodynamic quantity the softness par
eter q tunes the shape of the interaction and of the wei
functions.

C. Computer simulation

To provide data for comparison with the DFT results, w
have carried out Monte Carlo~MC! computer simulations of
the log-hypergeometric pair potential, Eq.~15!. Canonical
simulations with 108–864 particles and 105– 106 MC moves
per particle were performed. We collect data for the p
correlation function in the fluid state and crystal density d

FIG. 1. Comparison of two functional forms for the star polymer pair int
actions. The main plot shows the scaled forceFR/(kBT), the inset indicates
the scaled potentialV/(kBT) itself. Both are plotted as a function of th
scaled distancer /R. The solid lines represent the log-Yukawa potential
Likos et al. ~Ref. 17!, the dotted lines indicate where the log
hypergeometric potential used in this work differs. The symbols are
computer simulation results by Jusufiet al. ~Ref. 21!, Fig. 3~b! therein~Ref.
26!. From top to bottom the arm number changes asf 550, 30, 18, corre-
sponding toq549.1, 22.8, 10.6.
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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tributions. For the latter the usual subtraction of the cen
of-mass movement was done. The actual data presente
from a system with 256 particles. We checked that the fin
size dependence is negligible at one state point,q5100,
r* 5A2.

IV. RESULTS

A. Liquid structure

The SFMT has the ability topredict the properties of the
homogeneous liquid. The thermodynamics and correla
functions can be derived from the functional and are not
in by hand, say from liquid state theory. In the following, w
calculate the bulk liquid free energy and pair distributi
functions. The latter are compared to simulations.

For a liquid state with homogeneous densityr(r )5r,
the weighted densities becomena5jar, where the soft fun-
damental measuresja are given byja54p*0

`drr 2wa(r ).
We obtainja5ja

HSq/(q1a), where the fundamental mea
sures of a hard sphere of radiusR are the Euler characteristi
j0

HS51, integral mean curvaturej1
HS5R, surface areaj2

HS

54pR2, and volumej3
HS54pR3/3. For the star polymers

the Euler characteristic remains unity,ja51, the other fun-
damental measures arej15Rq/(q11), j254pR2q/(q
12), j35(4p/3)R3q/(q13). We emphasize that the flex
ibility contained in ja , a51,2,3 cannot be obtained by
mapping onto a reference hard sphere system.

The vector densities vanish,nv15nv250, and (n̂t2) i j

5d i j n2/3. The excess free energy is

bFexc

V
52n0 ln~12n3!1

n1n2

12n3
1

n2
3

24p~12n3!2 ~24!

in all three approximations forF3 . The liquid equation of
state is easily derived by differentiation and reduces to
hard sphere Percus–Yevick compressibility result
q→`.

To calculate pair correlations from a density function
there are various ways to go. They differ in the number
test particlesthat one inserts. A test particle corresponds
an external potential coinciding with the pair potential itse
For one test particle the pair correlations are proportiona
the density profile itself. This is a widely used approach;
profile depends on the radial coordinate. Without a test p
ticles,g(r ) can be computed via the direct correlation fun
tion given by the second functional derivative of the exc
free energy using the Ornstein–Zernike relation. We emp
this strategy because we consider it as the tougher test fo
functional itself, as no oscillating density profile is min
mized.

We will investigate the crossover behavior of the p
correlations from soft to hard sphere behavior for the den
r* 53/p50.955. The ultrasoft case,q53, was already con-
sidered in Ref. 14. In Fig. 2 the theoretical results are sho
together with simulation data for different softness para
etersq56,12,24. We observe that the phase and amplit
of the oscillations are reproduced nicely by the DFT. T
only deficiencies are an overshooting of the first peak foq
56 and negative values for small distances for allq. On
physical grounds, these values may be disregarded, asg(r )
Downloaded 13 Mar 2001 to 134.99.64.133. Redistribution subject to
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is a non-negative function. They present a shortcoming
the current approach, but incorporating the featureg(r )>0
on the level of the density functional itself is not an ea
task. Of course, one could get rid of the negative valu
using the test-particle method where the ideal gas free en
ensures non-negative results.

B. Solid structure

A general crystalline density has the form,

r~r !5(
R

rD~r2R! ~25!

with identical lattice peaksrD(r ) centered at the lattice site
$R%. A corresponding decomposition is induced for t
weighted densities,

na~r !5(
R

nD
~a!~r2R! ~26!

with

nD
~a!~r !5E d3r 8rD~r 8!wa~r2r 8!. ~27!

In the following we assume spherical density peaksrD(r )
5rD(r ), but, for the time being, do not restrict their sha
further, in contrast to the common approximation
Gaussians.1 For the scalar weight functions this leads to

nD
~a!5

2p

r E
0

`

dr8r 8rD~r 8!E
ur 2r 8u

r 1r 8
dr12r 12wa~r 12!. ~28!

Since the second integral can easily be performed for
polynomial weight functions only a one-dimensional nume
cal integration is necessary to compute the weighted de
ties. Similar, slightly more complex expressions result
the vector and tensor weighted densities.

Usually rD(r ) is zero~or negligible small! for distances
r beyond a cutoffr c , which implies an upper cutoff for

FIG. 2. Pair distribution functiong(r ) as a function of the scaled distanc
r /(2R). Results for various softness parameters are shown,q56, 12, 24
~from top to bottom! and densityr* 53/p50.955. The lines are the DFT
results, the symbols are Monte Carlo data. The curves are shifted upw
one unit for reasons of clarity. For small distances the theoretical re
becomes negative~indicated by a dashed line!.
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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nD
(a)(r ) at r 5R1r c . ~In contrast to the hard sphere ca

there is no lower cutoff.! Therefore only a few lattice sitesR
contribute in Eq.~26! to the full weighted densities at an
point. For the determination of the free energy we have e
ployed two different numerical methods, depending on
width of the density profile. Method I applies to narrow pr
files, for which only either one or two lattice sites contribu
at every point. By taking advantage of the resulting symm
tries the integration in Eq.~1! can be reduced to a one- and
two-dimensional numerical integral. Details can be found
Ref. 8. In method II we perform a full three-dimension
integration over an asymmetric unit, i.e., the smallest reg
with which space can be filled by applying the space gro
symmetries. For fcc and bcc crystals this corresponds to 1
of the Wigner–Seitz cell. For a given profile width we fir
make a list of the relevant lattice sites whose distance to
integration region is smaller thanR1r c . This approach fails
for too narrow peaks because then the integration rou
cannot reliably sample the integrand which takes on con
erable values only in a narrow quasi-two-dimensional sub
of the integration region.

The functional derivativedFexc/dr(r ) is determined as
demonstrated for hard spheres in Ref. 8, using analytical
pressions fordnD

(a)(r 8)/drD(r ) and the same integratio
method as for the functional itself. In order to solve the s
tionarity equation

rD~r !5
exp$2~1/4pr 2!d f exc/drD~r !%

4p*dr8r 82 exp$2~1/4pr 2!d f exc/drD~r 8!%
~29!

with f exc5bFexc/N the profile is discretized over a mesh
r. Then Eq.~29! is iterated starting from a reasonable initi
guess until the maximum relative change ofrD(r ) in one
iteration is less than 1025.

In Fig. 3 we show the results for different softness p
rametersq at a fixed densityr* 5&, equal to the close

FIG. 3. Density functional results for the density peaks in an fcc crysta
a function of the distancer from the lattice site. Results for different sof
ness are shown,q524, 48, 100, 200, 400; at the densityr* 5& corre-
sponding to a close-packed hard-sphere (q→`) crystal. Note the logarith-
mic ordinate extending over eight decades in density. The inset show
same data scaled as (2R/q)3r as a function of the scaled and squar
distancer 2q2/(2R)2.
Downloaded 13 Mar 2001 to 134.99.64.133. Redistribution subject to
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packing density for hard spheres. As expected the profi
become wider when the interaction potential softens. T
shaperemains essentially the same; if distance is scaled bq
~and correspondingly density byq23) all curves practically
coincide, as shown in the inset. Using a logarithmic plot or
vs r 2 moreover demonstrates that the peaks are alm
Gaussian but have wider wings than a Gaussian fitted to
central part. In Fig. 4 we provide a direct comparison w
computer simulations for the same parameters. They exh
the same scaling behavior, but are slightly narrower~about
30%!. Even the deviations from the Gaussian shape ag
with the density-functional result. Note that strictly speakin
simulation and theoretical profiles differ in the following re
spect. The theoretical profiles minimize the DFT, if radia
symmetric profiles are assumed. In principle, this is differ
from a spherical average of the minimizing profile with a
gular anisotropy. In the simulation, clearly, the equivalent
the latter is obtained. The difference, however, is expecte
be small, because anisotropy of lattice sites is small~see,
e.g., Ref. 23 for hard sphere results!.

Here and in the following we always used the most a
vanced DFT version FMT3. We checked one state po
(r* 51.4127,q5100) for the older versions. The pea
width is measured by

w5F8p

3 E
0

`

drr 4rD~r !G1/2

~30!

so that for Gaussian peaks

rD~r !5
1

p3/2w3 exp@2~r /w!2#. ~31!

It differs only by 5% between FMT3 and FMT2, whereas t
FMT1 result is narrower by a factor 5. Also the shapes
very similar for the first two cases, but a peculiar long t
arises in FMT1.

In Fig. 5 we present the dependence of the profile wi
on the nearest neighbor distanceRnn52R(&/r* )1/3 in an
fcc crystal with q5100. The lower and upper part of th
solid line are obtained by methods I and II, respective
There is no overlap range where both methods can be

s

he

FIG. 4. Same as Fig. 3, but obtained from Monte Carlo computer sim
tions.
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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plied, but the results connect nicely with each other. In b
cases Gaussian profiles@Eq. ~31!# were assumed. The width
from the radial minimization, indicated by diamonds, are n
distinguishable from the Gaussians on the scale of the fig
Upon compression from the low density side the peaks
become narrower. However, just aboveRnn52R surpris-
ingly the width increases again. This increase is found b
in simulation and theory, but is much steeper in DFT. T
same behavior occurs for smallerq, even for the bcc crystal
but the minimum shifts towards higherRnn and larger widths
w.

The occurrence of vacancies can be taken into acco
within DFT by allowing non-normalized density peaks, i.
less than one particle per lattice site on average, and trea
the normalization constant as an additional minimization
rameter. The FMT is the first DFT for which this procedu
yields reasonably small vacancy concentrations9 for hard
spheres.

Determining the average occupancy number in this w
for star polymers, we find that SFMT also predicts alm
normalized density peaks. There is a tiny negative vaca
concentration of the order of 1025 near melting. This would
mean that there are more double occupied sites than em
ones. Whether this is an artifact of the DFT or a feature
the peculiar logarithmic interaction of star polymers rema
an open question.

C. The phase diagram

In order to compute the phase diagram of our star po
mer model we determined the free energy in the Gaus
approximation for a large number of densities and softn
parameters. Phase coexistence densities then follow by
usual common tangent construction. Our results are
played in Fig. 6. For relatively hard interactions the flu
freezes into an fcc crystal, for soft interactions (q&4) into a
bcc crystal. Upon further compression both crystals even
ally remelt. The broadening of the profile discussed in

FIG. 5. Dependence of the width of the crystalline peaks@as defined in Eq.
~30!# on the nearest neighbor distance in a fcc solid forq5100. The solid
line is the DFT result assuming a Gaussian peak shape, obtained with m
ods I~lower part! and II ~upper part! described in the text. The diamonds a
obtained by the minimization with radially symmetric peaks. The triang
are Monte Carlo data.
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previous section is a precursor of this remelting transiti
Note that formally hard spheres (q5`) also remelt, because
the solid but not the liquid free energy diverges at clo
packing. However, in this case the coexistence region
tends into the unphysical density range beyond close pa
ing. It must be stated that the present DFT has intrinsic lim
tations at high density. Any density distribution, whe
locally n3.1 is punished by an infinite energy cost. In rea
ity, such distributions will have large, but finite free energ

In an intermediate softness range both fcc and bcc so
occur with the sequence liquid–fcc–bcc–fcc–liquid. T
dotted line denotes the points where the main peak of
liquid structure factor reaches the value 2.8. This has b
suggested as a general phenomenological freezing crite
by Hansen and Verlet27 and lies close to the actual phas
transition for not too smallq. This demonstrates the interna
consistency of the theory. Forq&2.9 the solid phase disap
pears completely.

Freezing and remelting of star polymers have been th
retically predicted before28 and were observed experimen
tally in the closely related system of diblock copolym
micelles.29,30 In the latter work bcc was observed for soft
interactions and fcc for harder interactions, in qualitati
agreement with our findings. The same trend is known
simple liquids with inverse power potentials.31–34 The most
direct comparison is possible with the computer simulatio
of the log-Yukawa potential by Watzlaweket al.19 These
authors obtained a phase diagram with exactly the same
pology at low and intermediate densities. However, for la
arm number the remelting is replaced by transitions to m
‘‘exotic’’ crystal structures at high densities: body-center
orthogonal~bco! and diamond lattices. A search for bod
centered tetragonal~bct! and diamond crystals within the
present theory produced no thermodynamically stable sta
Especially the diamond lattice requires rather small nea
neighbor distances in the interesting density range, whic
excluded by the following mechanism. When two neighb
ing sites come closer to each other the value ofn3 at their
midpoint increases and eventually approaches unity, wh

th-

s

FIG. 6. Phase diagram of star polymers obtained by density functio
theory as a function of the densityr* and the inverse softness paramet
q21. All phase transitions are first order. The dotted line indicates the e
mate of the freezing density by the Hansen–Verlet criterion.
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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obviously induces a divergence of the functional. For h
densities the differences between the log-hypergeometric
the log-Yukawa potential are expected to be small, as
logarithmic core dominates. We conclude that the absenc
the exotic structures is a shortcoming of the theory. We
not attempt to determine the phase diagram by simula
since this would necessitate a large number of expensive
energy calculations. But the fcc crystal forq5100 is me-
chanically unstable forr* .1.76, slightly above the theore
ical remelting transition.

V. DISCUSSION

The proposal of a new DFT has to be accompanied
examples of successful use. As a meaningful application,
could choose a well-studied model, e.g., the inverse-po
potentials~see, e.g., Refs. 31–34!, and let the new candidat
compete with established theories. We have postponed
necessary work and have tackled the star polymer sys
which has a quite young history. Besides the technical
vantage that we can calculate certain quantities analytica
this system is of great actual interest.

The strategy of the SFMT is to assume a generic form
a density functional and to impose the correct behavior
well-defined limiting cases. In its present form, the theo
captures the virial expansion up to second order correctly
well as a density distribution given by a single delta pe
times an average occupation number which is called z
dimensional limit. The theory has deficiencies: Two de
functions which are separated within the range of the p
interaction are not described exactly. In this respect
SFMT is in a poorer state than the hard sphere FMT, wh
describes even three delta spikes exactly.5 Improving the
SFMT along these lines is desirable; also Sweatman’s wo35

and Percus’ general rank two representation36 should be use-
ful.

We could show that the recent improvements in h
sphere FMT using tensorial weighted densities can~and need
to! be done in SFMT to get a good description of the crys
This situation is similar for hard spheres.8,9,5 No empirical
rescaling like in Ref. 14 was used in the present work
order to highlight the power of the approach and its defici
cies. The deficiencies occur at high density, where the
polymers freeze into exotic bco and diamond structures,
are not found to be stable within our approach. Neverthel
intriguing high-density effects, like the broadening of dens
peaks upon increasing the density and remelting are
scribed by SFMT. The sequence liquid–fcc–bcc–fcc up
increasing densities is correct. From the investigation of
star polymer model, we conclude that freezing, liquid a
crystal properties of particles with soft interactions can
understood on the basis of a density functional that does
need input from the homogeneous fluid phase.
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13M. Schmidt, H. Löwen, J. Brader, and R. Evans, Phys. Rev. Lett.85, 1934

~2000!.
14M. Schmidt, Phys. Rev. E60, R6291~1999!.
15M. Schmidt, Phys. Rev. E62, 4976~2000!.
16M. Schmidt, Phys. Rev. E62, 3799~2000!.
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19M. Watzlawek, H. Löwen, and C. N. Likos, Phys. Rev. Lett.82, 5289

~1999!.
20M. Watzlawek, ‘‘Phase behavior of star polymers,’’ Ph.D. thesis, Univ

sity of Düsseldorf, 1999, published by Shaker Verlag, Aachen.
21A. Jusufi, M. Watzlawek, and H. Lo¨wen, Macromolecules32, 4470

~1999!.
22C. von Ferber, A. Jusufi, C. N. Likos, H. Lo¨wen, and M. Watzlawek, Eur.

Phys. J. E2, 311 ~2000!.
23R. Ohnesorge, H. Lo¨wen, and H. Wagner, Europhys. Lett.22, 245~1993!.
24J. Stellbrink, B. Abbas, J. Allgaier, M. Monkenbusch, D. Richter, C.
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