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Neural functional theory for inhomogeneous fluids: Fundamentals and applications
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We present a hybrid scheme based on classical density functional theory and machine learning
for determining the equilibrium structure and thermodynamics of inhomogeneous fluids. The exact
functional map from the density profile to the one-body direct correlation function is represented
locally by a deep neural network. We substantiate the general framework for the hard sphere
fluid and use grand canonical Monte Carlo simulation data of systems in randomized external
environments during training and as reference. Functional calculus is implemented on the basis of
the neural network to access higher-order correlation functions via automatic differentiation and the
free energy via functional line integration. Thermal Noether sum rules are validated explicitly. We
demonstrate the use of the neural functional in the self-consistent calculation of density profiles.
The results outperform those from state-of-the-art fundamental measure density functional theory.
The low cost of solving an associated Euler-Lagrange equation allows to bridge the gap from the
system size of the original training data to macroscopic predictions upon maintaining near-simulation
microscopic precision. These results establish the machine learning of functionals as an effective tool

in the multiscale description of soft matter.

I. INTRODUCTION

The problem with density functional theory (DFT) is
that you do not know the density functional. Although
this quip by the late and great Yasha Rosenfeld [1] was
certainly meant in jest to a certain degree, it does epito-
mize a structural assessment of classical DFT [2-5]. As
a general formulation of many-body statistical physics,
the framework comprises a beautiful and far reaching
skeleton of mathematical formalism centered around a
formally exact variational minimization principle [2, 6].
In practice however, the theory needs to be fleshed out
by approximations of all means conceivable in our ef-
forts to get to grips with the coupled many-body problem
that is under consideration. Specifically, it is the excess
(over ideal gas) intrinsic Helmholtz free energy Fuxc[p],
expressed as a functional of the position-resolved density
profile p(r), which needs to be approximated.

Decades of significant theoretical efforts have provided
us with a single exact functional, that for nonoverlap-
ping hard rods in one spatial dimension, as obtained by
another hero in the field, Jerry Percus [7]. Nevertheless,
useful DFT approximations range from the local density
approximation for large scale features which are decou-
pled from microscopic length scales, to square-gradient
functionals with their roots in the 19th century, to the
arguably most important modern development, that of
the fundamental measure theory (FMT) as kicked off by
Rosenfeld in 1989 [8] and much refined ever since [9-
16]. FMT is a geometry-based framework for the de-
scription of hard sphere systems and it has deep roots
in the Percus-Yevick [17] and scaled-particle theories [4],
which Rosenfeld was able to unify and generalize based
on his unique theoretical insights [18].

The realm of soft matter [19-21] stretches far beyond
the hard sphere fluid. FMT remains relevant though
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in the description of a reference system as used e.g. in
studies of hydrophobicity, where the behaviour of real-
istic water models [22, 23] is traced back to the simpler
Lennard-Jones fluid, which in turn is approximated via
the hard sphere FMT functional plus a mean-field contri-
bution for describing interparticle attraction [20, 24, 25].
Further topical uses of FMT include the analysis of the
three-dimensional electrolyte structure near a solid sur-
face [26, 27] and the problem of the decay length of cor-
relations in electrolytes [28].

There is a current surge in the use of machine learning
techniques in soft matter, e.g. for its characterization [29],
engineering of self-assembly [30], structure detection [31],
and for learning many-body potentials [32, 33]. Within
classical DFT, machine learning was used to address or-
dering of confined liquid crystals [34], and free energy
functionals were obtained for one-dimensional systems
from convolutional [35] and equation-learning [36] net-
works as well as within a Bayesian inference approach
[37]. Cats et al. [38] used machine learning to im-
prove the standard mean-field approximation of the ex-
cess Helmholtz free-energy functional for the Lennard-
Jones fluid. In nonequilibrium, de las Heras et al. [39]
have reported a method to machine-learn the functional
relationship of the local internal force for a steady uni-
axial compressional flow of a Lennard-Jones fluid at con-
stant temperature. As prescribed by power functional
theory [40, 41], the functional dependence in nonequilib-
rium not only incorporates the density profile but also
the one-body current.

In this work, we return to the problem of describing
and predicting the structure and thermodynamics of in-
homogeneous equilibrium fluids. We show that a neu-
ral network can be trained to accurately represent the
functional dependence of the one-body direct correlation
function with respect to the density profile. The pre-
sented methods are directly applicable to virtually arbi-
trary fluids with short-ranged interparticle interactions.
In the following, we focus on the well-studied hard sphere
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fluid in order to exemplify our framework and to chal-
lenge the available highly accurate analytic approaches
from liquid integral equation theory and FMT. We give
more details about the feasibility of generalizations in
the discussion. Reference data for training and testing
the model is provided by grand canonical Monte Carlo
(GCMC) simulations that cover a broad range of ran-
domized inhomogeneous environments in planar geome-
try.

We implement functional calculus on the basis of the
trained neural functional to infer related physical quan-
tities and demonstrate their consistency with known lit-
erature results both in bulk and in inhomogeneous sys-
tems. In particular, we highlight the accessibility of the
fluid pair structure, the determination of free energies
and equations of state as well as the validation of ther-
mal Noether sum rules [42]. These results corroborate
that the neural functional exceeds its role as a mere in-
terpolation device and instead possesses significant rep-
resentational power as a genuine density functional for
the prediction of nontrivially related physical properties.
We apply the trained neural network in the DFT Euler-
Lagrange equation, which enables the self-consistent cal-
culation of density profiles and which hence constitutes
a neural-network-based DFT or short neural DFT. This
method alleviates conventional DFT from the burden of
having to find suitable analytic approximations while still
surpassing even the most profound existing treatments
of the considered hard sphere fluid via FMT functionals
[8, 13, 14] in accuracy. We further demonstrate the fit-
ness of the method for the straightforward application to
multiscale problems. Neural DFT therefore provides a
way to transfer near-simulation microscopic precision to
macroscopic length scales, which serves as a technique to
predict properties of inhomogeneous systems which far
exceed typical box sizes of the original training data.

This work is structured as follows. The relevant phys-
ical background of liquid state theory is provided in
Sec. ITA 1. Details of the simulations as well as of the
neural network are given in Secs. IIA2 and ITA 3. The
training procedure and results for the achieved metrics
that measure its convergence are presented in Sec. IT A 4.
We proceed by testing physical properties of the trained
model and use automatic differentiation of the neural
network in Sec. IIB1 to access pair correlations, which
are then compared to bulk results from both the Percus-
Yevick theory and from simulations. The consistency of
the neural direct correlation functional to satisfy ther-
mal Noether sum rules is validated in Sec. IIB2, and
different ways to obtain the bulk equation of state as
well as free energies in inhomogeneous systems are given
in Sec. IIB3. In Sec. IIC1, we show the application
of the neural functional to the self-consistent calculation
of density profiles via the DFT Euler-Lagrange equa-
tion and describe the technical details and conceptual
advantages of this neural DFT over analytic approaches.
In Sec. IIC2, the results are compared to those from
FMT, and in Sec. II C 3, the relevance of the method for

making macroscopic predictions is illustrated for cases
of randomized external potential and for sedimentation
between hard walls on length scales that far exceed the
training simulation box sizes. We conclude with a dis-
cussion of the results and give an outlook to possible
improvements and extensions of the method as well as to
its application for different fluid types, in more general
geometries and in nonequilibrium.

II. RESULTS
A. Machine learning intrinsic correlations
1. Physical background

We start with the standard relation for the one-body
direct correlation function ¢; (r) of liquid state theory [4],

Cl(r) = lnp(r) —+ B‘/:Sxt(r) - ﬁ/’h (1)

where r denotes the spatial position and § = 1/(kgT)
with the Boltzmann constant kg and absolute tempera-
ture T'. The three terms on the right hand side of Eq. (1)
represent respectively the ideal gas contribution, the ex-
ternal potential Vi (r) and the influence of the particle
bath at chemical potential u. The logarithm in Eq. (1)
is understood as In[A3p(r)] with the thermal wavelength
A, which can be set to the particle size o without any
loss of information in the present classical context. For
a prescribed external potential Vot (r), knowledge of the
corresponding equilibrium density profile p(r) allows to
compute c¢1(r) explicitly via Eq. (1). This relationship
can be viewed as a locally resolved chemical potential
balance: the contribution from the ideal gas, kT In p(r),
from the external potential, Vex(r), and from interparti-
cle interactions, —kpT'c1(r), add up at each position to p,
which is necessarily uniform throughout an equilibrium
system.

However, the notation in Eq. (1) is oblivious to a cen-
tral result shown by Evans [2] in 1979, thereby kicking
off a modern theory for the description of inhomogeneous
fluids. For given type of internal interactions, the spa-
tial variation of the function ¢;(r) is already uniquely
determined by the spatial form of the density profile p(r)
alone, without the need to invoke the external potential
explicitly. From this vantage point of classical DFT, the
dependence of ¢;(r) on p(r) is not merely pointwise but
rather with respect to the values of the entire density pro-
file, which determine c¢;(r) at each given position r. For-
mally, this relationship is exact [2, 4] and it constitutes
a functional dependence c;(r;[p]), which is indicated by
brackets here and in the following and which is in gen-
eral nonlinear and nonlocal. As we will demonstrate, the
existence of such a universal functional mapping makes
the problem of investigating inhomogeneous fluids par-
ticularly amenable to supervised machine learning tech-
niques.



In most formulations of classical DF'T, one exploits the
fact that the intrinsic excess free energy functional Foxc[p]
acts as a functional generator such that the one-body di-
rect correlation function is obtained via functional differ-
entiation with respect to the density profile,

66Fexc [p}
op(r)

A compact description of standard formulae for the calcu-
lation of functional derivatives can be found in Ref. [41].
In order to make progress in concrete applications, one
typically needs to rely on using an approximate form of
Fexe|p] for the specific model under consideration, as de-
termined by its interparticle interactions. DFT is a pow-
erful framework, as using ¢; (r; [p]) obtained from Eq. (2)
with a suitable expression for Fuy[p] turns Eq. (1) into
an implicit equation for the equilibrium density profile
p(r). In the presence of a known form of Vi (r), one
can typically solve Eq. (1) very efficiently, allowing ease
of parameter sweeps, e.g. for exhaustive phase diagram
explorations. On the downside, Fex.[p] and thus also
¢1(r; [p]) remain approximate and the development of an-
alytic tools has certainly slowed down over several years
if not decades.

Here we proceed differently and bypass the excess free
energy functional Fu.[p] at first. Instead, we use a deep
neural network to learn and to represent the functional
relationship p(r) — ¢1(r) directly, which has significant
advantages both for the generation of suitable training
data as well as for the applicability of the model in the
determination of fluid equilibria. This investigation is
based on GCMC simulations that serve to provide train-
ing, validation and test data. Discriminating between
these three roles of use is standard practice in machine
learning and we give further details below.

ci(rs fp]) = — (2)

2. Simulation method

Generating the simulation data is straightforward and
we use the following strategy, adopted to planar situa-
tions where the position-dependence is on a single posi-
tion variable x while the system remains translationally
invariant in the y- and z-direction. This geometry is
highly relevant to identify the physics in planar capillary
and adsorption situations and facilitates ease of accurate
sampling. We employ randomized simulation conditions
by generating external potentials of the form
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where A,, and ¢,, are randomly selected Fourier coeffi-
cients and phases, respectively, and L is the simulation
box length in z-direction. The phases ¢, are chosen
uniformly in the interval [0,27) and values of A, are
drawn from a normal distribution with zero mean and

variance 2.5. We choose L = 20c, although there is no
specific compliance requirement for the neural network
(see below), and the lateral box lengths are set to 100
to minimize finite-size effects. Periodic boundary condi-
tions apply in all spatial directions. The sinusoidal terms
in Vext(z) are complemented by up to five piecewise lin-
ear functions V'"(z) = Vi + (Vo — Vi) (z — 21) /(22 — 21)
for 1 < © < x9 and 0 otherwise, for which the param-
eters 0 < 21 < 3 < L, V1 and Vs are again chosen
randomly. The locations x; and x5 are distributed uni-
formly while V; and V5 follow again from an unbiased
normal distribution with variance 4. Additionally to the
discontinuous linear segments, we explicitly impose pla-
nar hard walls in a subset of the simulations by setting
Vext(z) = oo for < x4/2 and © > L — x,,/2, i.e. near
the borders of the simulation domain; the width xz,, of the
wall is chosen randomly in the interval 1 < x,/0 < 3.
To cover a broad range from dilute to dense systems, the
chemical potential is chosen uniformly within the range
—5 < Bu < 10 for each respective GCMC simulation
run. The observed mean densities range from 0.0060 3
to 0.8030 73, yet smaller and much larger local densities
occur due to the inhomogeneous nature of the systems.

In total, 750 such GCMC runs are used, where for
given form of Vi (z) the planar one-body profiles p(x)
and ¢ (z) are obtained. The former is acquired from
straightforward histogram filling and the latter from eval-
uating Eq. (1) on the basis of the sampled histogram for
p(z) as well as the known form of Viy(z) and value of
w for the specific run under consideration. As Eq. (1) is
undefined for vanishing density, we have excluded regions
where p(x) = 0 such as within the hard walls. By modern
standards of computational resources, the workload for
the generation of the simulation data is only moderate at
a total CPU time of ~ 10* hours.

8. Neural network

We use a deep neural network [43] to represent the
functional map from the density profile to the local value
of the one-body direct correlation function at a given
point. That is, instead of the entire function, we con-
struct the network to output only the scalar value ¢ ()
for a certain position  when supplied with the surround-
ing inhomogeneous density. The relevant section of the
density profile comprises the values of p(x) in a specified
window around a considered location x, as described be-
low. Despite the locality of the method, access to the
entire (discretized) one-body direct correlation profile is
immediate via evaluation of the neural network at perti-
nent positions z across the domain of interest. Multiple
local evaluations of the network remain performant on
highly parallel hardware such as GPUs when passing the
input accordingly in batches. A schematic picture of the
network architecture is given in Fig. 1 and is explained
in the following.

The functional dependence on the density profile is



C1

v

FIG. 1. We represent the functional mapping from the den-
sity profile p(z) to local values of the one-body direct correla-
tion function c¢i(z) in planar geometry via a neural network.
The density profile is discretized on a regular spatial grid with
resolution 0.01¢ and given within a region around the location
of interest to the input layer. Three fully-connected layers
with continuously differentiable activation functions enable
the inference of the nonlinear and nonlocal functional map.
The output layer consists of a single node which yields the
predicted value of ci(x) at the chosen location.

realized by providing discretized values of p(z) on an
equidistant grid with resolution Ax = 0.0lo. As
c1(z; [p]) depends only on the immediately surrounding
density profile around a fixed location x, we restrict the
input range 2’ to a sufficiently large window 2’ < |z —x|.
We choose the cutoff 2, = 2.560 based on simulation data
for the bulk direct correlation function [44] and on the
evaluation of training metrics for different window sizes
Z.. Increasing the value of x. further led to no improve-
ment in the performance of the trained neural network.

This behavior is expected from theoretical considera-
tions, as the one-body direct correlation function van-
ishes quickly for short-ranged pair potentials [4]. We re-
call that in FMT, z. = ¢ by construction. Note that the
choice of ¢1(x;[p]) as our target functional is not coinci-
dental, but that its quick spatial decay rather is a piv-
otal characteristic central to the success of our method.
To contrast this, assume that one attempts to model
the functional mapping pec(z) = p — Vext(x) — p(2),
thereby naively imitating the simulation procedure. This
task poses major challenges due to the long-range nature
of density correlations induced by an external potential,
which is circumvented in our case by the choice of a more
manageable target functional.

The input layer involves 513 nodes and is followed by
three fully-connected hidden layers with 512 units each.
The output layer consists of a single node for the scalar
value of ¢i(x) at the specified location z. In order to
realize a nonlinear input-output mapping of the neural
network, activation functions are applied to the output
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of each node within a hidden layer (see also Ref. [43] for
a pedagogical introduction to the design of neural net-
works). We deviate here from the most common choice
of a rectified linear unit (ReLU) and instead employ con-
tinuously differentiable activation functions such as the
exponential linear unit or the softplus function [45]. This
choice leads to substantial improvements during training
and in particular when using automatic differentiation to
evaluate two-body quantities, see Secs. IIB1 and IIB 2.
We attribute the superior performance to the fact that
activation functions which are not continuously differen-
tiable and which vanish in certain domain ranges (such as
ReLU) reinforce sparsity of the activation output, i.e. the
tendency to set many units of a hidden layer identically to
zero [46]. While this property is desired in many machine
learning tasks (e.g. for classification), it hinders the ac-
curate representation of the functional relation ¢ (z; [p])
in our case. The resulting neural functional for the one-
body direct correlation function is denoted in the follow-
ing by ¢} (z;[p]) and related quantities which follow from
it by inference are marked accordingly by a superscript
star.

4. Training procedure and metrics

The machine learning routines are implemented in
Keras/Tensorflow [43] and we use the standard Adam [47]
optimizer for the adjustment of the network parameters
in order to fit ¢j(x;[p]) against the simulation reference
¢1(z). The problem at hand is a regression task. Hence,
the mean squared error is chosen as a suitable loss func-
tion and the mean average error serves as a validation
metric. Since the model shall infer the pointwise value
c1(z) from a density section around a specified location
x, see Fig. 1, the simulation data cannot be passed as is
to the neural network. Instead, windowed views of the
density profile have to be generated prior to the training
loop, which correspond to the target value ¢1(z) at the
center x of the respective window. A periodic contin-
uation of all simulation profiles is valid due to periodic
boundary conditions. Additionally, we use data augmen-
tation to benefit from the inherent mirror symmetry (i.e.
2 — —x) of the problem and thus effectively double the
number of training data sets. As is customary, we sepa-
rate the independent simulation results prior to perform-
ing the machine learning routines: 150 are kept aside as a
test set, 150 serve as validation data to monitor training
progress and 450 are used for the actual training of the
neural network.

Modeling the functional relationship of ¢ (x;[p]) lo-
cally, i.e. inferring pointwise values individually instead
of outputting the entire profile at once, has numerous
conceptual and practical advantages. Regarding the fea-
sibility of the neural network in concrete applications,
one is free to choose an arbitrary box length L when
gathering training data and more importantly to read-
just the value of L when using the trained neural network



for making predictions (cf. Sec. IIC3). From a physical
point of view, providing only local density information
has the merit of already capturing the correlated short-
range behavior of ¢q(z; [p]). If the neural network were to
output the entire one-body direct correlation profile from
a given density profile p(z) at once, this inherent locality
would have to be learned instead, hence leading to a much
more elaborate training process. Lastly, the fine-grained
nature of the training data turns out to be highly benefi-
cial from a machine learning perspective. Note that one
can generate 9 - 10° input-output pairs from 450 train-
ing simulations in the present context (with the values
being doubled after data augmentation). The increased
cardinality of the training set enables better generaliza-
tion of the model and also prevents overfitting, e.g. to
the statistical noise of the sampled profiles.

We train the model for 100 epochs in batches of size
256 and decrease the learning rate exponentially by ~ 5%
per epoch from an initial value of 0.001. This results in
a best mean average error of 0.0022 over the validation
set, which is of the same order as the estimated average
noise of the simulation data for ¢;(x). Therefore, we
deem our neural network to possess full representational
power of the local functional relationship ¢; (x; [p]) within
the conditions of the provided simulation data. Code,
simulation data and trained models are published online
[48].

B. Examining the neural correlation functional
1. Two-body bulk correlations

Besides monitoring standard metrics such as the mean
average error over a test set, arguably deeper physical
insights into the rigorous structure of the statistical me-
chanics at hand serves for assessing the quality of the
neural functional ¢j(x;[p]). We first ascertain that the
model gives an accurate representation of the physics of
bulk fluids. Despite the apparent simplicity of this case,
this is a highly nontrivial test as the training data solely
covered (strongly) inhomogeneous situations. For this,
we investigate the pair structure and aim at implement-
ing the two-body direct correlation functional, which is
formally defined as the functional derivative [4]

ealror' o)) = 5,

On the basis of the neural network, we can make use of
the powerful automatic differentiation techniques. This
allows to create an immediate analog of Eq. (4) via
(x5 [p]) = dci(x;[p])/op(a’), where the functional
derivative 6/dp(x’) is evaluated by reverse mode auto-
matic differentiation with respect to the input values
of the discretized density profile. In common machine
learning frameworks, this requires only high-level code
(e.g. GradientTape in Keras/Tensorflow [43]). The nu-
merical evaluation of ¢5(x, 2'; [p]) is performant as reverse

(4)
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FIG. 2. We compare (a) the planar direct correlation func-
tion &(x), (b) its radial Fourier space representation & (k),
and (c) the static structure factor S(k) for different bulk den-
sities ppo® = 0.4,0.7,0.9 (as indicated). Data is shown as
obtained from the Percus-Yevick theory (dotted), from sim-
ulation results by Groot et al. [44] (dashed) and from our
neural functional ¢f(z;[p]) (solid), where &*(x) is acquired
via automatic differentiation. The inset in panel (a) shows
the radial direct correlation function c3(r) as obtained via
Eq. (6). In panel (b), the inset depicts the total correlation
function h(k) in Fourier space, which follows from & (k) via
the bulk Ornstein-Zernicke Eq. (8). The inset in panel (c) dis-
plays the deviation of S(k) to the Percus-Yevick result Spy (k)
for the simulation data and the neural functional. Simulation
and machine learning results are in very good agreement with
each other while the Percus-Yevick theory shows quantitative
discrepancies.

mode automatic differentiation generates executable code
that is suitable for building derivatives with respect to
multiple input variables simultaneously.

We obtain the bulk direct correlation function in pla-
nar geometry as the special case & (z, pp) = c2(0, ; b)),



where we have introduced the bulk density py(z) = pp =
const. (In the notation, the parametric dependence on
py is dropped in the following.) Note that &}(z) is dis-
tinct from the more common radial representation c5(r),
as our geometry implies an integration over the lateral
directions y and z, i.e.

Eg(x) = /dydzcg (r =/x2 + y? +22)

=2r /m h drrc(r), o

where the last equality follows from using radial coordi-
nates and substitution. The standard radial form c4(r)
can however be recovered by differentiating Eq. (5) with

respect to x such that

()

2rr

Cg (r)=- ) (6)
where & (r) denotes the derivative of &(z) evaluated at
x = r. Numerical artifacts might occur particularly for
small values of r as evaluating Eq. (6) requires the nu-
merical derivative of &(z) as well as a division by 7.

We perform a Fourier transform of the planar real
space representation ¢3(x) and utilize radial symmetry
in Fourier space. This acts as a deconvolution of Eq. (5)
and directly yields the radial Fourier (Hankel) transform
of Cg (T)a

& (k) = 4%/0 drrsin(kr)ch(r). (7)

The inverse transform is identical to Eq. (7) up to a factor
of (27)~3 upon interchanging r and k. To go further, the
bulk Ornstein-Zernike equation [4]

oy h(k)
Bk = T =5 S HE) (8)

is used to obtain the total correlation function A (k) from
& (k) in Fourier space after rearrangement. Recall that
the radial distribution function follows directly via g(r) =
h(r)+1; here h(r) is the real space representation of (k).

The static structure factor S(k) is then given as
S(k) =1+ pyh(k). 9)

In Fig. 2, results of &(z), (r), &(k), h(k) and
S(k) are shown for different bulk densities p,o® =
0.4,0.7,0.9. From our neural functional, we obtain
&5 () = 6¢5(0;[p])/0p(2)| p=ps » 1-€. the autodifferentiated
network is evaluated at spatially constant density p,. The
total correlation function and the static structure factor
follow from Egs. (8) and (9) after having computed ¢5* (k)
via a numerical Fourier transform of &4*(z). For compar-
ison, we also depict reference data obtained analytically
from the Percus-Yevick theory [17] and reproduced from
simulation results of Groot et al. [44]. Good agreement

is found between simulation and the autodifferentiated
neural network, while the Percus-Yevick result shows no-
ticeable deviations in &(z). The latter overestimates the
depth of the core region x < ¢ and this discrepancy in-
creases for larger bulk densities. The neural functional
yields a clear improvement over the Percus-Yevick theory
and shows only marginal differences to the simulation re-
sults of Ref. [44] for both the planar real space and the
radial Fourier space representation of the two-body direct
correlation function. In h(k) and S(k), the severity of the
discrepancies of simulation and machine learning data to
the Percus-Yevick results decreases, but a difference is
still noticeable in particular for large bulk densities. A
slight mismatch to the simulation reference is observed in
the magnitude and phase of the oscillations of the Percus-
Yevick static structure factor Spy (k), and this correction
is reproduced very well by the neural functional. Note
that although one arrives at radial representations of the
quantities h(k) and S(k) in Fourier space, performing the
radial backtransform to real space numerically according
to the inverse of Eq. (7) is generally a “notoriously diffi-
cult task” [49] and is not considered here.

This successful test reveals that, while being trained
solely with one-body profiles, the neural functional
&t (z;[p]) contains full two-body information equivalent
in bulk to the radial distribution function g(r). The pair
correlations can be accessed via automatic differentia-
tion at low computational cost and they are consistent
with known bulk results. We recall that this is a mere
byproduct of the neural network and that no such two-
body information has been explicitly incorporated in the
training. More so, Fig. 2 demonstrates that the bulk
quantities &(x), é5(k), h(k) and S(k) as obtained from
¢ (z; [p]) substantially outperform the Percus-Yevick the-
ory and almost attain simulation quality. In Appendix
A, we illustrate that higher-order correlations such as the
three-body direct correlation functional ¢f(x,z’,z";[p])
follow analogously via nested automatic differentiation.
On this level, differences to FMT results are even more
prominent than the deviations to the two-body Percus-
Yevick results. As we will show in Sec. IIC 2, the ac-
curacy of predictions from the neural network also holds
in inhomogeneous situations, where FMT serves again as
an analogous and arguably even more challenging theo-
retical baseline than the Percus-Yevick bulk theory. Be-
fore doing so, we lay out additional consistency tests and
quality assessments that are applicable in inhomogeneous
systems.

2. Noether sum rules

In order to further elucidate whether ¢ (z;[p]) quan-
titatively reproduces fundamental properties of equilib-
rium many-body systems, we make use of exact sum rules
that follow from thermal Noether invariance [42]:

Vei(r) = /dr’ ca(r, v )V p(r'), (10)
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Eq. (10) are shown for three test scenarios in panels (I), (II),
and (IIT), where one can verify their high level of agreement
across the entire inhomogeneous systems. Additionally, the
respective scalar discrepancies e; and ez of the Noether iden-
tities (10) and (11) are displayed, defined as (a) the maximum
norm of the difference of left and right hand side of Eq. (10)
and (b) the value of the left hand side of Eq. (11). Across all
mean densities p of the test set, the sum rules are satisfied to
very high accuracy by our model. Some outliers remain which
we attribute to the numerical computation of spatial gradi-
ents appearing in Egs. (10) and (11), see also panel (III) for
an example of the noise that this introduces in the respective
terms of Eq. (10) particularly in the vicinity of hard walls.

/ dr p(r) / dr' pr'\Ves(r,e') = 0. (11)

Both Eq. (10) and Eq. (11) apply in any equilibrated
inhomogeneous system regardless of the type of inter-
nal interactions. While the interparticle interaction po-
tential does not appear explicitly in Eqgs. (10) and (11),

it nevertheless determines the functionals ¢;(r;[p]) and
ca(r,r’;[p]).  Recall that the spatial gradient of the
one-body direct correlation function can be identified
with the internal equilibrium force profile, fi,(r) =
]{/’BTvcl(I') [41]

We verify that the neural functional complies with the
above sum rules (10) and (11) as follows. Analogous to
Sec. II B 1, we use autodifferentiation to evaluate Eq. (4),
but this time retain the full inhomogeneous structure of
cs(z, 2’5 [p]). The left hand side of Eq. (10) is obtained
straightforwardly from simple evaluation of the neural
functional and numerical spatial differentiation. As in-
put for p(z), we use the simulated density profiles of the
test set. Care is required when evaluating the spatial gra-
dients Vp(z), Vei(z;[p]) and Ves(x,2';[p]) due to the
amplification of undesired noise, which we reduce by ap-
plying a low-pass filter after having taken the numerical
derivatives. The volume integrals reduce in planar ge-
ometry to [dr = A [dz, where A is the lateral system
area.

In Fig. 3, three typical profiles for the left and right
hand side of Eq. (10) are shown. In all three systems both
sides of the equation coincide up to numerical noise due
to the required spatial derivatives. Additionally, we de-
fine errors via scalar deviations from equality in Egs. (10)
and (11) respectively as

o (12)

o0

e = HVcl(:c) .y / da’ es(z,2')V' p(a)

) :A2/dxp(x)/da:'p(x’)ch(x,x’), (13)

where || - || denotes the maximum norm. Panels (a) and
(b) of Fig. 3 depict results for e; and ey as a function
of the mean density p = [drp(r)/V for all 150 density
profiles of the test set, where V' denotes the volume of
the system. The small magnitudes of the observed er-
ror values indicate that the neural network satisfies the
Noether identities (10) and (11) to very high accuracy.
Outliers can be attributed mostly to the moderate nu-
merical noise of the spatial gradients, see panel (III) in
Fig. 3, and are no hinderance in practical applications of
the neural functional.

This confirmation demonstrates that our method tran-
scends the neural network from a mere interpolation de-
vice of the simulation training data to a credible stan-
dalone theoretical object. The fact that one is able to
carry out consistent and performant functional calculus
indeed renders ¢y (x;[p]) a neural-network-based density
functional. Besides functional differentiation, we show
next that functional line integration acts as the inverse
operation and provides access to the corresponding free
energy. Appendix B gives further insight into the sym-
metry properties of ¢(x, 2’; [p]), which serve as a prereq-
uisite for the existence of a generating excess free energy
functional FX [p]; we recall Eq. (2).

exc



8. Equation of state and free energy

Although the machine learning procedure operates on
the level of the one-body direct correlation function, the
excess free energy Fey.[p] is accessible by functional line
integration [50]:

BFuel] = — / da / drp(r)er(r: [pal). (14)

Here, po(r) = ap(r) is a sequence of density profiles that
are linearly parametrized by « in the range 0 < a < 1.
The limits are po(r) = 0 such that Fex[0] = 0, and
p1(r) = p(r), which is the target density profile that
appears as the functional argument on the left hand
side of Eq. (14). Other parametrizations of p,(r) are
conceivable but change the concrete form of Eq. (14).
On the basis of ¢j(x;[p]), we implement Eq. (14) via
BFx.lp] = —A fol da [dz p(z)ci(z;[pa]) and evaluate
the integrals numerically; as before A denotes the lat-
eral system area.

We first return to bulk systems and illustrate in the fol-
lowing three different routes towards obtaining the bulk
equation of state from the neural network. For this,
we introduce the excess free energy density as ¥y (pp) =
Fexelpp]/V, where V is the system volume. From the
neural functional, the excess free energy density ¥y (pp)
can be acquired via FZ . [pp] from functional line integra-
tion along a path of bulk densities according to Eq. (14).
Alternatively and equivalently, one can simply evaluate
the neural direct correlation functional at bulk density
pp and due to translational symmetry at arbitrary loca-
tion (e.g. x = 0) such that ¢t* = ¢5(0; [pp]). Simplifying
Eq. (2) in bulk reveals that

Y (ov) = —kpTcy, (15)

where the prime denotes the derivative with respect to
the bulk density argument. The excess free energy den-
sity % (pp) follows from ordinary numerical integration
across bulk densities up to the target value p,. The nu-
merical accuracy to which both routes coincide serves as
a further valuable consistency test.

Additionally, one obtains the bulk pressure P(p;) from
the excess free energy density via

P(pb) = (y(pn) + kBT) po — Pu(pp)- (16)

The pressure is equally accessible from a further route

which incorporates previous results for the bulk pair

structure via their low-wavelength limits according to [4]
or| B 1 1
sl poxr  SO0) 1+ ph(0)

= 1— p5(0),
(17)

where one can identify the isothermal compressibility
xr = py - (9pp/OP)7. From Eq. (17), P(py) is obtained
by evaluation of either of the bulk correlation functions
(see Sec. IIB1) in Fourier space at k = 0 for different
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FIG. 4. We show (a) the equation of state P(py) obtained via
different methods and (b) deviations to the Carnahan-Starling
result Pcs(pp) (dotted black line). The neural equation of
state P*(pp) is calculated via Eq. (16) in which the excess free
energy density follows from functional line integration accord-
ing to Eq. (14) (solid purple line), from evaluation of the bulk
value ¢§* (pink dots), see Eq. (15), and via the low-wavelength
limit of &*(k) (blue crosses), see Eq. (17). For comparison,
the Percus-Yevick equations of state according to the virial
(dashed gray line) and compressibility (dashed brown line)
route are shown. Bulk densities p, beyond the stable fluid
phase are shaded in gray. All three routes coincide very well
up to and within the metastable region, with functional line
integration leading to the most accurate results. In panel (b),
we additionally depict a simulation-based equation of state
(dotted red line) due to Kolafa, Labik and Malijevsky [51],
which our neural functional is able to reproduce very accu-
rately in the stable fluid region, hence exceeding in precision
the Carnahan-Starling equation of state.

bulk densities and by subsequent numerical integration
towards the target value of py.

We compare the results in Fig. 4, where the equa-
tion of state P*(pp) of the neural network was acquired
from functional line integration across bulk systems, cf.
Eq. (14), from evaluation of one-body bulk correlation
values c}*, cf. Eq. (15), and from the low-wavelength limit
of two-body bulk correlations, cf. Eq. (17). One finds
that the results of all three routes are consistent with
each other and that they match very well the Carnahan-
Starling equation of state [52], thus outperforming the
Percus-Yevick theory as already observed for the bulk
pair structure in Sec. IIB1. A slight deviation can be
noticed when evaluating P*(pp) via Eq. (17), which con-
stitutes the most indirect route detouring to two-body
correlations. This may reflect the small discrepancy of
the neural functional to simulation results (cf. Fig. 2)
and the sensitivity of the low-wavelength limit of the
static structure factor to remaining finite size effects



[53]. Notably, functional line integration is the most re-
liable method and the corresponding results even sur-
pass the Carnahan-Starling equation of state in accu-
racy. Fig. 4(b) shows the reproduction of a highly ac-
curate simulation-based equation of state due to Kolafa,
Labik and Malijevsky [51]. We recall again that neither
bulk information nor data for free energies or pressures
was given explicitly in the training of the neural net-
work. Instead, the beyond-Carnahan-Starling precision
is achieved solely by extracting direct one-body correla-
tions from simulation data of randomized inhomogeneous
systems in planar geometry. In Appendix C, we addition-
ally demonstrate that the neural functional is fit for the
application of dimensional crossover [54] in order to ob-
tain the bulk equation of state for the two-dimensional
hard disk fluid within a reasonable range of packing frac-
tions.

For a concise comparison of free energies in inhomo-
geneous situations, additional reference data has to be
acquired from simulations. In our grand canonical set-
ting, thermodynamic integration [55] with respect to the
chemical potential can be used to measure the grand po-
tential according to

ol =~ [ aut (). (1)

Here, the integration starts from an empty system with
Q0] = 0 and traverses the chemical potential up to the
target value . One needs to measure the mean number
of particles (N) in a sufficient number of simulations with
intermediate chemical potentials —oo < ¢/ < p to eval-
uate Eq. (18) numerically. The excess free energy then
follows directly from

Foxelp] = Qp] — Falpl - /drp(r)(Vext(r) —p), (19)

where Fiq[p] = kgT [ dr p(r)(Inp(r) — 1) is the ideal gas
free energy. Thermodynamic integration according to
Eq. (18) has been performed for 22 systems of the test set
to yield reference values FM for the excess free energy
via Eq. (19). The systems were selected to cover a broad
range of excess free energy values, and FMT results for
F,. were used as a further theoretical estimate for this
selection.

In Tab. I and Fig. 5, we show errors of Fey. to the quasi-
exact simulation values when calculating the excess free
energy via Rosenfeld and White Bear MKII FMT as well
as from functional line integration according to Eq. (14)
of the neural functional. For both FMT methods, a
DFT minimization (cf. Sec. II C1) is performed to yield a
self-consistent density profile p(x), which serves as input
to the respective analytic FMT expression for Foxc[p].
Hence we compare consistently equilibrium states (ac-
cording to the respective theory) corresponding to the
same form of the external potential.

The comparison reveals that the neural functional sig-
nificantly outperforms Rosenfeld FMT and still yields
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FIG. 5. We compare free energies of inhomogeneous test

systems as obtained via Rosenfeld (turquoise squares) and
White Bear (purple triangles) FMT as well as with functional
line integration of the neural correlation functional ci(z; [p])
(yellow circles). The discrepancy Fexe — FSI2 of the respective
method to the simulation result FSM is shown. Rosenfeld
FMT systematically underestimates Fexc whereas White Bear
MEKIT FMT as well as our neural functional yield almost exact
results. The neural network performs slightly better for large
excess free energies as occur primarily in dense systems.

TABLE I. The absolute and relative mean average error of
the excess free energy Fexc as obtained via the Rosenfeld and
White Bear MKII FMT functionals is compared to the re-
sult from functional line integration of the neural correlation
functional. The reference values F5I™ were obtained via ther-
modynamic integration according to Egs. (18) and (19) for
a subset of the test systems. The results of the neural func-
tional surpass the Rosenfeld FMT significantly and even yield
a slight improvement over the highly accurate and refined
White Bear theory. The angular brackets denote an average
over the 22 test simulations.

B{|Fexe — FA2 1) [{| Fexe — Fore'l/Foie)
Rosenfeld 0.540 1.75%
White Bear MKII 0.0159 0.104%
Neural functional 0.0127 0.097%

slightly more accurate values for the excess free energy
than the very reliable White Bear theory. Regarding the
above described bulk results for the free energy, this be-
havior is both consistent and expected, as the Rosenfeld
and White Bear MKII functionals can be associated with
the Percus-Yevick compressibility and Carnahan-Starling
bulk equations of state respectively. Still, the test in in-
homogeneous systems is a more rigorous one than in bulk,
as the full nonlocal functional representation is invoked
when providing ¢ (z; [p]) with an inhomogeneous density
profile as input. Given that the functional line integra-
tion of ¢} (z; [p]) via Eq. (14) is practically immediate, one
can deem F  [p] itself a corresponding neural functional
for the excess free energy that enables a full description
of the thermodynamics of inhomogeneous fluids to high
accuracy. As we present below, this quantitative preci-
sion is preserved when applying the neural functional in
a predictive manner in the self-consistent calculation of



density profiles.

C. Predicting inhomogeneous fluids via neural
DFT

1. Going beyond analytic approximations

In the previous section, the trained model has been put
to test by deriving related quantities such as ¢&(z, z'; [p])
from autodifferentiation and FZ[p] from functional line
integration in order to assess its performance against an-
alytic and numerical reference results. We now turn to
the application of the neural functional ¢f(z;[p]) in the
context of the self-consistent determination of density
profiles according to the DFT Euler-Lagrange equation.
This is achieved by rearranging Eq. (1) to the standard
form [2, 4]

p(r) = exp (=B (Vexs(r) —p) + ca(r;[o])) . (20)

A fixed-point (Picard) iteration with mixing parameter «
can be used to determine the density profile from Eq. (20)
according to

p(r) — (1 - a)p(r)

T aexp (—BVes(®) — p) + ar(s[)) . Y

The degree of convergence is determined from the re-
maining difference of right and left hand side of Eq. (20).
With the trained neural functional at hand, one can eval-
uate the one-body direct correlation function in Eq. (21)
via the surrogate ¢f(z;[p]) in each iteration step. In the
following, the use of ¢j(z;[p]) in this context will be re-
ferred to as neural DFT.

We note two minor technical points concerning the use
of the neural functional in the Picard iteration. It was
observed that a conservative choice of « is necessary dur-
ing the first few iterations to ensure numerical stability.
After this burn-in, the mixing parameter can be set to
usual values (e.g. @ = 0.05). Furthermore, the conver-
gence criterion has to be relaxed as compared to typical
choices in analytic DFT methods due to the remaining
intrinsic uncertainty of c¢(z;[p]). The mean average er-
ror after training, cf. Sec. IT A 4, provides an estimate for
the expected relative uncertainty of the density profile
according to Eq. (20). Depending on the specific prob-
lem, the error might not decrease any further than that
during the iteration of Eq. (21). Neither of these points
caused any practical hinderance in applications.

The treatment of Eq. (20) in neural DFT is conceptu-
ally not different than in standard DFT methods. How-
ever, the model ¢f(z;[p]) relieves the theory from be-
ing restricted by the available approximations for the
one-body direct correlation function as generated from
analytic expressions of the excess free energy functional
Fexelp] via Eq. (2). We emphasize that, unlike in previ-
ous work [35, 37], no analytic ansatz had to be provided
and that our method is generic for the determination of
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a suitable functional from a given model Hamiltonian,
thus indeed constituting a “machine learning black box”
[35] regarding the training procedure. However, in con-
trast to a closed black box, the inner workings of the
resulting neural correlation functional can be inspected
very thoroughly via the neural functional calculus laid
out above. Also note that, while the model works at the
level of the one-body direct correlation function, the free
energy is readily available from functional line integra-
tion, cf. Sec. IIB3. Lastly, we point out that ¢j(z;[p])
captures the entirety of the intrinsic correlations and that
further improvements are conceivable by only learning
differences to an analytic reference functional. To demon-
strate the capabilities of our method, we refrain from this
route and show that the trained neural functional alone
already exceeds the accuracy of FMT.

2. Comparison to FMT

In the following, we benchmark the self-consistent in-
homogeneous density profiles obtained via neural DFT
against FMT results. For this comparison, the Rosen-
feld [8] and White Bear MKII [13] FMT functionals are
considered and the simulated density profiles are taken
as quasi-exact reference data. The FMT functionals are
the most profound analytic description of the hard sphere
fluid with the White Bear MKII theory being the state-
of-the-art treatment of short-ranged intermolecular re-
pulsion in classical DFT. Nevertheless, measurable and
systematic deficiencies still remain, e.g. in highly corre-
lated systems [56]. We point the reader to Ref. [14] for
a thorough account of FMT and to Ref. [57] for a very
recent quantitative assessment. Note that the tensorial
weights of Tarazona [15] to describe hard sphere freezing
are not included in our investigation.

The comparison is set up as follows. For each hard
sphere system of the test set (see Sec. ITA4), we de-
termine the density profile p(z) from the Rosenfeld and
White Bear MKII FMT functionals as well as from
e (z;[p]) via the Picard iteration (21) of the Euler-
Lagrange Eq. (20). For this, only the known form of the
external potential Vey(x) and the value p of the chemi-
cal potential are prescribed. As reference density profiles
are available from GCMC simulations, we can evaluate
the error Ap(x) of each of the DFT results relative to
the simulation data for p(z). From here, different scalar
metrics for the quantitative agreement of self-consistent
DFT profiles and simulation results are considered.

In Fig. 6, both global and local error measures for the
deviation of FMT as well as neural DFT to simulation
data are depicted. For the assessment of the global er-
ror, we show the La-norm [|Ap||2 of the discrepancy to
the reference profile, which is normalized by the mean
density p of each system respectively. As the test data
covers very dilute to very dense systems, this relative
global error measure is plotted as a function of p to dis-
cern the behavior with respect to varying global average
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FIG. 6. Measures of discrepancy of self-consistent density

profiles to simulation results across the test set are presented.
We show (a) the normalized Lo-norm ||Apl||2/p as a function
of the mean density p for judgment of the average error over
the inhomogeneous system, and (b) the relative maximum
norm ||Ap|ls/||pllec as a function of the largest local density
||p]|oo to reveal the magnitude of local errors, e.g. at density
peaks. The self-consistent density profiles are obtained from
Rosenfeld (turquoise squares) and White Bear MKII (purple
triangles) FMT [8, 13] as well as from employing our neu-
ral functional ¢ (z;[p]) in the DFT Euler-Langrange equa-
tion (yellow circles). Regarding both global and local error,
the neural network outperforms the analytic FMT functionals
and reduces the respective errors up to an order of magnitude,
especially in large density regimes.

density. Similarly, we define an estimate for the rela-
tive local error by evaluating the maximum norm ||Ap|| s
of the density deviation divided by the maximum value
lp]loe of the GCMC density profile. This quantity is re-
solved against the maximum ||p||oo of the respective inho-
mogeneous density, thus enabling the detection of local
discrepancies, e.g. in the vicinity of maxima and discon-
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tinuities of the density profile.

One recognizes that neural DFT yields substantially
better results than the FMT functionals with regard to
both error measures. Compared to the Rosenfeld results,
both the global and the local error is decreased by ap-
proximately an order of magnitude. Surprisingly, even
the White-Bear MKII functional is not able to match
the accuracy of the neural DFT, which is noticeable es-
pecially for large values of p and of ||p||co-

8. Simulation beyond the box

A particular advantage of the local nature of the neural
functional ¢ (z; [p]) is its applicability to systems of virtu-
ally arbitrary size. As explained in Sec. ITA 3, it is suffi-
cient to provide the density profile within a rather narrow
window as input to the neural network to infer the value
of the one-body direct correlation function at the center
of the density section. The model ¢f(z;[p]) can therefore
be used directly in the Euler-Lagrange Eq. (20) for the
prediction of planar systems of arbitrary length. Due to
the low computational demands of solving this equation
self-consistently, this method is suitable even in multi-
scale problems where macroscopic length scales compete
with and are influenced by microscopic correlations and
packing features. Although one could argue that ana-
lytic DFT methods already account for such tasks, im-
portantly the neural functional ¢} (z; [p]) acts as a drop-in
replica of the (almost) simulation-like description of the
intrinsic correlations. Therefore, neural DFT facilitates
to fuse simulation data with common DFT methods, thus
providing a means to “simulate beyond the box”.

Simulation beyond the box is demonstrated in Fig. 7,
where the system size has been increased to 10000 while
the numerical grid size remains unchanged at 0.01¢. Our
setup implies that for colloids of, say, size ¢ = 1 pm, we
have spatial resolution of 10nm across the entirety of
a system of macroscopic size 1mm. We consider both
a highly correlated fluid in a rapidly varying external
potential as well as the diffusive sedimentation behav-
ior [58] in a weak gravitational potential. The former
case is realized by generating a sequence of randomized
external potentials via Eq. (3) which are spatially con-
nected; the chemical potential is set to zero. Neural DF'T
yields a highly inhomogeneous density profile in this sys-
tem and resolves the microscopic variations accurately
at low computational cost. In the sedimentation col-
umn, a local chemical potential poc(x) = p — Vext () =
(10 — 0.01z/0)kpT is imposed which decreases linearly
with respect to the height x, and the system is bounded
from the bottom (z = 0) and the top (z = 10000) by hard
walls. The spatial variation of poc(x) is chosen small
enough to enable thermal diffusion across the whole sedi-
mentation column and to yield locally an almost bulk-like
behavior except near the upper and lower hard walls. The
method reproduces both the highly correlated nature of
p(x) in the vicinity of the walls as well as its intermediate
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FIG. 7. Neural DFT is used to obtain the density profile p(x) (blue lines) of the hard sphere fluid (a) in a highly correlated
system with randomized external potential Vexs(x) (gray dashed line) and (b) in a sedimentation column of height 10000 that
is bounded by hard walls at the bottom and at the top. Near-simulation microscopic accuracy is retained at low computational
cost by the application of neural DFT in the highly correlated large-scale system. For the case of sedimentation, strongly
oscillating behavior at the lower wall as well as mild adsorption at the top can be resolved. As the spatial variation of the local
chemical potential pioc(z) is negligible, the density profile reproduces the equation of state within the sedimentation column,
which is verified by a comparison to the Carnahan-Starling equation of state (dotted black line).

behavior within the sedimentation column, which follows
closely the bulk equation of state (see Sec. II B 3), as one
would expect within a local density approximation [4].
In both cases, the computational cost for the determina-
tion of p(x) with neural DFT is negligible as compared
to analogous many-body simulations, which are hardly
feasible on such length scales.

III. DISCUSSION

In this work, we have outlined and validated a machine
learning procedure for representing the local functional
map from the density profile to the one-body direct corre-
lation function via a neural network. The resulting neural
functional was shown to be applicable as a powerful sur-
rogate in the description of inhomogeneous equilibrium
fluids. This was demonstrated for the hard sphere fluid,
where we have used GCMC simulations in randomized
inhomogeneous planar environments for the generation
of training, validation and test data. Density and one-
body direct correlation profiles followed respectively from
direct sampling and from evaluation of Eq. (1).

DFT elevates the role of the one-body direct corre-
lation function ¢;(z) to that of an intrinsic functional
c1(z; [p]) depending on the density profile p(z) but be-
ing independent of the external potential. We exploited

this fact in the construction of our neural network, which
takes as input a local section of the discretized density
profile around a fixed location x and outputs the value
of the one-body direct correlation functional c;(x;[p])
at that specific location. Establishing a pointwise infer-
ence of ¢;(z;[p]) instead of trying to represent the global
functional mapping of the entire one-body profiles comes
with various advantages, such as independence of the box
size, the correct description of the short-range behavior of
c1(z; [p]), and a very significant improvement of training
statistics.

The nonlinear and nonlocal functional relationship was
realized by fully-connected hidden layers with smooth
activation functions and a standard supervised training
routine was used. The achieved mean average error over
the test set was of the same order of magnitude as the
noise floor of the simulations, thus being indicative of
full representational power of the neural correlation func-
tional within the considered simulation data. Whether
the quality of the model can be improved further by per-
forming more extensive sampling to reduce the statistical
noise of the simulation profiles remains to be investigated
in the future. Additionally, active and reinforcement ma-
chine learning techniques could be useful for interleaving
the training and simulation process, thereby guiding the
generation of reference data in order to explore the space
of inhomogeneous systems more efficiently and exhaus-



tively.

The neural functional was put to test by verifying
numerous physical relations in bulk and in inhomoge-
neous systems. In particular, it was shown that the two-
body direct correlation functional co(z,z'; [p]) as well as
higher-order correlations are accessible from the model
via automatic differentiation. In bulk, the pair struc-
ture as described by the neural network significantly out-
performs the Percus-Yevick theory and is even able to
compete with simulation results [44], although no bulk
data was used during training. In inhomogeneous situ-
ations, the conformance of the neural functional to the
thermal Noether sum rules (10) and (11) as well as to
spatial symmetry requirements holds to high accuracy.
The excess free energy Fox.[p] is readily and efficiently
available via functional line integration of the model ac-
cording to Eq. (14) and the results agree with those ob-
tained from simulations. The bulk equation of state can
be acquired consistently from various routes with the re-
sults attaining simulation quality [51] and in particular
exceeding the very reliable Carnahan-Starling equation
of state [52] in accuracy. Dimensional crossover is feasi-
ble for the calculation of the bulk equation of state for
the two-dimensional hard disk system.

Arguably the most important consequence of the neu-
ral functional framework is the applicability of ¢} (x; [p])
in the self-consistent calculation of density profiles by
solving the Euler-Lagrange Eq. (20) of classical DFT. As
the one-body direct correlation function is faithfully rep-
resented by the neural network, one is exempted from
having to find analytic approximations for ¢;(x;[p]) or
for its generating functional Fux.[p]. Although FMT pro-
vides such approximations for the hard sphere fluid with
high precision, we could demonstrate that our neural
functional outperforms both the Rosenfeld [8] as well as
the White Bear MKIT [13] functional. For this, Eq. (20)
was solved self-consistently for all 150 randomized local
chemical potentials of the test set to obtain p(x), where
c1(z; [p]) was given either analytically by FMT or eval-
uated via ¢}(z;[p]). The comparison of the results to
the simulated density profiles reveals that neural DFT
yields global and local errors that are up to an order of
magnitude lower than those of FMT.

Furthermore, due to the flexibility that comes with the
local functional mapping, the neural network could be
used as a means to “simulate beyond the box”. That is,
while the training was based solely on simulation data
from systems of manageable size, the resulting model
ci(x;[p]) is directly applicable for predictions on much
larger length scales. We demonstrated this by impos-
ing a spatial sequence of randomized external potentials
on a length of 1000c. While the explicit numerical sim-
ulation of such a system is comparatively cumbersome,
neural DFT offers a way to achieve close to simulation-
like accuracy at low computational effort. Furthermore,
we have considered a sedimentation column with a height
of 10000 that is bounded by hard walls. Neural DFT is
capable to both resolve microscopically the adsorption at
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the walls as well as to efficiently capture the long-range
density decay with increasing height. The presented fu-
sion of machine learning and DFT can therefore be an-
other useful technique to make headway in the multiscale
description of soft matter [59-61].

Even though we saw no need for a more sophisticated
training procedure in our investigations, it could be use-
ful to consider physics-informed machine learning [62]
as a technique for enforcing exact physical relations of
the underlying problem directly during training. Sum
rules in bulk or in inhomogeneous systems, e.g. the ther-
mal Noether identities (10) and (11), might be suitable
candidates for this task. Analogous to the evaluation of
derivatives in physics-informed neural networks, we have
shown the necessary quantities to be accessible by auto-
matic differentiation of the neural functional.

When considering nonequilibrium systems, power
functional theory (PFT) [40, 41] establishes an exact
functional many-body framework which is analogous to
that of DFT in equilibrium. A central ramification of
PFT is the existence of a functional map from the time-
dependent one-body density p(r,t) and current J(r,t) to
the internal force profile fi,¢(r,t; [p, J]), which is in gen-
eral nonlocal in space and causal in time ¢. Recent work
by de las Heras et al. [39] demonstrated that machine
learning this kinematic internal force functional yields
highly promising results and overcomes the analytic and
conceptual limitations of dynamical density functional
theory. In this regard, our method can be put into a
more general context as it may be viewed as a mere spe-
cial case for equilibrium systems where J(r,t) = 0. The
topical problem of accurately describing nonequilibrium
many-body physics is certainly a natural contender for
the application and extension of our neural functional
framework, with many practical questions arising, e.g.
concerning the generation of training data or the choice
of neural network architecture.

While much insight could be gained by considering the
hard sphere fluid, the application of our machine learn-
ing procedure is arguably even more useful for particle
models that lack satisfactory analytic density functional
approximations. Although mean-field descriptions ac-
count surprisingly well for soft and attractive contribu-
tions [63, 64], e.g. in the Lennard-Jones fluid, analytic
efforts to go beyond this approximation are sparse [65—
67]. We demonstrate the generality of our method in
Appendix D, where we show that the machine learning
routine applies directly to the (truncated) Lennard-Jones
interaction potential in an isothermal supercritical set-
ting. In the future, providing the temperature as a fur-
ther input quantity to a modified neural network is a
valuable goal in order to tackle the full physics of such
thermal systems. As a proper treatment of the arising
phase transitions and interfacial phenomena is already
subtle in simulation, the machine learning perspective
might provide further insights. We expect the general
method to hold up even for complex particle models, e.g.
containing many-body interactions [22], provided that



sufficiently accurate training data of sufficient quantity
can be generated.

For the treatment of anisotropic particles, the neural
network must be extended to accomodate for the addi-
tional orientational degrees of freedom. Recent advances
in molecular DFT could be helpful in guiding appropri-
ate augmentations of our method [68, 69]. Related to the
increased dimensionality due to anisotropy, the extension
of the machine learning procedure from planar symmetry
to more general geometries is worth contemplating. Es-
pecially for fully inhomogeneous three-dimensional prob-
lems, the amount of required training data seems re-
strictive at first. However, we have shown in this work
that results obtained in planar geometry already cap-
ture the essence of internal interactions. Therefore, it
may be feasible to base the machine learning predom-
inantly on data in reduced geometrical settings and to
incorporate remaining nontrivial effects due to the more
general geometry by supplementing only a few selected
higher-dimensional simulations. In particular, we high-
light in this context the promising development of equiv-
ariant neural networks [70-73], which serve as a means of
casting underlying symmetries of a problem directly into
the neural network architecture. Recent applications in
the physical domain show that this method facilitates
robust training and generalization on the basis of much
reduced data sets as compared to common machine learn-
ing approaches which do not intrinsically enforce symme-
try [74-76]. In our case, exploiting inherent symmetries
of the direct correlation functional via the use of equiv-
ariant neural networks is certainly valuable when further
orientational or spatial degrees of freedom are to be con-
sidered.

Lastly, we point out useful cross-fertilization of ma-
chine learning ideas regarding topical applications in
quantum DFT [77]. In particular, the analogous func-
tional mapping to the classical one-body direct correla-
tion functional c¢;(r;[p]) is given quantum mechanically
by the exchange-correlation potential vy.(r;[n]) which
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depends functionally on the one-body electron density
n(r). Due to the immediate analogy, obtaining the
exchange-correlation energy functional Fy.[n] might be
feasible with functional line integration similar to our
treatment of Fexe[p] via Eq. (14), which here becomes
Eyc[n] = fol da [ drn(r)vke(r; [na]) with ne(r) = an(r).
Albeit lacking the neural functional calculus that we pre-
sented here, Zhou et al. [78] have successfully demon-
strated the machine learning of the functional map-
ping from the electron density to local values of the
exchange-correlation potential vy (r). Specifically, they
trained a convolutional neural network on the basis of
three-dimensional quantum chemical simulation data of
small molecules and could obtain accurate predictions
for larger molecules. This success is akin to the mul-
tiscale applicability of our neural correlation functional
ci(r;[p]). In general, however, most machine learning
strategies in quantum DFT have considered different
functional mappings [79-84]. In light of our results for
classical systems, we deem the analogous machine learn-
ing of the local functional relationship of vy.(r;[n]) the
arguably most promising approach in the development of
a neural quantum DFT with the goal of chemical accu-
racy and generic applicability.
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Appendix A: Higher-order correlations

Analogous to Sec. IIB 1, we demonstrate that higher-
order correlations can be obtained from the neural cor-
relation functional by nested automatic differentiation.
This is due to the fact that the hierarchy of direct corre-
lation functions ¢, (r,r’, ..., v~ [p]), n > 2, is accessi-
ble from successive functional derivatives of the one-body
direct correlation functional [4],

0" Leq (1 [p])
dp(r')...op(r(n=1))

cn(r,r',...,r("_l);[p]) = (A1)

As illustrated in the main text, translational symme-
try can be applied in bulk fluids such that the re-
sulting bulk correlation function % (r,...,r(=2) =
cn(0,1,...,r("=2): [p,]) only incorporates n—2 remaining
position coordinates.

We specialize again to the planar geometry of our
neural functional and show in Fig. 8 the three-body
bulk correlation function ¢§*(z,z’) for a bulk density of
pp = 0.7073. While the computation of é5*(x) is prac-
tically immediate via a single reverse mode autodiffer-
entiation pass, going to the three-body correlation func-
tion comes at the price of having to evaluate the Hessian
of ¢f(x;[p]), for which different strategies exist [85]. In
principle, one can proceed by nesting autodifferentiation
layers to obtain further members of the hierarchy (A1),
albeit being restricted by the practicability of the ac-
tual evaluation and the efficacy of the result. Note that
the computational effort at the three-body level is by no
means restrictive and that growing numerical demands
are expected when considering higher-order correlations.
The computation and analysis of ¢(x,z’) might be espe-
cially useful for more complex fluid models, e.g. contain-
ing internal three-body interactions [22].

We compare &§*(z,2') to analytic approximations

based on FMT. For both the Rosenfeld and the White
Bear MKII functional, the three-body bulk direct corre-
lation function is analytic in Fourier space. We point the
reader to Ref. [8] for an expression of the original Rosen-
feld result in terms of vectorial weight functions and to
Refs. [9, 11] for an equivalent representation via scalar
weights. As the weight functions remain unchanged, the
White Bear MKII result follows immediately from the
modification of the excess free energy density as laid out
in Ref. [13].

A cumulant expansion of the bulk result of the three-
body direct correlation function in Fourier space can be
transformed to real space analytically, which in planar
geometry gives

N bR* —22 4+ za! — 22
i) = == - exp (R) S

where the width parameter a and the prefactor b are
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determined by

3 53-—-125 8n?
a=22 ntsn (A3)
K530+ 2n+5n2 —ns
8m 30+ 2 5n%2 —n?
b= LT N (A4)
33 (1—n)
with the packing fraction n = mp,/6. The correction
factors v and k are set to unity in the Rosenfeld FMT
and attain the forms

53— 350+ n* 4 51’

53 —25n 4 82

B 30 — 61
"R+ — 1P

in the White Bear MKII case.

The comparison reveals that the form of the neural
three-body bulk correlation function ¢§*(z,z’) is plausi-
ble and that it captures genuine features which go beyond
both FMT descriptions. The Rosenfeld FMT yields a
large discrepancy in the core region z,z’ ~ 0, which is
significantly unterestimated as compared to the results
from the neural functional and from the White Bear the-
ory. We recall that, as in Sec. II C 2, the tensorial weights
of Tarazona [15] have not been used in the FMT func-
tionals and that their inclusion might be particularly rel-
evant on the level of higher-order correlations. In this
vein, investigating members of the direct correlation hi-
erarchy (A1) with the neural correlation functional could
be a valuable aid for testing and refining analytic FMT
functionals.

, (A5)

(A6)

Appendix B: Spatial symmetry of the neural
two-body direct correlation functional

A further consistency test of ¢k (z, z’; [p]) arises due to
its expected symmetry with respect to an interchange of
the planar position coordinates x and z’. Recall that the
excess free energy functional Fuy.[p] generates the two-
body direct correlation function according to

B 525Fexc [P]
So(r)op(r’)’

see Egs. (2) and (4) of the main text. One can directly
recognize from the symmetry of the second functional
derivative in Eq. (B1) that cao(r,r’;[p]) = ca(r/,r;[p])
must hold.

On the basis of the neural direct correlation functional
in planar geometry, assessing the validity of the identity

ca(r,1’; [p]) = (B1)

c5 (@, s [p]) = ¢5 (2, x; [p]) (B2)

is a highly nontrivial test. This is due to the fact that
c(x,x’; [p]) evaluated at certain positions z and 2’ fol-
lows from automatic differentiation of c¢j(x;[p]), where
the input density window is centered around the loca-
tion x, see Sec. IIB 1. On the other hand, when formally
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FIG. 8. The three-body direct correlation function is shown in bulk at density p, = 0.70 3. We depict (a) the Rosenfeld and
(b) the White Bear MKII FMT results for the planar representation & (z,z"), which were obtained analytically according to
Eq. (A2) by a cumulant expansion in Fourier space and a subsequent backtransform. Within our neural functional framework
(c), &*(z,2’) is acquired via nested automatic differentiation of cf(x; [p]).

evaluating ¢ (2, z; [p]), where the arguments = and =’ are
now reversed, the density window is centered around z’,
hence constituting a generally very different and a priori
unrelated input profile. One can expect Eq. (B2) to be
recovered only if the physical implications of Eq. (B1)
are captured correctly by the neural functional. Note
that Eq. (B2) is a necessary condition for the existence
of a unique neural excess free energy functional FX_[p],
which can practically be obtained via functional line in-
tegration, see Sec. II B 3. We exemplify in Fig. 9 that the
neural two-body direct correlation functional ¢k (z, z'; [p])
obtained via autodifferentiation of ¢j(x;[p]) indeed sat-
isfies the symmetry requirement (B2) to very high accu-
racy.

Appendix C: Neural equation of state for hard disks
via dimensional crossover

Although the neural functional ¢j(z;[p]) was acquired
explicitly for the three-dimensional hard sphere fluid, di-
mensional crossover techniques can be used to obtain
bulk results for the two-dimensional hard disk system.
This is facilitated by investigating the behavior of the
hard sphere fluid under narrow confinement, which con-
stitutes a quasi-two-dimensional scenario. With this
method, one obtains the equation of state for the hard
disk fluid from ¢f(z;[p]), as we demonstrate in the fol-
lowing.

We proceed similar to Sec. II B 3 and utilize Eq. (16) to
express the pressure P(pp) via the excess free energy den-
sity ¥p(pp), which we aim to compute for a range of bulk
densities p,. Whereas cj(z;[p]) was evaluated for the
three-dimensional bulk fluid at spatially constant den-
sity, cf. Eq. (15), here a suitable density profile pop () is
constructed as input to the neural direct correlation func-
tional in order to emulate narrow planar confinement.

For this, we choose

Pb )

pan(@) = xw@ (‘x 2 D
with the Heaviside function ©(:); note that Eq. (C1) is a
Dirac series and yields the Dirac distribution for x,, — 0.
The neural direct correlation functional is then evalu-
ated at the center of this assumed slit, and the values
¢5(0; [p2p]) are used analogous to Sec. IIB 3 for the de-
termination of P(py). The equation of state for the
associated two-dimensional hard disk system follows for-
mally for z,, — 0. As this limit is not directly accessible
in practice, we assess the obtained values for finite but
small slit widths 0.3 < z,, /0 < 1 and extrapolate to
T = 0 via a quadratic fit.

The resulting equation of state Pip(py) for the two-
dimensional hard disk fluid as obtained from this di-
mensional crossover on the basis of the neural network
is shown in Fig. 10. We additionally display analytic
equations of state from scaled particle theory [86] and
by Henderson [87] which serve as reference. One rec-
ognizes that reasonable results can be achieved for low
and medium densities, but that deviations to analytic
results become noticeable for p, > 0.70~2. Nevertheless,
it is both surprising and reassuring that the neural func-
tional is capable of predicting correlations in narrow con-
finement, as no such situations were explicitly included
in the training data. Recall that hard walls were im-
posed only at the borders of the simulation box of length
L = 200 and that the inhomogeneous external potential
within the simulation domain consisted solely of Fourier
modes and of piecewise linear functions, cf. Eq. (3) in
the main text. Presumably, improvements over the re-
sults presented in Fig. 10 could be obtained especially
for large densities by including situations of very nar-
row confinement explicitly in the training data. From
our outset, the successful achievement of a viable two-
dimensional equation of state serves as a demonstration

(C1)
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FIG. 9. We show (a) the density profile p(z) of an inhomoge-
neous system of the test set and (b) the corresponding neural
two-body direct correlation function, which is obtained for
each position = with respect to ' — z. A linear transforma-
tion is applied to display c3(x, x’; [p]) as a function of x and z’
in panel (c). This transformation is visualized by correspond-
ing gray lines in panels (b) and (¢) which indicate the extent
of the detailed view (solid) and slices where = + z’ = const.
(dotted). The results exemplify that the neural network re-
produces the symmetry property (B2) of the two-body direct
correlation function very accurately.

that ¢ (x; [p]) indeed captures the intricate functional re-
lationship of the underlying physical problem instead of
acting as a mere interpolation tool with respect to the
encountered training data.
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FIG. 10. The equation of state P>p(py) for two-dimensional
hard disks is depicted, which is obtained from the neural func-
tional via dimensional crossover. For comparison, we show
analytic results according to scaled particle theory [86] and
by Henderson [87]. Although the training data for the three-
dimensional hard sphere fluid did not cover narrow confine-
ment within hard walls, ¢j(0;[p]) reproduces very reason-
able behavior when applied to such quasi-two-dimensional
situations ;21nd yields acceptable results for densities up to
pp = 0.7T07 7.

Appendix D: Neural DFT for the Lennard-Jones
fluid

We illustrate the generalizability of our machine learn-
ing framework to other particle types by considering the
truncated Lennard-Jones fluid with pairwise interparticle
potential

o) = {46 (922, rere

(D1)

0, > Te,
where 7 is the interparticle distance, € is the dispersion
energy and the cutoff radius is set to r. = 2.50. Anal-
ogous to Sec. IT A2 of the main text, reference data is
generated via GCMC simulations of 800 systems with
randomized external conditions of which 500 are used for
training and 150 respectively for validation and testing.
We focus on the isothermal behavior of the supercritical
fluid and hence set kT = 1.5¢. The chemical poten-
tial varies uniformly in a range of —8 < Bu < 4 and the
external potential is generated as described in the main
text, cf. Eq. (3).

To accomodate the longer-ranged interactions com-
pared to the hard sphere fluid, the size of the density
window to be input into the neural network is increased
to x. = 40 whilst keeping the design of the hidden lay-
ers unchanged (see Sec. IT A 3). The training results in a
mean average error of 0.0035 and larger values of z. led
to no further improvement in the training statistics. The
slight increase of the mean average error as compared to
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FIG. 11. Neural DFT (yellow circles) is compared to the

standard mean field DFT (purple triangles) for the truncated
Lennard-Jones fluid. As in Fig. 6, (a) the normalized Lo-
norm ||Apll2/p as a function of the mean density p, and (b)
the relative maximum norm ||Apl|o/||plle as a function of the
largest local density ||p||c are considered. While considerable
deviations to the reference profiles are observed for the hard
sphere plus mean field treatment, neural DFT achieves almost
simulation-like accuracy with global and local errors being
decreased by up to two orders of magnitude.

the hard sphere case (see Sec. IT A 4) can be attributed to
noisier simulation data, which results from the decreased
efficiency of GCMC method when simulating soft inter-
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actions with larger cutoff radius instead of hard spherical
particles with an interaction range of o.

After successfully training the neural functional for
the Lennard-Jones fluid, we employ ¢j(z;[p]) in neural
DFT to determine self-consistent density profiles for all
150 test systems. The Picard iteration proceeds with-
out problems and analogously to Sec. IIC1. The re-
sults are compared with the standard mean field DFT
treatment of the Lennard-Jones fluid. Here, the repul-
sive part of Eq. (D1) is approximated by a hard core
interaction, for which we utilize the White Bear MKkII
FMT functional. An additive mean field contribution
Furlp] = [dr [ p(e)p(r')ban(lr — ])/2 to the ex-
cess free energy functional incorporates the attractive
part ¢ait(r) of the Lennard-Jones potential. The func-
tion @ait(r) is equal to Eq. (D1) for r > rpm = 21/64
and it is set to —e for r < ryin.

Local and global deviations of both neural DFT and
the analytic mean field DFT to the simulation reference
data are presented in Fig. 11. The neglection of correla-
tions in the mean field treatment leads to considerable er-
rors across the whole test set. Contrarily, the neural DFT
achieves close-to-simulation results and outperforms the
analytic DFT by up to two orders of magnitude in the
considered error measures.

This successful test demonstrates the transferability of
our machine learning framework across particle models
and indicates its utility especially for Hamiltonians which
lack satisfactory analytic DFT treatments. Although
the considered interparticle potential (D1) is still short-
ranged, we see much potential to extend our method to
long-ranged interactions as occur e.g. in charged systems.
The resulting algebraic decay of direct correlations could
be tackled in various ways: i) It might be sufficient in
some cases (e.g. for screened interactions) to simply ex-
tend the cutoff range x. of the density input. ii) In
order to achieve a better scaling of the number of in-
put nodes with growing x., one could change the corre-
sponding discretization of p(z) to employ variably spaced
sampling points instead of a fixed discretization interval.
This would still enable to finely resolve the vicinity of the
considered location x while also incorporating informa-
tion about long-range density correlations. iii) An alter-
native approach emerges by treating the long-range be-
havior of ¢ (r;[p]) analytically, similar to the treatment
of the Hartree term in quantum DFT, see e.g. Ref. [78].
Hence, the neural functional could be trained as is on
the remaining short-ranged part of c¢;(r;[p]) to recover
full quasi-exact information about intrinsic correlations.
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