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Density functional for the Widom-Rowlinson model
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~Received 8 August 2000; published 19 December 2000!

We present a density functional theory for them-component Widom-Rowlinson model, for a mixture of
spherical particles where the unlike species interact with a hard-core potential and the interactions between like
species vanish. The functional is exact for small densities and in the zero-dimensional limit. It predicts the fluid
structure in good agreement with simulations and yields a continuous demixing phase transition form52. In
the limit of largem the Widom-Rowlinson model reduces to effective hard spheres in the mixed phase and the
Asakura-Oosawa~colloid-ideal polymer! model in the demixed phase. Within the present theory, both cases
are captured correctly. For intermediatem we find a first order demixing phase transition, with a rapidly
broadening density discontinuity upon increasingm.
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Whether two or more fluids are miscible is often an im
portant question, e.g., in engineering, physical chemistry
food science. From a physical point of view, many mu
component fluids will be in a single phase because of a g
in mixing entropy. Changing the thermodynamical variab
then may lead to demixing. There are~at least! two basic
mechanisms that explain the phase separation. One is
depletion interaction, where the presence of one of the c
ponents generates an effective attraction between particle
the other component~s!. The effective attraction accounts fo
the phase separation via the common entropy-versus-en
mechanism as is present in the gas-liquid transition of sim
liquids, say the Lennard-Jones system. The second me
nism for demixing lies in the relative strengths of repulsi
between like and unlike particles. If the unlike particles e
perience a stronger repulsion than the like ones, dem
phases are favored, at least at high density. The prototyp
this behavior is the Widom-Rowlinson~WR! model @1–4#.
There the interaction betweenm species is such that particle
of the same species do not interact; that is, are assumed
ideal, whereas the unlike species interact with a hard c
potential. It is clear that for high densities a mixed phase w
suffer from strong packing effects, which are greatly reduc
in a demixed phase with a single majority component.
low density the system reaches ideal gas behavior, which
course, will cause a mixed phase. The intervening ph
transition has been studied with a range of approaches
cluding mean-field theory~MFT! @4#, Percus-Yevick~PY!
integral equation theory@3,5#, scaled-particle theory~SPT!
@6#, as well as computer simulations@5,7,8#.

Essentially all theories give a demixing phase diagram
m52 with a lower critical point~as a function of total den
sity! and a rapidly broadening coexistence region upon
creasing density. The precise location of the critical po
was a matter of discussion since the introduction of
model, and it is remarkable that only recently two indepe
dent simulations located it about 50% higher than previou
thought@5,7#.

Obviously, the WR model does not possess a solid ph
for m52, as any possible solid is preempted by demixing
has been found, however, that for large number of com
nents m.31, a crystal becomes stable for parallel hyp
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cubes@9#. This is amixedphase, as only repulsion is presen
which is the essential ingredient for freezing. Apart from th
and the study of the free interface between demixed fl
phases@4,10#, little is known about inhomogeneous situ
tions. To study those, density-functional theory~DFT! @11#
can be an important tool. It accounts for spatially varyi
density profiles, and, in its sophisticated versions, for
structure at the two- and higher-body level. To our know
edge the WR model has so far resisted any DFT treatm
that goes beyond the MFT of Ref.@4#.

In this work, we propose an approximation for the dens
functional of the m-component WR model. It is a
fundamental-measure theory~FMT!, an approximation
scheme pioneered by Rosenfeld for hard spheres@12–14#,
and also applied to hard parallel cubes@15,16#, penetrable
spheres@17,18#, as well as to the Asakura-Oosawa~AO!
model @19#.

The pair correlationsderived from the functional are
found to be in good agreement with simulation results. T
m52 phase diagram is comparable in quality to other th
ries. Form>3, we find a first-order fluid demixing phas
transition, with an increasingly large coexistence interval~in
density! upon increasingm. We expect form→` hard
sphere behavior in the mixed phase and AO@20# behavior in
the demixed phase~with the majority component identified
as ideal polymer!. Indeed we find that the functional reduce
to the corresponding DFTs~Refs.@12,14#, and@19#, respec-
tively! for these systems.

Let us define the WR model as anm-component mixture
of spherical particles with radiiRi , and particle numbersNi
in a volumeV. The interaction pair potentialsf i j (r ) between
particles of speciesi 51, . . . ,Ni and j 51, . . . ,Nj are
f i i (r )50; andf i j (r )5`, if r ,Ri1Rj , iÞ j , and zero else
@21#. As reduced densities we use the packing fractions
each speciesi, given ash i54pNiRi

3/(3V), and define the
total packing fraction ash5( i 51

m h i .
Let us give an overview of our DFT. It is a weighte

density approximation. This means that in order to smo
the possibly highly inhomogeneous density fields, convo
tions with weight functions are performed. Here, the weig
functions describe the shape and geometrical propertie
©2000 The American Physical Society01-1
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the particles and are explicitly given. In particular, there i
set of weight functions~and correspondingly weighted den
sities! for each of the species. The transcription of t
weighted densities to the excess~over ideal gas! free energy
is done, as usual, via a free energydensity. Here this is an
ordinary function~not a functional! of the weighted densities
and is, again, explicitly known~up to a simple numerica
root finding problem!. Finally the total excess free energy
the inhomogeneous system is obtained as a spatial inte
over the free energy density.

In detail, we express the excess Helmholtz free energ

Fexc@r i~r !#5kBTE d3x F~$na
( i )~x!%!, ~1!

whereT is the absolute temperature, andkB is Boltzmann’s
constant. The reduced free energy densityF is a yet to be
determined function of a set of weighted densities$na

( i )(x)%,
where i labels the species anda the type of weighted den
sity. The weighted densities are obtained by convolution

na
( i )~x!5E d3r r i~r ! wa

( i )~x2r !. ~2!

As all nonvanishing interactions are hard-core, it is suffici
to take the usual FMT weight functions@12,14#

w3
( i )~r !5u~Ri2r !, w2

( i )~r !5d~Ri2r !, ~3!

wv2
( i )~r !5w2

( i )~r ! r /r , ŵm2
( i ) ~r !5w2

( i )~r !F rr

r 2
21̂/3G , ~4!

wherer 5ur u, u(r ) is the Heaviside step function,d(r ) is the
Dirac distribution, and1̂ is the identity matrix. Further, lin-
early dependent, weights arew1

( i )(r )5w2
( i )(r )/(4pRi),

wv1
( i )(r )5wv2

( i )(r )/(4pRi),w0
( i )(r )5w1

( i )(r )/Ri . The weight
functionswa

( i ) are quantities with dimension of length32a.
They differ in their tensorial rank:w0

( i ) ,w1
( i ) ,w2

( i ) ,w3
( i ) are

scalars;wv1
( i ) ,wv1

( i ) are vectors;ŵm2
( i ) is a~traceless! matrix. The

subscript letters help identifying the rank.
We determine the functional dependence ofF on the

weighted densities by imposing the exact crossover to z
dimensions ~0D!. This situation is modeled byr i(r )
5h id(r ), where the packing fractionsh i describe the aver
age occupation numbers of particlesi in a cavity of radiusRi
@13#. The exact grand partition sum for the WR model in th
situation is

J512m1(
i 51

m

exp~zi !, ~5!

wherezi is the fugacity of speciesi. Inverting the thermody-
namical relation h i5zi] ln J/]zi , we obtain the exces
chemical potentialsm0d,i5kBT ln(zi /hi) as a function of the
set of h i . Integrating with respect to density yields the 0
excess free energyF0D($h i%). We follow recent treatments
of FMT @14# by considering multicavity limits to obtainF
5F11F21F3, with the contributions
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n0
( i ) w i~$n3

( l )%!, ~6!

F25 (
i , j 51

m

~n1
( i )n2

( j )2nv1
( i )
•nv2

( j )! w i j ~$n3
( l )%!, ~7!

F35
1

8p (
i , j ,k51

m

~n2
( i )n2

( j )n2
(k)/32n2

( i ) nv2
( j )
•nv2

(k)

13@nv2
( i )m̂m2

( j ) nv2
(k)2tr~ n̂m2

( i ) n̂m2
( j ) n̂m2

(k) !#/2! w i jk~$n3
( l )%!,

~8!

where tr denotes the trace. Derivatives of the 0D free ene
are w i , . . . ,k($h l%)[]mbF0d($h l%)/]h i . . . ]hk , where b
51/kBT. This completes the prescription for the function
Note that the weight functionswa

( i ) are constructed to recove
the Mayer bond for low densities as well as to gain cont
over the 0D limit. The thermodynamical input into the DF
solely stems from the 0D statistics, Eq.~5!.

Let us investigate some of the properties of the function
First, the thermodynamics and structural correlations of
mogeneous phases,r i5const, are an output of the theory. I
this case the weighted densities, Eq.~2!, are obtained as
n3

( i )5h i , n2
( i )53h i /Ri , n1

( i )53h i /(4pRi
2), n0

( i )53h i /
(4pRi

3). The nonscalar contributions vanish,nv1
( i )5nv2

( i )

5n̂m2
( i ) 50. Inserting this into Eqs.~6!–~8! gives the bulk free

energy. Furthermore, the~bulk! direct correlation functions
can obtained asci j (r )5(ag]2F/(]na

( i )]ng
( j )) wa

( i )* wg
( j ) ,

where * denotes the convolution.
Second, the excess free energy densityF can be calcu-

lated analytically in the case of equal~inhomogeneous! den-
sity profiles,r i(r )5r j (r ). This is valid for equal sizes,Ri
5Rj , equal chemical potentials,m i5m j , and equal externa
potentials acting on speciesi and j. Furthermore the system
is assumed to be in a mixed phase. Then an effective o
component functional of the total densityr(r )5mr i(r )
is obtained. The weighted densities arena

(total)5mna
( i ) ,

and the expressions for the free energy dens
are ]bF0D /]h5 ln@m2(m w/h)#, ]2bF0D /]h25w/
(h2w h), ]3bF0d/]h35w @(w22) w1h#/@(w21)3 h2#,
with w5W@h e2h(12m21)#, where W(z) is product log
function, i.e., the solution ofz5W exp(W). In general, how-
ever, the above assumptions do not hold, andr i(r )Þr j (r ).
Then them0D,i ~andF0D) need to be found numerically.

Third, for large number of components,m→`, and fixed
total densityh, we consider two cases where the WR mod
reduces to~simpler! effective one- or two-component sys
tems, if the partial densities~or chemical potentials! are cho-
sen appropriately. For equal partial densitiesh i5h j , we ex-
pect hard sphere behavior, because each component
vanishing concentration, so that the ideality between l
species is negligible, and only the hard cores between un
species remain. The 0D statistics@Eq. ~5!# takes care of this
fact and we recoverbF0d5(12h) ln(12h)1h, which is
characteristic of a cavity that can hold at most a single p
ticle @13# ~of any speciesi ). Hence, the hard sphere FM
1-2
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@12,14# is obtained. Next we consider the case that one of
components has a large densityh1@h j , j .1, and the others
are at vanishing densityh j→0, so that h* 5( i 52

m h i

5const. Then we expect ideal particles (i 51) with density
h1 mixed with effective one component hard spheres~all i
.1) at densityh* . This is precisely the behavior of the AO
colloid ideal-polymer mixture@20#. Indeed, the WR 0D free
energy reduces tobF0D5(12h* 2h1) ln(12h* )1h* ,
which describes AO behavior, and the recently found D
@19# for this model is recovered. The correct reduction of t
WR functional in both limits demonstrates the internal co
sistency of constructing DFTs from the 0D limit of the u
derlying model@22#.

Let us turn to the results. As a first test for the ability
the DFT to describe the WR model, we investigate the str
tural correlations in the bulk fluid withm52 components.
To that end, we calculate the pair correlation functionsgi j (r )
from the direct correlation functionsci j (r ) using the
Ornstein-Zernike relation. In order to compare these resu
we have carried out a canonical Monte Carlo simulation w
512 particles and 105 moves per particle. In Fig. 1 we com
pare both results. One observes that the clustering of
species, as well as the depletion zone of unlike species
contact are reproduced nicely by the DFT. The DFT, ho
ever, generally overestimates the correlations and a tiny
tificial jump in gii (r 5s) appears, as well as negative valu
of about20.2 in the core region,r ,s. The overall agree-
ment is fair, given that following the OZ route is a severe t
for the functional. In accordance with integral equations@5#
the pair correlation functions do not exhibit oscillations, n
at short nor at long range. The latter behavior may be ex
ined by an analysis of the poles of the structure factor in
complex plane@23#. Here this is technically simple, as th
dependence on wave vector is analytically given. It turns
that the leading contribution always comes from the p
with vanishing real part, hence purely monotonic asympto
decay results.

The phase diagram form52 is depicted in Fig. 2 as a
function of the total densityh and the relative concentratio
j5h1 /h. For small h a mixed fluid is stable. Above the

FIG. 1. Pair distribution functionsgi j (r ) for the m52 compo-
nent WR model as obtained by density-functional theory~DFT!
compared to Monte Carlo simulation~MC! for h15h250.1. The
symmetric,i 5 j , and asymmetric cases,iÞ j , are shown.
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critical point at hcrit50.278 ~and j51/2 due to symmetry
@3#! demixing happens. Upon increasing the density the
existence interval rapidly broadens. The critical density
slightly higher than the results from mean-field (hcrit
50.25) and scaled-particle (hcrit50.228) theories. However
the simulation values of Ref.@5# is hcrit50.3990, and of Ref.
@7# hcrit50.3919~obtained from a linear fit to the data from
finite systems! are still significantly higher, and to the best o
our knowledge, no theory can account for this value.
concerns integral equations@5#, Percus-Yevick~PY! theory
giveshcrit50.30~see Fig. 4 in Ref.@5#! from the virial route.
This is slightly better than the current approach. The co
pressibility route, however, gives a value of about 0.55
was found that self-consistent closures, like Rogers-You
do not improve much over this result@5#. We note that as the
present approach performs the approximation on the leve
the free energy functional, thermodynamics and structure
consistent, i.e., the structure factorsSi j (k) diverge for k
→0 at the critical point obtained from the free energy.

FIG. 3. Phase diagram of the WR model at equal concentrat
h i5h j as a function of total densityh and inverse number o
components 1/m.

FIG. 2. Phase diagram of them52 component WR model as
function of relative concentrationj and total densityh as obtained
by DFT. The critical points from various approaches are indica
by symbols: Monte Carlo~MC!, mean-field theory~MFT!, and
scaled-particle theory~SPT!.
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For larger number of components@9#, m.2, a rich vari-
ety of phase transitions is expected, e.g., form53 tricritical
points were found from a mean-field treatment@2#. Here we
restrict ourself to the equimolar case, and calculate the ph
transition between the mixed phase andm demixed phases
see Fig. 3. In accordance with previous findings the tra
tions are first order. The coexistence interval in density r
idly broadens upon increasingh. Numerically, the mean-
field result@2# for m53 is h50.314620.4789, whereas the
current theory gives lower values ofh50.281520.3333,
and the simulation value of a density within the coexisten
region @7# is 0.4162.

In view of the successful treatment of the bulk properti
especially the internal consistency, we are confident for
ture applications to inhomogeneous situations. A prelimin
investigation has shown that the DFT accounts for a crys
line phase for largem, with multiply occupied lattice sites
m

y

.
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Future investigations may treat the interface between
mixed phases, and compare to the MFT results form52 @4#
and m53 @10#, as well as adsorption at walls or in pore
Furthermore, whether the current approach can be exten
to treat the morphological model@24# constitutes an interest
ing aspect.

On more general grounds, we conclude that fundame
measures can be used successfully to construct DFTs.
first such theory was Rosenfeld’s hard sphere functio
@12,14#, which is by now well established and has been us
for over one decade. Only recently, other models could
treated in a similar manner, namely, penetrable spheres@17#
and the Asakura-Oosawa model@19#. The present study add
another member to the family. How large this family ca
actually become, still is an open question.

I thank Bob Evans, Joe M. Brader, and Roland Roth
many useful discussions and comments.
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