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Density functional for the Widom-Rowlinson model
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We present a density functional theory for thecomponent Widom-Rowlinson model, for a mixture of
spherical particles where the unlike species interact with a hard-core potential and the interactions between like
species vanish. The functional is exact for small densities and in the zero-dimensional limit. It predicts the fluid
structure in good agreement with simulations and yields a continuous demixing phase transitionZoin
the limit of largem the Widom-Rowlinson model reduces to effective hard spheres in the mixed phase and the
Asakura-Oosawécolloid-ideal polymer model in the demixed phase. Within the present theory, both cases
are captured correctly. For intermediatewe find a first order demixing phase transition, with a rapidly
broadening density discontinuity upon increasing
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Whether two or more fluids are miscible is often an im- cubeg9]. This is amixedphase, as only repulsion is present,
portant question, e.g., in engineering, physical chemistry, owhich is the essential ingredient for freezing. Apart from this
food science. From a physical point of view, many multi- and the study of the free interface between demixed fluid
component fluids will be in a single phase because of a gaiphased4,10], little is known about inhomogeneous situa-
in mixing entropy. Changing the thermodynamical variablestions. To study those, density-functional thedBFT) [11]
then may lead to demixing. There afat least two basic can be an important tool. It accounts for spatially varying
mechanisms that explain the phase separation. One is thinsity profiles, and, in its sophisticated versions, for the
depletion interaction, where the presence of one of the comstructure at the two- and higher-body level. To our knowl-
ponents generates an effective attraction between particles gfige the WR model has so far resisted any DFT treatment
the other compone(s). The effective attraction accounts for that goes beyond the MFT of Rd#].
the phase separation via the common entropy-versus-energy |n this work, we propose an approximation for the density
mechanism as is present in the gas-liquid transition of simplg,ctional of the mrcomponent WR model. It is a
liquids, say the Lennard-Jones system. The second mechgy,qamental-measure theoryFMT), an approximation
nism for demixing lies in the relative strengths of repulsmnscheme pioneered by Rosenfeld for hard sphétes-14,

betyveen like and unlike par_'ucles. If the unhke particles €X-and also applied to hard parallel cubd®,16, penetrable
perience a stronger repulsion than the like ones, demlxeg

phases are favored, at least at high density. The prototype for hgrlei[;zla’ as well as to the Asakura-OosawaO)
this behavior is the Widom-RowlinsofWR) model[1-4]. model[ ]'. . . .
There the interaction betweemspecies is such that particles The pair _correlaﬂonsderlved fr(_)m Fhe fu_nct|0na| are
of the same species do not interact; that is, are assumed to f#Nd t0 be in good agreement with simulation results. The
ideal, whereas the unlike species interact with a hard cor8=2 Phase diagram is comparable in quality to other theo-
potential. It is clear that for high densities a mixed phase willli€s. Form=3, we find a first-order fluid demixing phase
suffer from strong packing effects, which are greatly reducedransition, with an increasingly large coexistence inteiral
in a demixed phase with a single majority component. Atdensity upon increasingm. We expect form—oo hard
low density the system reaches ideal gas behavior, which, giPhere behavior in the mixed phase and [20] behavior in
course, will cause a mixed phase. The intervening phaste demixed phaséwith the majority component identified
transition has been studied with a range of approaches, irs ideal polymer Indeed we find that the functional reduces
cluding mean-field theoryMFT) [4], Percus-Yevick(PY)  to the corresponding DFT&Refs.[12,14], and[19], respec-
integral equation theory3,5], scaled-particle theorysPT)  tively) for these systems.
[6], as well as computer simulatiofis,7,8]. Let us define the WR model as amcomponent mixture
Essentially all theories give a demixing phase diagram fof spherical particles with radR;, and particle numbert;
m=2 with a lower critical point(as a function of total den- in @ volumeV. The interaction pair potentiats;; (r) between
sity) and a rapidly broadening coexistence region upon inparticles of speciesi=1,... N; and j=1,...N; are
creasing density. The precise location of the critical point®ii(r)=0; andg;;(r) =, if r<R+R;, i#], and zero else
was a matter of discussion since the introduction of thd21l]. As reduced densities we use the packing fractions of
model, and it is remarkable that only recently two indepen-€ach specieg given asy=47N;R’/(3V), and define the
dent simulations located it about 50% higher than previouslytotal packing fraction ag==", ;.
thought[5,7]. Let us give an overview of our DFT. It is a weighted
Obviously, the WR model does not possess a solid phasgensity approximation. This means that in order to smooth
for m=2, as any possible solid is preempted by demixing. Itthe possibly highly inhomogeneous density fields, convolu-
has been found, however, that for large number of compotions with weight functions are performed. Here, the weight
nentsm>31, a crystal becomes stable for parallel hyper-functions describe the shape and geometrical properties of
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the particles and are explicitly given. In particular, there is a mo

set of weight functiongand correspondingly weighted den- ®,=> n{ o;({nd)), (6)
sitieg for each of the species. The transcription of the =1

weighted densities to the exceswer ideal gasfree energy

is done, as usual, via a free enerdgnsity Here this is an il o L |

ordinary function(not a functional of the weighted densities ‘1’2:”2:1 (nPnP—nf)-nd) @i ({n}), (7)
and is, again, explicitly knowrjup to a simple numerical '

root finding problenn Finally the total excess free energy of m

the inhomogeneous system is obtained as a spatial integral O 1 () (i) (K) (i) (i) (K
. =— ny’'ny’ny”/3—ny’ niy-n
over the free energy density. 38w i’j;:]_ (nznz"n; 2 e T2
In detail, we express the excess Helmholtz free energy as Nk Ay A Ak |
+3[n{HmsnG — tr(nGhnihn{H 1/2) ey (),

Fedp(N]=koT [ dx@(nfo0p, @ ®

whereT is the absolute temperature, akglis Boltzmann's where tr denotes the trace. Derivatives of the 0D free energy

constant. The reduced free energy denditys a yet to be &€ @i... x({ m})=3"BFod{m})/ 7. ..dn, where B
determined function of a set of weighted densilﬁas)(x)}, =1KkgT. This completes the prescription for the functional.
wherei labels the species and the type of weighted den- Note that the weight functions'" are constructed to recover

sity. The weighted densities are obtained by convolutions the Mayer bqnd_ for low densities as wel] as to gain control
over the OD limit. The thermodynamical input into the DFT

. ) solely stems from the OD statistics, E&).
nP(x)= f d® pi(r) wi(x—r). 2 Let us investigate some of the properties of the functional.
First, the thermodynamics and structural correlations of ho-

As all nonvanishing interactions are hard-core, it is sufficientmogeneous phasgs,=const, are an output of the theory. In

to take the usual FMT weight functiofi$2,14 this case the weighted densities, H@), are obtained as
0 0 nY=7n, nP=3n/R;, n{=37/(47R), nf’=35/
wy'(r)=0(Ri—r), wy’(r)=38Ri—r), (3)  (4wR%). The nonscalar contributions vanism)=n{)

=n{L=0. Inserting this into Eq46)—(8) gives the bulk free
@ energy. Furthermore, théulk) direct correlation functions
: can obtained ascij(r)=3,,d*®/(dn{an’) w*w),
where * denotes the convolution.
wherer =|r|, 6(r) is the Heaviside step functioa(r) is the Second, _the excess free energy_denéit)can be calcu-
Dirac distribution, andi is the identity matrix. Further, lin- lated analytically in the case of equathomogeneoysden-
W\(,'l)(r)=Wf,'%(r)/(477Ri),W8)(r)=W(1')(r)/Ri . The weight = R;, gqual c_hemlcal potgptlalgi—uj , and equal external
. 0 - , . , potentials acting on specieésandj. Furthermore the system
functionsw! are quantities with dimension of lengttf". ; . . ;
Thev differ in their tensorial rankw® w® w® wi are is assumed to be_ in a mixed phase. Then an effective one-
y o i 0 7L T2 TS component functional of the total densify(r)=mp;(r)
scalarsw(},w{] are vectorsy is a(tracelessmatrix. The  is obtained. The weighted densities and®®=mn(’
subscript letters help identifying the rank. and the expressions for the free energy density
We determine the functional dependencedfon the g e 9BF op ! dn=In[m—(mw )], 92BF op 1 d2=w/
we|ghtgd densities by imposing thg exact crossover to Ze10y—w ), *BFogldnt=w[(w—2)w+ 7]/[(w—1)3 7?],
dimensions (0D). This situation is modeled byp;(r) with w=W[ 7e~7(1—m~1)], where W(z) is product log
= 7;6(r), where the packing fractiong; describe the aver- fnction, i.e., the solution af=W exp@W). In general, how-
age occupation numbers of particids a cavity of radiusR; ever, the above assumptions do not hold, ar@) # p:(r).
[13]. The exact grand partition sum for the WR model in thisp, )
ol e en theuop ; (andFqp) need to be found numerically.
situation is Third, for large number of components,— o, and fixed
m total densitys, we consider two cases where the WR model
S=1-m+ S expz), 5 reducgs to(smplen) effe.c_tlve one- or two-component sys-
izl Az) ® tems, if the partial densitig®r chemical potentiajsare cho-
sen appropriately. For equal partial densitigs- n; , we ex-
wherez; is the fugacity of speciess Inverting the thermody- pect hard sphere behavior, because each component is at
namical relation 7,=zdInE/dz, we obtain the excess vanishing concentration, so that the ideality between like
chemical potentialgioq; =KgT In(z/7) as a function of the species is negligible, and only the hard cores between unlike
set of ;. Integrating with respect to density yields the 0D species remain. The 0D statistidsq. (5)] takes care of this
excess free energyqp({7;}). We follow recent treatments fact and we recoveBFqq=(1— ) In(1—7)+ 75, which is
of FMT [14] by considering multicavity limits to obtai® characteristic of a cavity that can hold at most a single par-
=d,+ D, + D,, with the contributions ticle [13] (of any species). Hence, the hard sphere FMT

Wfliz)(f)=w(2i)(r)r/r, VAV%)Z(r)=W(2i)(r)

rr 1/3
r2
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FIG. 1. Pair distribution functiong;;(r) for the m=2 compo-
nent WR model as obtained by density-functional the@yT)
compared to Monte Carlo simulatidMC) for #;=7,=0.1. The
symmetric,i =j, and asymmetric caseis¢ j, are shown.
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FIG. 2. Phase diagram of the=2 component WR model as a
function of relative concentratioé and total densityy as obtained
by DFT. The critical points from various approaches are indicated

by symbols: Monte CarldMC), mean-field theory(MFT), and

[12,14] is obtained. Next we consider the case that one of th&caled-particle theor{SPT).

components has a large densify> 7;,j>1, and the others
are at vanishing densityn;—0, so that 7* =31,
=const. Then we expect ideal particlas=(1) with density
7, mixed with effective one component hard sphef@s i
>1) at densityy*. This is precisely the behavior of the AO
colloid ideal-polymer mixturé¢20]. Indeed, the WR 0D free
energy reduces toBFop=(1—7n*—n.) In(1—7*)+ 7",

critical point at 7.;=0.278 (and ¢=1/2 due to symmetry
[3]) demixing happens. Upon increasing the density the co-
existence interval rapidly broadens. The critical density is
slightly higher than the results from mean-fieldy.f;
=0.25) and scaled-particley(,;;=0.228) theories. However,
the simulation values of Reff5] is 7= 0.3990, and of Ref.

which describes AO behavior, and the recently found DFT[7] 7= 0.3919(obtained from a linear fit to the data from
[19] for this model is recovered. The correct reduction of thefinite systemsare still significantly higher, and to the best of
WR functional in both limits demonstrates the internal con-our knowledge, no theory can account for this value. As
sistency of constructing DFTs from the OD limit of the un- concerns integral equatio§], Percus-Yevick(PY) theory

derlying model[22].

gives 7= 0.30(see Fig. 4 in Ref[5]) from the virial route.

Let us turn to the results. As a first test for the ability of This is slightly better than the current approach. The com-
the DFT to describe the WR model, we investigate the strucpressibility route, however, gives a value of about 0.55. It

tural correlations in the bulk fluid wittm=2 components.
To that end, we calculate the pair correlation functigpér)
from the direct correlation functions;j(r) using the

was found that self-consistent closures, like Rogers-Young,
do not improve much over this res(if]. We note that as the
present approach performs the approximation on the level of

Ornstein-Zernike relation. In order to compare these resultghe free energy functional, thermodynamics and structure are
we have carried out a canonical Monte Carlo simulation withconsistent, i.e., the structure factoBg(k) diverge for k
512 particles and fOmoves per particle. In Fig. 1 we com- —0 at the critical point obtained from the free energy.

pare both results. One observes that the clustering of like
species, as well as the depletion zone of unlike species near
contact are reproduced nicely by the DFT. The DFT, how-
ever, generally overestimates the correlations and a tiny ar-
tificial jump in g;;(r = o) appears, as well as negative values
of about—0.2 in the core regiom; <o. The overall agree-
ment is fair, given that following the OZ route is a severe test
for the functional. In accordance with integral equati¢Bp
the pair correlation functions do not exhibit oscillations, not
at short nor at long range. The latter behavior may be exam-
ined by an analysis of the poles of the structure factor in the
complex plandg23]. Here this is technically simple, as the
dependence on wave vector is analytically given. It turns out
that the leading contribution always comes from the pole
with vanishing real part, hence purely monotonic asymptotic
decay results.

The phase diagram fan=2 is depicted in Fig. 2 as a
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FIG. 3. Phase diagram of the WR model at equal concentrations

function of the total density; and the relative concentration 7 =7, as a function of total densityy and inverse number of

&=mn,/7n. For small» a mixed fluid is stable. Above the components h.
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For larger number of componert8], m>2, a rich vari-  Future investigations may treat the interface between de-
ety of phase transitions is expected, e.g.,rfoe 3 tricritical ~ mixed phases, and compare to the MFT resultaier2 [4]
points were found from a mean-field treatmg2t Here we andm=3 [10], as well as adsorption at walls or in pores.
restrict ourself to the equimolar case, and calculate the phadgirthermore, whether the current approach can be extended
transition between the mixed phase andlemixed phases; to treat the morphological modg24] constitutes an interest-
see Fig. 3. In accordance with previous findings the transilnd aspect.
tions are first order. The coexistence interval in density rap- On more general grounds, we conclude that fundamental
idly broadens upon increasing. Numerically, the mean- Mmeasures can be used SUCCGSSfl;l”y to construct DFTs. The
field result[2] for m=3 is »=0.3146-0.4789, whereas the fIrSt such theory was Rosenfeld's hard sphere functional
current theory gives lower values of=0.2815-0.3333, [12,14, which is by now well established and has been used

and the simulation value of a density within the CoeXiStenCFT[roeract)g:rinogesidn?if:rdr?a(r?:g rr?;;netlly, ogr]\eertrztﬁgesls PEGC}%E be
region[7] is 0.4162. ) Y, P p

In view of the successful treatment of the bulk propertles,and the Asakura-Oosawa mo_cﬂaaB]. The presen_t study_ adds
: . . ) another member to the family. How large this family can
especially the internal consistency, we are confident for fu- - ;
7 : o .~ actually become, still is an open question.

ture applications to inhomogeneous situations. A preliminary

investigation has shown that the DFT accounts for a crystal- | thank Bob Evans, Joe M. Brader, and Roland Roth for
line phase for largen, with multiply occupied lattice sites. many useful discussions and comments.
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