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We investigate gauge invariance against phase space shifting in nonequilibrium systems, as rep-
resented by time-dependent many-body Hamiltonians that drive an initial ensemble out of thermal
equilibrium. The theory gives rise to gauge correlation functions that characterize spatial and tem-
poral inhomogeneity with microscopic resolution on the one-body level. Analyzing the dynamical
gauge invariance allows one to identify a specific localized shift gauge current as a fundamental
nonequilibrium observable that characterizes particle-based dynamics. When averaged over the
nonequilibrium ensemble, the shift current vanishes identically, which constitutes an exact nonequi-
librium conservation law that generalizes the Yvon-Born-Green equilibrium balance of the vanishing
sum of ideal, interparticle, and external forces. Any given observable is associated with a correspond-
ing dynamical hyperforce density and hypercurrent correlation function. An exact nonequilibrium
sum rule interrelates these one-body functions, in generalization of the recent hyperforce balance for
equilibrium systems. We demonstrate the physical consequences of the dynamical gauge invariance
using both harmonically confined ideal gas setups, for which we present analytical solutions, and
molecular dynamics simulations of interacting systems, for which we demonstrate the shift current
and hypercurrent correlation functions to be accessible both via finite-difference methods and via
trajectory-based automatic differentiation. We show that the theory constitutes a starting point for
developing nonequilibrium reduced-variance sampling algorithms and for investigating thermally-
activated barrier crossing.

I. INTRODUCTION

Gauge invariance is one of the arguably most pow-
erful construction principles of theoretical physics, with
profound consequences that range from classical electro-
dynamics to the standard model of particle physics and
beyond. The gauge freedom in a given theory is inti-
mately linked to the validity of exact relationships, which
typically possess the form of conservation laws, such as
those for electrical and more general charges in the above
fundamental theories. The link between the gauge free-
dom and the associated conservation laws is provided by
Noether’s theorem of invariant variations [1–4]. In a typ-
ical setting, one applies the theorem to an action func-
tional, which serves the dual purpose of generating the
dynamics from an associated variational principle and
providing the conservation laws via the gauge freedom.

For the deterministic dynamics of particle-based sys-
tems a range of variational approaches exists, perhaps
most notably in the form of Hamilton’s principle of sta-
tionary action [5]. A statistical mechanical description
of the dynamics is then typically based on the Liou-
ville equation for the time evolution of the many-body
probability distribution on phase space [6, 7]. While
direct numerical solution of the Liouville equation for
realistic systems comes at prohibitive cost, trajectory-
based molecular dynamics simulations provide a power-
ful alternative [7–9]. Corresponding theoretical develop-
ments in nonequilibrium statistical mechanics [6, 7] are
based on a range of techniques and coarse-graining strate-
gies [10], including mode-coupling theory of the glass
transition [11, 12], stochastic thermodynamics and its as-
sociated fluctuation theorems [13], as well as dynamical
density [14–17] and power functional theory [18–21].

The dynamical behaviour and nonequilibrium phenom-
ena that occur in soft matter systems encompass a broad
spectrum of physical systems and effects [7, 22]. Rep-
resentative topical examples include the emergence of
solitons under overdamped Brownian dynamics [23], the
physics of dynamical exclusion processes [24], the dynam-
ics of confined electrolytes [25], the non-trivial properties
of the electrical noise at the nanoscale [26, 27], the ag-
ing of glasses [28], and features of memory in generalised
Langevin dynamics [29].

Owing to the significant increase of the degree of com-
plexity of the nonequilibrium problem over the equilib-
rium physics, the body of available exact dynamical re-
sults is arguably less well developed than in equilibrium,
where a breadth of statistical mechanical sum rules is
available [7, 14, 30–34]. Notable fundamental relations
that are relevant in nonequilibrium include the Yvon the-
orem [7, 11, 35], as is based on partial integration on
phase space, and Hirschfelder’s hypervirial theorem [36]
which generalizes the standard virial theorm [7] to ar-
bitrary observables. Furthermore, stochastic thermody-
namics provides a significant body of fluctuation theo-
rems and further results [13].

Noether’s theorem [1–4] has only recently been ap-
plied to statistical physics as a systematic construction
principle within a variety of theoretical approaches [37–
46]. In particular, based on a specific ‘shifting’ operation
on phase space, a broad range of equilibrium statisti-
cal mechanical sum rules could both be reproduced and
extended [47–56]. The underlying localized shifting op-
eration on phase space was identified subsequently as a
gauge transformation of equilibrium statistical mechan-
ics [55, 56]; see Refs. [57, 58] for recent popular accounts.
In equilibrium, making use of the nontrivial Lie algebra
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structure gives a promising perspective on the future de-
velopment of novel equilibrium sampling methods and
exact sum rule construction [55, 56].

Here we investigate the consequences of the statistical
mechanical gauge invariance for the dynamics of particle-
based systems in general nonequilibrium setups, as de-
scribed by the Liouville equation. We introduce dynam-
ical versions of the static differential shifting operators
[55, 56]. These allow one, upon systematic analysis of
the effects of dynamic shifting on the temporal propaga-
tion of dynamical averages, to derive and to validate very
general exact nonequilibrium sum rules. These identities
interrelate specific gauge correlation functions that pos-
sess microscopically sharp dependence on position and
on time. In particular the shift current, the dynami-
cal hyperforce density, and the hypercurrent correlation
function emerge naturally in the theory and they are in-
terrelated by exact nonequilibrium sum rules. The limit
of equilibrium dynamics constitutes a special, yet non-
trivial case, as we demonstrate. A central mechanism of
the framework is a specific differential operation induced
by the time evolution of the initial equilibrium ensemble,
see Fig. 1 for an illustration.

As a simple yet useful and analytically tractable toy
model, we apply the dynamical gauge framework to the
harmonically confined ideal gas where switching at an ini-
tial time generates a nonequilibrium situation. Analyz-
ing the gauge correlation functions provides deep insight
into the motion of the ensemble. Even when reduced to
equilibrium, the theory yields nontrivial insight into the
thermal dynamics. To address the behaviour of systems
of mutually interacting particles, we demonstrate that re-
sults for the relevant shift and hypercurrent correlation
functions are accessible in molecular dynamics.

The access to the gauge correlation functions in molec-
ular simulations is provided by implementing differentia-
tion with respect to the initial state. Automatic differen-
tiation [59] is a natural choice for realizing this operation,
and it has gained much recent popularity, as it allows
one to access with great ease derivatives that are oth-
erwise out of practical reach of symbolic differentiation,
whether via pencil and paper or algorithmically assisted.
The method does not suffer from the drawbacks of nu-
merical finite-difference schemes and it has been used to
great effect in molecular dynamics simulations in recent
work addressing design and optimal control tasks [60–
63], as well as in the implementation of functional cal-
culus based on analytical [64, 65] and machine-learned
neural density functionals [65–76]. Here we exploit that
the dynamical gauge invariance is inherently linked to a
specific initial state derivative of the nonequilibrium dy-
namics. We also demonstrate the alternative accessibility
of all gauge correlation functions via finite-difference dif-
ferentiation, which works universally with no need for
specialized compute environment.

The paper is organized as follows. In Sec. II we de-
scribe the particle-based classical statistical mechanics,
including the setup for the Hamiltonian in Sec. II A and

the Liouvillian formulation of the dynamics in Sec. II B.
We lay out the microscopically resolved one-body equa-
tion of motion in Sec. II C and describe the standard
realization of the dynamics via many-body trajectories
in Sec. IID.
The dynamical gauge invariance theory is developed

in Sec. III, starting with an elementary derivation of
an exact dynamical shift current sum rule in Sec. III A.
We then address the deeper mechanism underlying this
derivation by formalizing the phase space shifting on
the basis of Poisson brackets in Sec. III B. The Poisson
bracket formulation is then used to generalize to dynami-
cal phase space shifting and thus to formulate dynamical
gauge invariance in Sec. III C, which allows one to derive
exact hypercurrent sum rules that apply to general ob-
servables under nonequilibrium dynamics, as described in
Sec. IIID. The connection to a specific initial-state time
derivative is presented in Sec. III E. The relevance for
trajectory-based simulations is described in Sec. III F. We
illustrate the general theory by making specific choices
for relevant hyperobservables in Sec. IIIG.
We present applications of the general gauge theory

in Sec. IV. We first demonstrate that in equilibrium the
formalism recovers correctly the static hyperforce the-
ory [54–56], while providing additional nontrivial tem-
poral insight, as presented in Sec. IVA. As an initial
concrete toy model that permits analytical solution, we
consider harmonically confined noninteracting particles
in Sec. IVB. To address mutually interacting systems,
we turn to simulations and use molecular dynamics to-
gether with initial state differentiation implemented via
automatic or finite-difference derivatives to access the
shift current and hypercurrent correlation functions in
Sec. IVC. The framework allows one to address the con-
struction of nonequilibrium reduced-variance estimators
and to shed new light on the classical barrier crossing
problem. We give conclusions in Sec. V.

II. STATISTICAL MECHANICS

A. Microscopic many-body model

We consider classical systems of N particles with po-
sition coordinates r1, . . . , rN ≡ rN and momentum vari-
ables p1, . . . ,pN ≡ pN , where rN and pN are shorthand
notations. The Hamiltonian is taken to possess the stan-
dard form

H =
∑
i

p2
i

2m
+ u(rN ) +

∑
i

Vext(ri), (1)

where the summation index i = 1, . . . , N runs over all N
particles, m denotes the particle mass, u(rN ) is the in-
terparticle interaction potential, and Vext(r) is an exter-
nal potential, here expressed as a function of the generic
position variable r. The initial state at times t < 0 is
characterized by a stationary Hamiltonian H0, where the
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FIG. 1. Illustration of the temporal structure of the nonequi-
librium gauge theory. The initial state is in thermal equilib-
rium at inverse temperature β up to time 0, with the dynamics
being governed by the stationary Liouvillian L0 (orange ver-
tical arrow). The time-dependent Liouvillian L(t) then cre-
ates nonequilibrium dynamics (magenta horizontal arrows) at
times t ≥ 0.

mass m0, interparticle potential u0(r
N ), and external po-

tential Vext,0(r) are all explicitly time-independent, as is
indicated by the subscript 0. Per construction the initial
system possesses a well-defined thermal equilibrium, as
described below. For times t ≥ 0, general explicit time-
dependence in Eq. (1) can occur. This includes temporal
variation of the mass m, of the interparticle interaction
potential u(rN ), and of the external potential Vext(r);
here and throughout we suppress mere parametric de-
pendence on time t in the notation and reserve all time
arguments to denote dynamical dependence, as it is in-
duced by the particle motion.

The switching at t = 0 need not be smooth and hence
a discontinuity may occur such that in general we allow
for: limt→0+ H ̸= H0. That the initial state Hamilto-
nian H0 and the nonequilibrium time evolution generator
H can in general differ from each other allows for flex-
ible modelling of a broad range of situations. Thereby
the initial many-body phase space probability distribu-
tion f0(r

N ,pN ) is taken to be in thermal equilibrium,
as characterized by the canonical ensemble for the given
form of H0. Hence as a function of the phase space point
rN ,pN we have:

f0(r
N ,pN ) =

e−βH0

Z0
, (2)

where β = 1/(kBT ), with Boltzmann constant kB , abso-
lute temperature T of the initial state, and the (scaled)
canonical partition sum Z0 = Tr e−βH0 . The normaliza-
tion is such that Tr f0 = 1, where the canonical ‘trace’
is the phase space integral over all degrees of freedom:
Tr · =

∫
dr1 . . . drNdp1 . . . dpN ·. The partition sum in

standard form is then Z0/(h
dNN !) with Planck constant

h and dimensionality d.
As a special case, the present dynamical setup includes

the switching at time t = 0 from an initial Hamiltonian
H0 to a different Hamiltonian H ̸= H0, where H however
is also taken to be stationary. Then the system charac-
terized by H is driven out of its associated equilibrium
already at the initial time, which forms a common situa-
tion, e.g. when applying linear response theory [6].

B. Phase space time evolution and dynamical
averages

The time evolution of the dynamical probability distri-
bution function f(rN ,pN , t) is governed by the Liouville
equation ∂f(t)/∂t = −Lf(t), where we have left away
the dependence on the phase space variables rN ,pN in
the notation. The Liouvillian L is the phase space differ-
ential operator given via Poisson brackets by:

L = { · , H}. (3)

The Poisson bracket { · , · } of two general phase space
functions g and h is thereby defined [5] as:

{g, h} =
∑
i

( ∂g

∂ri
· ∂h

∂pi
− ∂g

∂pi
· ∂h
∂ri

)
. (4)

In our chosen setup, the time evolution for t < 0 is gov-
erned by the stationary Liouvillian L0 = { · , H0}, where
we recall that H0 carries no explicit time dependence and
that in general H0 ̸= H(0+). At later times t ≥ 0 any po-
tentially occurring parametric dependence of H on time t
is passed on to L in Eq. (3); as noted above we suppress
the parametric dependence on time throughout in the no-
tation, such that time arguments denote exclusively the
dynamical dependence.
Due to the specific additive structure of the Hamilto-

nian (1), the Liouvillian L consists correspondingly of a
sum of ideal (kinetic), interparticle, and external contri-
butions according to

L = Lid + Lint + Lext. (5)

Inserting the general form of the Hamiltonian (1) into
the generic Poisson bracket form of the Liouvillian (3)
gives explicit expressions for the three contributions in
the Liouvillian splitting (5). Thereby the ideal part
is Lid =

∑
i(pi/m) · ∇i as is generated by the ki-

netic energy in Eq. (1), the interparticle part is Lint =
−∑

i[∇iu(r
N )] · ∇pi

, and the external contribution is
Lext = −∑

i[∇iVext(ri)] · ∇pi
, and the latter two forms

arise, respectively, from the interparticle potential u(rN )
and external potential energy

∑
i Vext(ri) in Eq. (1).

Forces are generated from position gradients, where∇i =
∂/∂ri denotes the derivative with respect to position ri
and ∇pi

= ∂/∂pi is the partial derivative with respect
to the momentum of particle i.
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The Liouvillian splitting (5) into its constituent parts
follows a standard scheme. A prominent example is
the derivation of the celebrated velocity Verlet algorithm
[8, 77], starting from the Trotter expansion of the prop-
agator [7], which we briefly relate to. In the notation of
Ref. [7], the Liouvillian is decomposed as L = iLr + iLp,
with the position contribution iLr = Lid and the mo-
mentum part iLp = Lint + Lext, where by convention
the imaginary unit i is included [10]. This further split-
ting of iLp into interparticle (Lint) and external contri-
butions (Lext) follows naturally from the additive form
of the Hamiltonian (1).

Formally, the many-body probability distribution f(t)
that solves the Liouville equation can be expressed as

f(t) = U(t, 0)f0, (6)

where U(t, 0) denotes the propagator that performs the
time evolution from time 0 to time t. The propagator

can be expressed as U(t, 0) = e
∫ t
0
dt′L′

+ , where e+ de-
notes the positively time-ordered exponential [78] and
L′ denotes the Liouvillian (3), which is parametrically
evaluated at time t′. Per construction U(0, 0) = 1 such
that f(0) = U(0, 0)f0. Working with the propagator
U(t, 0) is a powerful formal method that we rely on in the
following. The equivalent and arguably more intuitive
trajectory-based picture of the Hamiltonian dynamics is
laid out below in Sec. IID.

Any general phase space function Â(rN ,pN ) that acts
as an observable of interest acquires dynamical time de-
pendence, as generated from the motion in the system,
via

Â(t) = U†(t, 0)Â, (7)

where the dagger indicates the adjoint; here the ad-
joint of an operator O is defined in the standard way
as: Tr gOh = TrhO†g, where we recall g and h be-
ing two phase space functions and Tr indicating the
full phase space integral. The propagator U(t, 0) and
its adjoint U†(t, 0) are inverse of each other, such that
U(t, 0)U†(t, 0) = 1 and U†(t, 0)U(t, 0) = 1, as is charac-
teristic of unitary time evolution.

We have left away the phase space arguments for
brevity of notation. More explicitly, the variable
Â(rN ,pN ) on the right hand side of Eq. (7) represents
both the observable itself as well as its value at the ini-
tial microstate rN ,pN [6]. Using a quantum analogy, Â
is a Schrödinger observable. Then the corresponding dy-
namical Heisenberg observable Â(rN ,pN , t) is given via

Eq. (7). In the present classical context Â(rN ,pN , t) con-
stitutes the value that the observable attains at time t,
given the specific trajectory that started at rN ,pN at
the initial time [6], as is laid out further in Sec. IID.

Hence Â(t) = Â(rN ,pN , t) remains dependent on the
initial state, which will be important in the development
of the dynamical gauge theory in Sec. III.

The Liouville equation for general Heisenberg observ-
ables is ∂Â(t)/∂t = L(t)Â(t), where the time-evolved Li-

ouvillian L(t) is obtained from L, as defined via Eq. (3),
by:

L(t) = U†(t, 0)LU(t, 0). (8)

An alternative form to Eq. (8) is obtained by using
Poisson brackets: L(t) = { · , H(t)}, where the tempo-
rally evolved form of the Hamiltonian is obtained ac-
cording to the standard form of a Heisenberg observable
as H(t) = U†(t, 0)H, with all parametric time depen-
dences being evaluated at time t and suppressed in the
notation. Time-resolved averages are then obtained as
A(t) = ⟨Â(t)⟩ = Tr f0Â(t), which can equivalently be

written as A(t) = Tr f(t)Â.
The present formalism for the dynamics on the full

many-body level requires one to choose a coarse-graining
strategy to proceed in formulating a statistical mechani-
cal description.

C. One-body level of correlation functions

We work with microscopic resolution, using the clas-
sical operators (phase space functions) for the one-body
density, ρ̂(r) =

∑
i δ(r − ri), and for the one-body cur-

rent,

Ĵ(r) =
∑
i

δ(r− ri)
pi

m
, (9)

where δ(·) denotes the Dirac distribution in d dimen-
sions. We first lay out the standard derivation of the
dynamical one-body force density balance, which consti-
tutes Newtons’ second law in the present context [18].
The Heisenberg observable for the current (momentum

density) is obtained as mĴ(r, t) = U†(t, 0)mĴ(r) and it

satisfies the Liouville equation of motion ∂mĴ(r, t)/∂t =

L(t)mĴ(r, t). Explicit calculation of the latter right hand
side yields the Heisenberg force density observable:

F̂(r, t) = L(t)mĴ(r, t). (10)

where F̂(r, t) = U†(t, 0)F̂(r). Using the splitting (5) of

the Liouvillian, the force density F̂(r) can be decom-
posed correspondingly into ideal (or kinetic), interpar-

ticle, and external parts: F̂(r) = ∇ · τ̂ (r) + F̂int(r) −
ρ̂(r)∇Vext(r), with the kinetic stress operator τ̂ (r) =
−∑

i δ(r− ri)pipi/m, the interparticle force density op-

erator F̂int(r) = −∑
i δ(r − ri)∇iu(r

N ), and the exter-
nal force field −∇Vext(r) and we recall that ρ̂(r) denotes
the microsopically-resolved density operator defined in-
line above Eq. (9). As before, any parametric dependence
of m,u(rN ), and Vext(r) on time t remains suppressed
here and throughout in the notation.
We address the dynamics by considering

∂mĴ(r, t)/∂t = L(t)mĴ(r, t) = U†(t, 0)LmĴ(r) =

U†(t, 0)F̂(r), where we have first written out L(t) via
Eq. (8), then used the identity U(t, 0)U†(t, 0) = 1 and
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have identified F̂(r) = LmĴ(r). Averaging over the
initial distribution f0 and using the decomposition (5)
then yields the one-body equation of motion [18]:

Fid(r, t) + Fint(r, t) + Fext(r, t) =
∂mJ(r, t)

∂t
, (11)

where the ideal (kinetic) force density is Fid(r, t) =
∇ · ⟨τ̂ (r, t)⟩, the interparticle force density is Fint(r, t) =

⟨F̂int(r, t)⟩, and the external force density is Fext(r, t) =
−ρ(r, t)∇Vext(r, t). Here the dynamical density profile
is ρ(r, t) = ⟨ρ̂(r, t)⟩ and the mean one-body current on

the right hand side of Eq. (11) is J(r, t) = ⟨Ĵ(r, t)⟩ with
the Heisenberg current observable given below Eq. (9).
We recall that averages are built in the standard way as
⟨ · ⟩ = Tr f0 · , see Sec. II B.

Turning to the initial system, which is in thermal equi-
librium according to f0 given by Eq. (2), the general dy-
namical force density balance (11) reduces to the static
force density relationship F0(r) = 0, which can be de-
composed as

Fid,0(r) + Fint,0(r) + Fext,0(r) = 0, (12)

where explicitly the three terms are: Fid,0(r) = ∇ ·
Tr f0τ̂ (r), Fint,0(r) = −Tr f0

∑
i δ(r − ri)∇iu0(r

N ), and
Fext,0(r) = −ρ0(r)∇Vext,0(r), with the initial state den-
sity profile ρ0(r) = Tr f0ρ̂(r). The static force density
balance (12) is often refered to as Yvon-Born-Green equa-
tion [35, 79], in particular for systems that interact by
pairwise interparticle force only, such that Fint,0(r) can
be written as an integral over the two-body density dis-
tribution [7, 14].

D. Trajectories and initial-state differentiation

The Liouvillian dynamics described in Sec. II B can be
complemented usefully by a formulation that is more ex-
plicitly based on trajectories. This setup can both guide
intuition and provide a practical route to constructing
analytical solutions and performing simulation work, as
will prove useful below. When working with individual
trajectories, the two relevant tasks are to realize initial
states according to the distribution function f0(r

N ,pN )
and further to obtain a representation of the trajectories
r̂i(t), p̂i(t) for all particles i = 1, . . . , N . While for very
simple systems analytical work is possible (an example is
presented in Sec. IVB), in general and for realistic sys-
tems of interest one needs to rely on simulations.

Generating the initial distribution of mi-
crostates f0(r

N ,pN ) according to the canonical
ensemble form (2) is a standard task, which can be
efficiently performed via Monte Carlo simulations for
the given choice of the initial Hamiltonian H0 and
prescribed value of the inverse temperature β. We recall
that the choice of initial Hamiltonian is independent
of the subsequent time evolution based on H, where
in general H ̸= H0. Then, to address the dynamics

the verlocity Verlet algorithm [7, 8] is an apt choice to
integrate Hamilton’s equations of motion and hence to
obtain trajectories r̂i(r

N ,pN , t) and p̂i(r
N ,pN , t) for

all particles i = 1, . . . , N , starting from the initial state
rN ,pN .
General Heisenberg observables Â(t) can then be rep-

resented by Â(rN ,pN , t) = Â(r̂N (t), p̂N (t)), where we
recall that the phase space point rN ,pN on the left hand
side is the initial state. On the right hand side the
Schrödinger observable Â is evaluated at the phase space
point r̂N (t), p̂N (t), which is the configuration that the
system has reached at time t.
As an important computational point, we demonstrate

below that this interpretation gives immediate and prac-
tical access to derivatives with respect to the initial state.
This will be key for evaluating the arising gauge cor-
relation functions, as laid out in Sec. III, in simulation
work. In particular, the task within the gauge corre-
lation framework is to implement a specific initial-state
time derivative according to the action of the initial-state
Liouvillian L0, see below for further details. In practice,
the differentiation can be performed via a finite-difference
scheme by altering the state according to the initial state
dynamics and rerunning the simulation. As a numer-
ically robust alternative, the powerful methodology of
automatic differentiation can be leveraged. This tech-
nique gives access to the (2Nd)× (2Nd) Jacobian matrix
∂(r̂N (t), p̂N (t))/∂(rN ,pN ), from which the initial-state
time derivative follows naturally as further laid out in
Sec. III E. An illustration of the underlying concepts is
shown in Fig. 2.

III. DYNAMICAL GAUGE INVARIANCE

A. Exact shift current sum rule as a prototype

We complement the standard dynamical one-body pic-
ture described in Sec. II C by rather letting the initial
time evolution act on the current operator at time t.
Hence we apply the thermally scaled initial state Liou-
villian βL0 to the nonequilibrium phase space current:

Ĉ(r, t) = βL0mĴ(r, t). (13)

We thereby recall the Schrödinger definition (9) of the

current observable Ĵ(r) and that the dependence on the
phase space point, suppressed in the above notation of
the Heisenberg current Ĵ(r, t), describes the initial mi-
crostate rN ,pN on which βL0 acts in Eq. (13).

As we demonstrate, the present strategy is both con-
ceptually and in practice distinct from the conven-
tional time evolution generated by L(t), thus leading
to new insight that emerges from introducing the clas-
sical ‘shift current’ observable Ĉ(r, t) via Eq. (13). As
an illustration, we spell this out more explicity, us-
ing Ĵ(r, t) = U†(t, 0)Ĵ(r) as the temporally evolved
current (9), which upon insertion into Eq. (13) yields
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FIG. 2. Illustration of the different types of time evolution
as represented by N -body trajectories on phase space. The
initial state dynamics are governed by the initial state Liou-
villian L0, as represented by one specific trajectory (dark blue
curve on the left). Each point on this trajectory serves as an
initial state for the nonequilibrium time evolution (magenta
arrows in the middle). These dynamics are transported by
the adjoint propagator U†(t, 0) forward in time and U(t, 0)
performs the inverse operation (light blue dashed arrow to the
left). The initial state trajectory is mapped via U†(t, 0) onto
a specific trajectory (orange curve on the right) along which
dynamical gauge invariance applies.

Ĉ(r, t) = βL0 U†(t, 0)
∑

i δ(r − ri)pi. The latter form
makes explicit: i) that the mass m cancels out from the

definition of Ĉ(r, t); ii) that the initial state Liouvillian
L0 acts after the adjoint propagator U†(t, 0) does – we
return to the significance of this temporal structure when
discussing the trajectory level in Sec. III F; and iii) that
at the initial time t = 0 the shift current reduces to the
scaled force density, Ĉ(r, 0) = βF̂0(r), as follows from
Eq. (10) and where again the subscript 0 indicates the
application to the initial state.

We turn to the statistical mechanical consequences
that are implied by the shift current observable (13).
The mean one-body shift current C(r, t) follows via

averaging Eq. (13) according to C(r, t) = ⟨Ĉ(r, t)⟩
= Tr f0βL0mĴ(r, t). Spelling out the Poisson bracket
form of the initial state Liouvillian L0 = { · , H0} gives

C(r, t) = Tr f0{mĴ(r, t), βH0}. Applying the chain
rule to the exponential form of the initial state equilib-
rium distribution function f0(r

N ,pN ) leads to C(r, t) =

−Tr {mĴ(r, t), f0} = 0. That the result vanishes follows
from the general property of the phase space integral of
any Poisson bracket vanishing, Tr {g, h} = 0, as is readily
seen via integration by parts on phase space (for g and h
being well behaved).

In summary, we have shown that the average of the
shift current (13) vanishes,

C(r, t) = 0, (14)

which is an exact nonequilibrium sum rule. We express

this identity by splitting the left hand side into three
contributions:

Cid(r, t) +Cint(r, t) +Cext(r, t) = 0, (15)

where the decomposition into the three terms follows
from the corresponding splitting (5) of the initial state
Liouvillian L0; we recall the presence of L0 in the defini-
tion (13) of the shift current observable. As the splitting
is crucial in what follows we spell out the details, first re-
calling that the initial HamiltonianH0 consists of kinetic,
interparticle and external parts according Eq. (1).
The splitting (15) arises then from decomposing the

initial state Liouvillian L0 according to (5), such that
L0 = Lid,0 + Lint,0 + Lext,0 in Eq. (13), thereby us-
ing the initial particle mass m0, interparticle potential
u0(r

N ) and external potential Vext,0(r). The correspond-
ing ideal, interparticle, and external shift currents are
Cα(r, t) = ⟨Ĉα(r, t)⟩ = ⟨βLα,0mĴ(r, t)⟩, where α = ‘id’,
‘int’, and ‘ext’, respectively. At the initial time, t = 0,
the shift current balance (15) reduces to the equilibrium
force density balance (12); we give an extended account
of this limit below in Sec. IVA.
It is revealing to compare the structure of the exact dy-

namical sum rule (15) with that of the one-body equation
of motion (11). Both equations are vectorial, and their
left hand sides share an analogous splitting into ideal,
interparticle, and external contributions. However, the
right hand side of the equation of motion (11) is the time
derivative of the current, which in general is very dif-
ferent from the universal zero on the right hand side of
the nonequilibrium sum rule (15). Before demonstrating
the validity of the shift current balance (15) below, we
first aim to uncover the fundamental mechanism that lies
behind the above derivation.

B. Static phase space shifting via Poisson brackets

The derivation of the shift current balance (14) and
thus of its split form (15) in Sec. IIIA relies on both
the one-body localization and on the properties of the
Poisson brackets; the latter occur in the initial state Li-
ouvillian L0; recall Eq. (3). It is hence natural to use the
Poisson brackets as a foundation for defining the follow-
ing spatially localized differential operators:

σ(r) = { · ,mĴ(r)}, (16)

where we recall that Ĵ(r) is the microscopically given

current phase space function (9) and thus mĴ(r) =∑
i δ(r−ri)pi. Applying the differential operator (16) to

the (negative) Hamiltonian H yields the classical force

density operator F̂(r) according to

−σ(r)H = {mĴ(r), H} = LmĴ(r) = F̂(r), (17)

where we have first written out the Poisson bracket (16)
and then identified both the Liouvillian (3) and the clas-

sical force density operator F̂(r) according to Eq. (10).
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As an aside we emphasize that no dynamical dependence
is implied yet in Eq. (17). The present Schrödinger force

density F̂(r) is related to the corresponding dynamical

Heisenberg observable via F̂(r, t) = U†(t, 0)F̂(r), see
Eq. (10).

The properties of the Poisson bracket render the dif-
ferential operators σ(r) anti-self-adjoint on phase space,
σ(r) = −σ†(r), as follows via integration by parts on
phase space [55]. The explicit form of σ(r) is ob-
tained straightforwardly by inserting the definition (9)

of the classical current operator Ĵ(r) into the Poisson
bracket (16), which yields σ(r) = { · ,∑i piδ(r − ri)}.
Simplifying gives the explicit form:

σ(r) =
∑
i

[δ(r− ri)∇i + pi∇δ(r− ri) · ∇pi ], (18)

which reveals σ(r) to be identical to the localized differ-
ential operators that represent the static ‘shifting’ gauge
invariance of equilibrium statistical mechanics [55, 56].

The immediate implications are: i) the validity of non-
trivial commutator structure of σ(r) and σ(r′) at po-
sitions r, r′ [55, 56] and ii) the geometric interpretation
via phase space shifting according to particle position
displacement and corresponding momentum transform.
These general properties continue to hold for the Pois-
son bracket form (16) as they follow directly from the
structure of phase space [55, 56], irrespective of whether
a static [55, 56] or the present dynamical statistical me-
chanical setup is considered. We recall the pertinence of
the infinitesimal shifting operators for generating equi-
librium sum rules involving forces and hyperforce cor-
relation functions [54–56] according to the mechanism
in Eq. (17).

C. Dynamical phase space shifting operators

We generalize the static shifting operators (16) to dy-
namical counterparts σ(r, t) according to the standard
mechanism to transform differential operators:

σ(r, t) = U†(t, 0)σ(r)U(t, 0), (19)

where we recall that U(t, 0) is the (phase space) propaga-
tor from the initial time 0 to time t and U†(t, 0) denotes
its (phase space) adjoint. Mirroring the properties of the
static version σ(r), the dynamical shifting operators are
anti-self-adjoint on phase space:

σ(r, t) = −σ†(r, t). (20)

The proof of Eq. (20) follows straightforwardly
via explicit calculation: [U†(t, 0)σ(r)U(t, 0)]† =
U†(t, 0)σ†(r)U††(t, 0) = −σ(r, t), where we have first
built the overall adjoint by reversing the factors and then
have used both σ†(r) = −σ(r) and U††(t, 0) = U(t, 0),
which allows one to identify the final result via Eq. (19).
As an aside, multiplying Eq. (19) by U†(t, 0) from the

right yields the identity σ(r, t)U†(t, 0) = U†(t, 0)σ(r)
and corresponding multiplication by U(t, 0) from the left
yields U(t, 0)σ(r, t) = σ(r)U(t, 0).
As an alternative to the propagator ‘sandwich’

form (19), the dynamical shifting operators can be ex-
pressed equivalently as

σ(r, t) = { · ,mĴ(r, t)}. (21)

which mirrors the Poisson bracket form of the static shift-
ing operators σ(r) given in Eq. (16). The equivalence
of Eqs. (19) and (21) is proven by starting from the
right hand side of the latter and re-writing as follows:
{ · ,mĴ(r, t)} = {U†(t, 0)U(t, 0) · , U†(t, 0)mĴ(r)} =

U†(t, 0){U(t, 0) · ,mĴ(r)} = U†(t, 0){ · ,mĴ(r)}U(t, 0) =
U†(t, 0)σ(r)U(t, 0), where we have first inserted an iden-
tity operator U†(t, 0)U(t, 0) = 1 and then exploited that
the propagator and the Poisson bracket commute, due to
the latter being a canonical invariant under the Hamil-
tonian time evolution.

Besides their anti-self-adjointness (20), the dynamical
shifting operators σ(r, t), as expressed in the alternative
form (21), possess two further key properties. First, when
applied to the (thermally scaled negative) Hamiltonian,
one obtains

Ĉ(r, t) = −σ(r, t)βH0. (22)

where Ĉ(r, t) is the shift current phase space function de-
fined via Eq. (13). The validity of Eq. (22) can be seen by
expressing its right hand side via the Poisson bracket (21)

as −{βH0,mĴ(r, t)} = β{mĴ(r, t), H0} = βL0mĴ(r, t),
where identifying the initial state Liouvillian L0 gives
the right hand side of Eq. (13). Secondly, when apply-
ing σ(r, t) to the initial state probability distribution f0,
given by the Boltzmann form (2), then

σ(r, t)f0 = Ĉ(r, t)f0, (23)

as follows from the chain rule and identifying Ĉ(r, t) via
Eq. (22).
As a demonstration of the power of the present dy-

namical shifting operator formalism, we first reconsider
the derivation of the shift current sum rule (15). Viewing
this identity from the perspective of the dynamical shift-
ing gauge invariance allows one to formulate a strictly
valid derivation in the following strikingly compact form:
C(r, t) = Tr Ĉ(r, t)f0 = Trσ(r, t)f0 = −Tr f0σ(r, t)1 =

0, where we have first spelled out the average ⟨Ĉ(r, t)⟩,
then introduced σ(r, t) via Eq. (23), and reordered terms
by using that σ(r, t) is anti-self-adjoint (20). That the re-
sulting average vanishes is trivially due to σ(r, t)1 = 0, as
follows from Eq. (21) and the vanishing Poisson bracket
of any constant.

The connection of the dynamical generalization (21)
of equilibrium phase space shifting [55, 56] with the
nonequilibrium shift current sum rule (15) reveals the
latter to originate from dynamical gauge invariance. As
we demonstrate in the following, the dynamical gauge
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concept allows one to address a significantly wider class
of cases than covered thus far, by incorporating general
hyperobservables into the framework.

D. Exact hypercurrent sum rules for general
observables

We consider a general phase space function Â(rN ,pN )
to act as a hyperobservable that is of physical interest
in the nonequilibrium situation under consideration. We
recall both that the corresponding Heisenberg observable
Â(rN ,pN , t) is obtained via application of the adjoint

propagator according to Â(t) = U†(t, 0)Â, see Sec. II B,
and that trajectory-based methods facilitate alternative
access, as described in Sec. IID. We follow Refs. [54–
56] in defining the static hyperforce density as the phase
space function given by

ŜA(r) = σ(r)Â, (24)

where we recall the explicit form (18) of the static dif-
ferential operators σ(r). The corresponding Heisenberg

observable ŜA(r, t) then follows via the standard proce-

dure as ŜA(r, t) = U†(t, 0)ŜA(r). Using Eq. (24) and in-
serting an identity operator U(t, 0)U†(t, 0) = 1 leads to

ŜA(r, t) = U†(t, 0)σ(r)U(t, 0)U†(t, 0)Â. The first three
factors therein can be identified as the dynamical shift-
ing operator σ(r, t), see Eq. (19), and the remaining two

factors constitute the Heisenberg observable Â(t), see
Eq. (7). Hence we formulate the dynamical hyperforce
density as the following Heisenberg observable:

ŜA(r, t) = σ(r, t)Â(t), (25)

which generalizes the static equivalent ŜA(r) given by
Eq. (24). Building the dynamical average in the stan-
dard way gives the dynamical hyperforce density as
SA(r, t) = ⟨ŜA(r, t)⟩. As a complement, in trajectory-

based work, for a given form of ŜA(r), straightforward

evaluation gives ŜA(r, t) = ŜA(r; r̂
N (t), p̂N (t)), where we

have written out the phase space dependence to empha-
size that this expression is ready to be averaged over
initial states once the trajectory is known for the consid-
ered initial microstates; recall that the static hyperforce
density ŜA(r; r

N ,pN ) = σ(r)Â is explicitly available for

given form of the hyperobservable Â [54–56].
Spelling out the average allows one to proceed

in explicit form: SA(r, t) = Tr f0σ(r, t)Â(t) =

Tr Â(t)σ†(r, t)f0, where we have introduced the shift-
ing operator via Eq. (25) and then reordered the in-
tegrand via building the adjoint. Using the anti-self-
adjoint property (20) of σ(r, t) allows one to rewrite

the result as −Tr Â(t)σ(r, t)f0 = −Tr Â(t)Ĉ(r, t)f0 =

−⟨Â(t)Ĉ(r, t)⟩ = −⟨Ĉ(r, t)Â(t)⟩, where we have used the
generation (23) of the shift current Heisenberg observable

Ĉ(r, t), then have written the overall result as a nonequi-
librium average, and in the last step have interchanged

the two phase space functions. Bringing the result to
the initial left hand side yields the following dynamical
hypercurrent balance:

SA(r, t) + ⟨Ĉ(r, t)Â(t)⟩ = 0, (26)

which is exact. Using compact notation for the hypercur-
rent correlation function, CA(r, t) = ⟨Ĉ(r, t)Â(t)⟩, allows
one to express the sum rule (26) in the alternative form:

SA(r, t) +CA(r, t) = 0, (27)

which expresses the vanishing sum of hyperforce density
(first term) and hypercurrent correlation function (sec-
ond term).
As a simple consistency check, making the choice

Â = 1 leads to ŜÂ=1(r, t) = 0 and hence on aver-

age SÂ=1(r, t) = 0. Thus upon recalling ⟨Ĉ(r, t)⟩ =
C(r, t) = CÂ=1(r, t), the hypercurrent identity (26) re-
duces to C(r, t) = 0, which constitutes the shift cur-
rent identity (15). As an aside, the hypercurrent cor-
relation term in Eq. (26) can alternatively be expressed

as ⟨Ĉ(r, t)Â(t)⟩ = cov(Ĉ(r, t), Â(t)), where the covari-
ance of two observables is defined in the standard form:
cov(Ĉ(r, t), Â(t)) = ⟨Ĉ(r, t)Â(t)⟩ − C(r, t)⟨Â(t)⟩. The
equivalence of correlation and covariance follows from
C(r, t) = 0, see the shift current balance (15). Working
with covariances can have practical advantages in sim-
ulation work due to systematic subtraction of sampling
uncertainties, see e.g. Ref. [54] for such work in equilib-
rium.
The dynamical correlation function ⟨Ĉ(r, t)Â(t)⟩ that

features in Eq. (26) can be split into ideal, interparticle,

and external contributions, according to ⟨Ĉ(r, t)Â(t)⟩ =
⟨Ĉid(r, t)Â(t)⟩+⟨Ĉint(r, t)Â(t)⟩+⟨Ĉext(r, t)Â(t)⟩, where
we recall the definition of the ideal, interparticle, and ex-
ternal particle shift current, as arising from the splitting
of the initial state Liouvillian; see the corresponding de-
scription given below Eq. (15). The splitting allows one
to express the hypercurrent sum rule (26) in equivalent
form as:

SA(r, t) +Cid
A (r, t) +Cint

A (r, t) +Cext
A (r, t) = 0, (28)

where the three partial hypercurrent correlation func-
tions are defined as Cid

A (r, t) = ⟨Ĉid(r, t)Â(t)⟩,
Cint

A (r, t) = ⟨Ĉint(r, t)Â(t)⟩, and Cext
A (r, t) =

⟨Ĉext(r, t)Â(t)⟩. We defer a detailed description of the
connection of the dynamical identity (28) with the static
hyperforce theory [54–56] to Sec. IVA below.
The present hypercurrent formalism rests centrally on

the properties of the dynamical shifting operators σ(r, t),
as alternatively given by Eqs. (19) and (21). The appli-
cation of these differential operators generates both the
dynamical hyperforce density ŜA(r, t), given by Eq. (25),

and the dynamical shift current Ĉ(r, t), which arises from

Eq. (22). As Ĉ(r, t) is also given as the phase space func-
tion (13), the emerging temporal correlation structure



9

rests centrally on the relevance of the initial state Liou-
villian L0 for the nonequilibrium problem, as we expand
on in the following.

E. Initial state time differentiation

Identifying and applying the initial state Liouvillian L0

to act inside of a nonequilibrium average forms a crucial
step in the above laid out hypercurrent theory, see the
central definition (13) of Ĉ(r, t). We here explore the im-
plied temporal structure further. For a given Heisenberg
hyperobservable Â(rN ,pN , t) we define its initial state
time derivative as

Â•(t) = L0Â(t) (29)

=
∂

∂s
U†
0 (s, 0)Â(t)

∣∣∣
s=0

, (30)

where the superscript bold dot denotes the application
of L0 to Â(t) in Eq. (29) such that spelling out the ini-
tial state Liouvillian in Poisson bracket form (3) implies

Â•(t) = {Â(t), H0}. In the alternative form (30) the ad-

joint initial state propagator U†
0 (s, 0) = esL0 performs

the initial state dynamics from time 0 to time s. We
recall that the initial ensemble, as characterized by the
Hamiltonian H0 and corresponding thermal distribution
f0 given by Eq. (2), remains stationary under its inherent
time evolution according to its corresponding Liouvillian
L0; see the description of this setup in Sec. IIA.

To make the connection of the initial state time differ-
entitation (29) with the shift current observable Ĉ(r, t),
as given by Eq. (13), we first define the scaled one-body

current Ŝ(r, t) = βmĴ(r, t), where we recall the defini-
tion (9) of the one-body current and that β is the inverse
temperature of the initial state. The shift current is then
obtained by applying the initial state Liouvillian L0 ac-
cording to Eq. (29), which yields

Ĉ(r, t) = Ŝ•(r, t) = L0Ŝ(r, t). (31)

such that Ĉ(r, t) = βmĴ•(r, t), as follows from Eq. (13).
As an aside, the explicit dependence on mass m scales
out, as described in Sec. III A and further elaborated in
Sec. III F below.

Using the bold dot notation (29), the hypercurrent sum
rule (26) attains the following form:

SA(r, t) + ⟨Ŝ•(r, t)Â(t)⟩ = 0. (32)

We next derive a further nonequilibrium sum rule that is
satisfied by the second term on the above left hand side,
which is the hypercurrent correlation function CA(r, t) =

⟨Ŝ•(r, t)Â(t)⟩. Writing out explicitly the implied aver-

age allows one to proceed as follows: Tr f0Â(t)Ŝ•(r, t) =

Tr f0Â(t)L0Ŝ(r, t) = Tr Ŝ(r, t)L†
0Â(t)f0, where we have

first used Eq. (31) to reintroduce L0 and then reordered
via building the adjoint. We next use that the initial state

Liouvillian is anti-self-adjoint, L†
0 = −L0, and that the

initial state distribution f0 is stationary under the initial
time evolution, L0f0 = 0. Upon reordering the result
implies the following exact hypercurrent ‘swap’ identity:

⟨Ŝ•(r, t)Â(t)⟩+ ⟨Ŝ(r, t)Â•(t)⟩ = 0, (33)

where we recall that according to the notation (29),

Â•(t) = L0Â(t) = {Â(t), H0} is the initial state deriva-

tive of the Heisenberg observable Â(t).
We can combine Eqs. (26) and (33) to obtain the fol-

lowing alternative hypercurrent sum rule:

SA(r, t)− ⟨Ŝ(r, t)Â•(t)⟩ = 0. (34)

The theory thus far developed applies to general ob-
servables Â and it is formally exact for general nonequi-
librium Hamiltonian dynamics, as generated by a time-
dependent many-body Hamiltonian H and starting from
an initial thermal state with Hamiltonian H0 and inverse
temperature β. We next describe the implications when
working with trajectories.

F. Trajectory-based differentiation

As laid out in Sec. IID a trajectory-based picture
rests on having access to r̂i(t) and p̂i(t) for all parti-
cles i = 1, . . . , N . We recall that the full phase space
dependence, when viewing the particle positions and mo-
menta as Heisenberg observables, is r̂i(r

N ,pN , t) and
p̂i(r

N ,pN , t), where the argument rN ,pN denotes the
phase space point that represents the initial configura-
tion at t = 0. One can express this relationship suc-
cinctly at the initial time as: r̂i(r

N ,pN , 0) = ri and
p̂i(r

N ,pN , 0) = pi.
We hence initial-state time differentiate the entire tra-

jectory as follows:

r̂•i (t) = L0r̂i(t) = {r̂i(t), H0}
=

∑
j

(
vj,0 · ∇j r̂i(t) + fj,0 · ∇pj

r̂i(t)
)
, (35)

p̂•
i (t) = L0p̂i(t) = {p̂i(t), H0}

=
∑
j

(
vj,0 · ∇jp̂i(t) + fj,0 · ∇pj

p̂i(t)
)
, (36)

where vj,0 = pj/m0 denotes the initial state velocity,
fj,0 = −∇jH0 is the initial state force of particle j, and
the sums run over all particles j = 1, . . . , N . The phase
space derivatives ∇j and ∇pj

can be viewed as measur-
ing the dependence of position r̂i(t) in Eq. (35) and of
momentum p̂i(t) in Eq. (36) of particle i upon changes
in the initial data of particle j. Rather than forming a
generic perturbation, the phase space derivatives are then
weighted specifically by, respectively, the initial state ve-
locity and initial force of particle j. Summation over all
particles j then yields r̂•i (t) and p̂•

i (t). In relation to the



10

Liouvillian splitting (5) into ideal, interparticle, and ex-
ternal contributions, the first term in the sum in both
Eqs. (35) and (36) arises from Lid and the second term
arises from the sum Lint + Lext.
The initial state derivative of a general Heisenberg

observable Â(t) then follows from using the chain rule,
which gives

Â•(t) =
∑
i

[
(∇iÂ)(t) · r̂•i (t) + (∇piÂ)(t) · p̂•

i (t)
]
, (37)

where we use the notation (∇iÂ)(t) = U†(t, 0)∇iÂ and

(∇pi
Â)(t) = U†(t, 0)∇pi

Â to respectively indicate the
temporally propagated phase space position and momen-
tum gradients of the hyperobservable Â(rN ,pN ).
We next turn to the shift current (31), which we re-

call as Ĉ(r, t) = Ŝ•(r, t) with Ŝ(r, t) = βmĴ(r, t). The
present formulation allows one to obtain the following
trajectory-based representation: Ĉ(r, t) =

∑
i[r̂

•
i (t) ·

(∇iŜ)(r, t) + p̂•
i (t) · (∇pi

Ŝ)(r, t)]. We express the sum
of these two terms as

Ĉ(r, t) = ∇ · τ̂C(r, t) + Ĉacc(r, t), (38)

where the shift stress tensor τ̂C(r, t) and the shift acceler-

ation current observable Ĉacc(r, t) are given respectively
by

τ̂C(r, t) = −β
∑
i

δ
(
r− r̂i(t)

)
r̂•i (t)p̂i(t), (39)

Ĉacc(r, t) = β
∑
i

δ
(
r− r̂i(t)

)
p̂•
i (t). (40)

That the shift current Ĉ(r, t) has the natural split-
ting (38) mirrors the decomposition of the force den-

sity F̂(r, t), given below Eq. (10) in the form: F̂(r, t) =

∇ · τ̂ (r, t) + F̂U (r, t), where the potential force density

observable, F̂U (r, t) = F̂int(r, t) + F̂ext(r, t), combines
interparticle and external contributions. Note also the
structural similarity of Eq. (39) with the definition of the
standard kinetic stress tensor observable τ̂ (r, t), given in
Schrödinger form below Eq. (10), and of the shift accel-

eration current observable (40) with F̂U (r, t).
Upon averaging, one can show that the mean shift

stress tensor, as given by τC(r, t) = ⟨τ̂C(r, t)⟩, and the
mean shift acceleration current, as given by Cacc(r, t) =

⟨Ĉacc(r, t)⟩, are related to the instantaneous dynamical
density profile ρ(r, t) and its gradient respectively via:

τC(r, t) = −ρ(r, t)1 (41)

Cacc(r, t) = ∇ρ(r, t), (42)

where 1 denotes the d × d-unit matrix. The iden-
tity (42) follows straightforwardly from writing out
the average on the left hand side explicitly; we give
a compact account: Cacc(r, t) = Tr f0Ĉacc(r, t) =
Tr f(t)U(t, 0)∑i δ(r − r̂i(t)){p̂i(t), βH0}. Then apply-
ing the propagator and subsequently evaluating the Pois-
son bracket gives: Tr f(t)

∑
i δ(r−ri){pi, U(t, 0)βH0} =

−Tr f(t)
∑

i δ(r − ri)∇i[U(t, 0)βH0] = Tr
∑

i δ(r −
ri)∇if(t) = ∇ρ(r, t), where we have used that f(t) =
e−β U(t,0)H0/Z0 and the last step follows from integra-
tion by parts with respect to the particle positions, with
∇iδ(r − ri) = −∇δ(r − ri) and then identifying the av-
erage as the gradient of the dynamical density profile.
Similar steps prove Eq. (41).
The identities (41) and (42) verify explicitly the shift

current sum rule (15) in the form

Cacc(r, t) +∇ · τC(r, t) = 0. (43)

Applying the splitting (38) into transport and accelera-
tion contributions analogously to the hypercurrent cor-
relation function CA(r, t) = ⟨Ĉ(r, t)Â(t)⟩, as it appears
in the hypercurrent sum rule (26), leads to the following
decomposition:

CA(r, t) = ⟨Ĉacc(r, t)Â(t)⟩+∇ · ⟨τ̂C(r, t)Â(t)⟩, (44)

where each term on the right had side can further be split
into ideal, interparticle, and external contributions using
the Liouvillian splitting (5) for the initial state derivative.
For completeness, in explicit form the classical hyper-

force density observable ŜA(r), see Eqs. (24) for its emer-
gence from applying the shifting operator to the observ-
able Â, is given by

ŜA(r) =
∑
i

δ(r− ri)∇iÂ+∇ ·
∑
i

δ(r− ri)(∇pi
Â)pi.

(45)

One can decompose as ŜA(r) = Ŝpos
A (r) + ∇ · τ̂A(r),

where the position contribution to the hyperforce den-
sity is Ŝpos

A (r) =
∑

i δ(r − ri)∇iÂ and the hyperstress

tensor is given by τ̂A(r) =
∑

i δ(r− ri)(∇pi
Â)pi.

Following arguments that are very similar to those
given to derive Eq. (42), one can further show that

⟨τ̂C(r, t)Â(t)⟩+ τA(r, t) = −⟨ρ̂(r, t)Â(t)⟩1, (46)

⟨Ĉacc(r, t)Â(t)⟩+ Spos
A (r, t) = ∇⟨ρ̂(r, t)Â(t)⟩, (47)

where τA(r, t) = ⟨τ̂A(r, t)⟩ and Spos
A (r, t) = ⟨Ŝpos

A (r, t)⟩.
As a consistency check, adding Eq. (47) and the diver-
gence of Eq. (46) yields the dynamical hypercurrent sum
rule (26), when identifying the hypercurrent correlation
function CA(r, t) via Eq. (44) and the hyperforce density
as SA(r, t) = Spos

A (r, t) +∇ · τA(r, t), as follows from the
splitting given below Eq. (45).

G. Concrete choices of hyperobservables

To illustrate the broad range of consequences of the
above laid out dynamical statistical mechanical gauge
invariance, we specialize the general hypercurrent sum
rule (26) for several concrete choices for the hyperobserv-

able Â. We first consider both the Hamiltonian, Â = H,
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and the interparticle potential, Â = u(rN ), which respec-
tively yields:

F(r, t)− ⟨Ĉ(r, t)H(t)⟩ = 0, (48)

Fint(r, t)− ⟨Ĉ(r, t)u(t)⟩ = 0, (49)

where we recall F(r, t) as the total dynamical mean force
density and Fint(r, t) as its interparticle contribution; see
their descriptions below Eq. (10).

As two further specific choices, we take the total mo-
mentum, Â = P̂ =

∑
i pi, and the sum of positions,

Â = R̂ =
∑

i ri, where the latter can be viewed as the

product of the center of mass, R̂/N , and the total par-
ticle number N . The generic hypercurrent sum rule (26)
then attains the following two respective forms:

∇mJ(r, t) + ⟨Ĉ(r, t)P̂(t)⟩ = 0, (50)

ρ(r, t)1+ ⟨Ĉ(r, t)R̂(t)⟩ = 0. (51)

The four sum rules (48)–(51) are exact and they are
noteworthy, as in each instance a very common instan-
taneous observable (first term on each left hand side) is
related rigorously to a specific correlation function (cor-
responding second term) with the shift current. Recall-
ing the initial-time form (13) of the shift current operator

Ĉ(r, t) reveals the inherent temporally nonlocal character
of these correlation functions; in contrast the correspond-
ing hyperforce density [as realized by the respective first
term in (48)–(51)] carries instantaneous dependence on
time t.

On the basis of the swap identity (33) we can alterna-
tively formulate each of the second terms in Eqs. (48)–

(51) by using the scaled current Ŝ(r, t) = mβĴ(r, t)

instead of the shift current Ĉ(r, t) = S•(r, t) =

L0βmĴ(r, t). We obtain explicitly from Eq. (33)
for the Hamiltonian correlation function in Eq. (48):

⟨Ĉ(r, t)H(t)⟩ = −⟨Ŝ(r, t)H•(t)⟩, for the interparticle

potential in Eq. (49): ⟨Ĉ(r, t)u(t)⟩ = −⟨Ŝ(r, t)u•(t)⟩,
for the total momentum in Eq. (50): ⟨Ĉ(r, t)P̂(t)⟩ =

−⟨Ŝ(r, t)P̂•(t)⟩, and for the sum of particle positions in

Eq. (51): ⟨R̂(t)Ĉ(r, t)⟩ = −⟨R̂•(t)Ŝ(r, t)⟩, where we re-
call that the superscript bold dot indicates the appli-
cation of the initial state Liouvillian L0 according to
Eq. (29).

IV. APPLICATIONS

A. Equilibrium limit of hypercurrent correlations

We first demonstrate the consistency of the dynami-
cal gauge theory formulated in Sec. III with the static
hyperforce approach of Refs. [54–56]. We hence re-
strict the above general nonequilibrium setup, as de-
scribed in detail in Sec. II A, to cases with no switch-
ing at the initial time, such that the Hamiltonian re-
mains unchanged, H = H0, at all times. We consider the

implications for the hypercurrent sum rule (26) which

we recall contains for the special case Â = 1 the shift
current balance (14). The first term on the left hand
side of Eq. (26), i.e., the dynamical hyperforce density
SA(r, t), simply becomes SA(r), independent of time.

The hypercurrent correlation function is ⟨Ĉ0(r, t)Â(t)⟩,
where the subscript 0 denotes the equilibrium shift cur-
rent observable Ĉ0(r, t) = βL0m0Ĵ0(r, t) as is obtained
from Eq. (13) for the initial state. We can re-write

this on the basis of Eq. (13) as: βL0 U†
0 (t, 0)m0Ĵ0(r) =

β U†
0 (t, 0)L0m0Ĵ0(r) = β U†

0 (t, 0)F̂0(r) = βF̂0(r, t),

where we have first exploited that L0 and U†
0 (t, 0) com-

mute and then have identified the initial state force
density observable F̂0(r, t), as corresponds to H0; see
Sec. II C.
Overall we hence obtain ⟨Ĉ0(r, t)Â(t)⟩ =

⟨βF̂0(r, t)Â(t)⟩ = ⟨βF̂0(r)Â⟩, where the time de-
pendence in the last step vanishes due to stationarity in
equilibrium. We hence obtain the following equilibrium
identity:

SA(r) + ⟨βF̂0(r)Â⟩ = 0, (52)

which is the static hyperforce balance [54–56]. The force
correlation function can thereby be decomposed into
its three constituent (ideal, interparticle, and external)
parts, such that alternatively to Eq. (52) we can write

SA(r) + ⟨βF̂id,0(r)Â⟩+ ⟨βF̂int,0(r)Â⟩
+ ⟨βF̂ext,0(r)Â⟩ = 0, (53)

where the individual force density contributions, given
in general form below Eq. (9), are those for the initial
Hamiltonian H0.
The above reduction to the static gauge invariance

hyperforce theory constitutes an important consistency
check. However, much more interesting structure is re-
vealed by not enforcing the static limit but rather hon-
ouring the equilibrium dynamics. As before, we con-
sider the situation of continuing equilibrium, such that
H = H0 at all times with no switching nor any further
explicit time dependence occurring in H. As described
above, the hyperforce density then looses its time depen-
dence, SA(r, t) = SA(r). However, such reduction does
not occur in general when splitting the hypercurrent cor-
relation function, ⟨Ĉ(r, t)Â(t)⟩, as we demonstrate in the
following.
We hence forgo the operator re-ordering that led to

Eq. (52) and retain the structure (13) of the shift current

observable: Ĉ(r, t) = βL0mĴ(r, t). Then the present
equilibrium situation allows one to obtain from splitting
the Liouvillian the result: Ĉ0,α(r, t) = βL0,αm0J(r, t),
where the subscript α = ‘id’, ‘int’, and ‘ext’ labels the
different ideal, interparticle, and external contributions.
In contrast to the above derivation of the static hyper-
force sum rule (52), here no further simplification arises,
as the partial Liouvillians L0,α do not in general commute

with the full initial state adjoint propagator U†
0 (t, 0).
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We can conclude that two properties render the present
dynamical equilibrium limit non-trivial and different
from the static case: i) In general the partial hyperforce
and hypercurrent correlation functions differ from each
other, ⟨βF̂α(r)Â⟩ ≠ ⟨Ĉα(r, t)Â(t)⟩, as one would expect
on general grounds and which is confirmed by the con-
crete examples presented below. ii) Although the sum of
the partial hypercurrent correlation functions is indepen-
dent of time,

SA(r) +Cid
A (r, t) +Cint

A (r, t) +Cext
A (r, t) = 0, (54)

the individual ideal, interparticle, and external contri-
butions each retain non-trivial temporal dependence; we
recall Cid

A (r, t) = ⟨Ĉid(r, t)Â(t)⟩, etc. for ’int’ and ‘ext’.
One might expect this temporal behaviour to occur on
grounds of the general nontrivial setup of these correla-
tion functions and we exemplify the temporal dependence
in specific model situations in the following.

B. Nonequilibrium ideal gas of harmonic oscillators

As an initial application of the general dynamical
gauge invariance framework to a conrete system, we con-
sider an ideal gas of N particles, with vanishing interpar-
ticle potential u(rN ) = 0, in one spatial dimension. We
demonstrate explicitly that the theory allows one i) to
recover the correct static hyperforce limit as described
in Sec. IVA, ii) to identify non-trivial time dependence
in equilibrium, iii) to discriminate between thermal equi-
librium states and nonequilibrium stationary states, and
vi) to retain the general theoretical structure when ad-
dressing nontrivial temporal dependence in more general
nonequilibrium ideal gas setups. Furthermore, the ana-
lytical solution provides a useful reference for validation
of the simulation methods.

1. Setup of the model and dynamical density profile

To facilitate analytical treatment, we choose the exter-
nal potential as being harmonic: Vext(x) = kx2/2, with
strength parameter k and one-dimensional position coor-
dinate x. The initial Hamiltonian has a positive spring
constant k0 > 0, particle mass m0, and corresponding
frequency ω0 =

√
k0/m0. At times t ≥ 0, we allow in

general the constants to be m ̸= m0 and k ̸= k0, with
corresponding frequency ω =

√
k/m and again in gen-

eral ω ̸= ω0. After the switching, the external potential
can remain confining, k > 0, or vanish, k = 0, or be-
come repulsive, k < 0. The latter case constitutes a
dynamically unstable situation with the Hamiltonian be-
ing unbounded from below. The one-dimensional particle
trajectories are x̂i(t) = xi cos(ωt) + pi sin(ωt)/(mω) and
p̂i(t) = pi cos(ωt) −mωxi sin(ωt) with initial state xi, pi
at time t = 0, for all i = 1, . . . , N .
Straightforward algebra yields the dynamical density

profile ρ(x, t) = ⟨ρ̂(x, t)⟩ as a normalized Gaussian with

temporally varying width parameter α:

ρ(x, t) = N
√

α/πe−αx2

, (55)

α = βk
/[ k

k0
+

m0

m
+
( k

k0
− m0

m

)
cos(2ωt)

]
, (56)

with a scaled version of the expression (56) being given
in Eq. (65).
We summarize several properties of this solution. For-

going any switching and hence retaining k = k0, m = m0,
the system remains in equilibrium at all times and the
width parameter α0 = βk0/2 = const, independent of
time. For general switching, m ̸= m0 and k ̸= k0, the
value of α oscillates in time with doubled frequency 2ω
(we comment on the unstable case at the end of the sec-
tion). The temporal oscillations of α are bounded by two
values, one being α0, which is attained at times t = nπ/ω
with n being a nonnegative integer. The further bound-
ing value of α is βkm/(2m0), which is attained at times
t = (n+ 1/2)π/ω. The midpoint value of α between the
two extrema is βk/[(k/k0) + (m0/m)].
As a special case one may choose parameters that sat-

isfy km = k0m0. Then despite in general ω ̸= ω0, the
density profile (55) remains independent of time and it
thus forms a simple example of a nonequilibrium station-
ary state. The width parameter thereby retains its initial
value α0 = βk0/2, unperturbed by this specific switching,
over the course of time.
Figure 3 displays results for dynamical density profiles

ρ(x, t) (first row) obtained from the analytical solution
(55) for m = m0 and the three representative cases of no
switching: k = k0, switching to a softer spring: k = k0/4,
and switching to an unstable situation: k = −k0 (from
left to right).

2. Ideal shift current balance

Turning to the gauge theory we first consider the static
force density balance (12), which for the one-dimensional
ideal gas simplifies to:

Fid,0(x) + Fext,0(x) = 0, (57)

where we use scalar notation and the interparticle force
density vanishes, Fint,0(x) = 0, for the present ideal gas.
The static ideal and external force fields follow from re-
spective explicit calculation as

βFid,0(x)

ρ0(x)
= βk0x, (58)

βFext,0(x)

ρ0(x)
= −βk0x, (59)

where we have normalized by the initial density pro-
file ρ0(x); recall that this is a Gaussian defined by
Eq. (55) with α0 = βk0/2, such that ρ0(x) =

N
√
βk0/(2π) exp(−βk0x

2/2). The results (58) and (59)
satisfy the static force sum rule (57) explicitly.
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FIG. 3. Correlation functions for the ideal gas in a harmonic trap in equilibrium (left column) and nonequilibrium (middle
and right columns). Shown are space-time plots of the scaled dynamical density profile ρ(x, t)a0 (top row) and for the different
types of hypercurrent correlation functions that arise from dynamical gauge invariance, namely the ideal (second row) and

external (third row) hypercurrent correlation functions for the center of mass, ⟨Ĉid(x, t)R̂(t)⟩a0 and ⟨Ĉext(x, t)R̂(t)⟩a0, with
the lengthscale a0 = 1/

√
βk0. The nonequilibrium sum rule Eq. (69) constrains the sum of these three contributions to vanish.

Left column: Equilibrium dynamics where H = H0 and k = k0 at all times; despite the density profile being stationary both
hypercurrent correlation functions oscillate in time. Middle column: At the initial time the value of the spring constant is
reduced, k = k0/4, such that temporal density oscillations are induced and these affect the hypercurrent correlation functions.
Right column: At the initial time the sign of the harmonic potential is flipped, k = −k0, which creates an unstable situation
without corresponding equilibrium; pronounced structuring is apparent in both hypercurrent correlation functions.

The dynamic shift current balance (15) simplifies for
the present system to consist of merely two contributions:

Cid(x, t) + Cext(x, t) = 0, (60)

as the interparticle shift current vanishes, Cint(x, t) = 0.
Both the ideal and the external partial shift current is
conveniently normalized by the dynamic density profile
ρ(x, t), which leads to the following odd cubic polynomi-
als in position x:

Cid(x, t)

ρ(x, t)
= b1x+ b3x

3, (61)

Cext(x, t)

ρ(x, t)
= −b1x− b3x

3. (62)

The coefficients b1 and b3 are time-dependent and, when
scaled by the appropriate powers α and α2 of the width

parameter, possess the following forms:

b1
α

=
2(κ+ κ0) cos(2ωt) + (κ− κ0)[5− cos(4ωt)]/2

κ+ κ0 + (κ− κ0) cos(2ωt)
,

(63)

b3
α2

= − (κ− κ0)[1− cos(4ωt)]

κ+ κ0 + (κ− κ0) cos(2ωt)
. (64)

Here we use the shorthand κ = km to denote the product
of spring constant k and mass m; correspondingly κ0 =
k0m0 for the intital state parameters at time 0. Using
these variables allows one to express the width parameter
(56) succinctly as:

α =
βk0κ

κ+ κ0 + (κ− κ0) cos(2ωt)
. (65)

It is noteworthy that Eqs. (63)–(65) share a common
denominator; this structure is a consequence of the scal-
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FIG. 4. Comparison of results obtained analytically (left column) and from molecular dynamics simulations via autodiffer-
entiation (center column) and via finite-difference differentiation (right column) with respect to the initial state of molecular

trajectories. Shown is the scaled dynamical density profile ρ(x, t)a0 (top row), the ideal part, ⟨Ĉid(x, t)R̂(t)⟩a0, and the external

contribution, ⟨Ĉext(x, t)R̂(t)⟩a0, of the hypercurrent correlation function for the scaled center of mass R̂. The results are shown
as a function of the scaled distance x/a0, with natural lengthscale a0 = 1/

√
βk0 and scaled time tω/π. The switching protocol

implies k = k0/4 and m = m0. Except for small numerical sampling artifacts, the results from all three methods agree with
each other to high precision and they satisfy the sum rule (69).

ing with ρ(x, t) in Eqs. (61) and (62) and the scaling with
powers of α in Eqs. (63) and (64).

Considering the limit t → 0+ leads to the coeffi-
cients (63) and (64) attaining respective values b1 = βk0
and b3 = 0, with the width parameter (65) becom-
ing α0 = βk0/2. Thus both the ideal and the exter-
nal contribution to the dynamic shift current C(x, 0) re-
duce correctly to their corresponding thermally scaled
initial partial force density: Cid(x, 0) = βFid,0(x) and
Cext(x, 0) = βFext,0(x).
We emphasize that the cubic spatial dependence of

the (scaled) external shift current Cext(x, t)/ρ(x, t) given
by Eq. (62) is very different from the behaviour of the
time-dependent external force field, which remains lin-
ear, Fext(x, t)/ρ(x, t) = −kx, for all times t ≥ 0.

3. Ideal hypercurrent balance

As a representative hyperobservable, we consider the
sum of positions R̂ =

∑
i x̂i; we recall the general hyper-

current sum rule Eq. (51) for R̂(t). We first consider the
corresponding static hyperforce balance, which possesses
the following initial state form:

ρ0(x) + ⟨βF̂id,0(x)R̂⟩+ ⟨βF̂ext,0(x)R̂⟩ = 0. (66)

The two static correlation functions in Eq. (66) follow
from explicit algebra in the respective forms:

⟨βF̂id,0(x)R̂⟩
ρ0(x)

= βk0x
2 − 1, (67)

⟨βF̂ext,0(x)R̂⟩
ρ0(x)

= −βk0x
2, (68)

where the initial state density profile ρ0(x) is given below
Eq. (59) in its explicit Gaussian form with width param-
eter α0. Again Eqs. (67) and (68) satisfy the static sum
rule (66), as can be seen directly by summing up Eqs. (67)
and (68), adding unity and multiplying by ρ0(x).
The hypercurrent sum rule (51) for the one-

dimensional ideal gas attains the form:

ρ(x, t) + ⟨Ĉid(x, t)R̂(t)⟩+ ⟨Ĉext(x, t)R̂(t)⟩ = 0, (69)
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FIG. 5. Molecular dynamics results for the hypercurrent correlation functions of a one-dimensional system of particles that
mutually repel via the Weeks-Chandler-Andersen pair potential. Shown is the dynamical density profile ρ(x, t)a (top row) and

the three contributions to the hypercurrent correlation function for the (scaled) center of mass, Â = R̂, namely the ideal part

⟨Ĉid(x, t)R̂(t)⟩a (second row), the external part ⟨Ĉext(x, t)R̂(t)⟩a (third row), and the interparticle interaction contribution

⟨Ĉint(x, t)R̂(t)⟩a (bottom row), shown as a function of the scaled distance x/a and scaled time t/tMD, where a is the particle
size and tMD = a

√
mβ is the time scale. The results are shown for a harmonic trap that is switched narrower (first, second, and

third column) and wider (fourth column), as obtained from finite-difference differentiation (first column) and via automatic
differentiation (second, third, and fourth columns). The results from both methods agree with each other for identical conditions
(first and second columns) and the one-dimensional form (75) of the dynamical sum rule (51) is satisfied with high accuracy.

where Ĉ(x, t) = Ĉid(x, t) + Ĉext(x, t) is the one-
dimensional version of the shift current operator with
Ĉint(x, t) = 0, as the particles are ideal. The two hy-
percurrent correlation functions in Eq. (69) follow by ex-
plicit calculation as two even fourth-order polynomials

in x, when normalized by the dynamic density profile:

⟨Ĉid(x, t)R̂(t)⟩
ρ(x, t)

= −1 + b0 + b2x
2 + b4x

4, (70)

⟨Ĉext(x, t)R̂(t)⟩
ρ(x, t)

= −b0 − b2x
2 − b4x

4. (71)

Again, the solution (70) and (71) satisfies the dynamical
sum rule (69), as follows straightforwardly.
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FIG. 6. Splitting of the hypercurrent correlation function into transport and acceleration contributions. Shown is the scaled
dynamical density profile ρ(x, t)a (top row) obtained from histogram filling together with its gradient∇ρ(x, t)a2 = ∂ρ(x, t)a2/∂x
(second row), as obtained from numerical differentiation with respect to position x. The scaled negative mean shift stress
−τC(x, t)a (third row) is identical, on the scale of the plot, to the density profile (first row), which verifies the sum rule
(41): τC(x, t) = −ρ(x, t). The scaled shift acceleration current Cacc(x, t)a (bottom row) is numerically identical to the density
gradient (second row), thus verifying the identity (42): Cacc(x, t) = ∇ρ(x, t), as is demonstrated by high-quality averaging over
107 trajectories (left column). Reduced averaging over only 105 trajectories (right column) reveals reduction of statistical noise
of Cacc(x, t)a (right column, bottom panel) as compared to the direct result for ∇ρ(x, t)a2 (right column, second panel from
top), which renders the shift acceleration current a potential candidate for nonequilibrium reduced-variance sampling.

The coefficients b0, b2, and b4 in Eqs. (70) and (71)
are time-dependent in general. Scaling by the respective

appropriate powers 1, α, and α2 of the time-dependent
Gaussian width parameter α, see Eq. (65) for its explicit
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form, yields:

b0 =
κ0[1− cos(2ωt)]

κ+ κ0 + (κ− κ0) cos(2ωt)
, (72)

b2
α

=
2(κ+ κ0) cos(2ωt) + (κ− κ0)[3− cos(4ωt)]

κ+ κ0 + (κ− κ0) cos(2ωt)
,

(73)

b4
α2

= − (κ− κ0)[1− cos(4ωt)]

κ+ κ0 + (κ− κ0) cos(2ωt)
, (74)

where as before ω =
√
k/m is the oscillator frequency

after switching and the commonality of denominators,
as observed in Eqs. (63)–(65), is retained. Comparison
of Eq. (74) to the coefficient (64) for the shift current
reveals that b3 = b4.

As a consistency check of the static and dynamical so-
lutions, at time t = 0 and hence α0 = βk0/2, the dynam-
ical coefficients (72)–(74) reduce to: b0 = 0, b2 = βk0,
and b4 = 0. Inserting these results into the hypercur-
rent correlation functions (70) and (71) reduces these
expressions correctly to the respective static hyperforce
correlation functions (67) and (68), such that indeed

⟨Ĉid(x, 0)R̂(0)⟩ = ⟨βF̂id,0(x)R̂⟩ and ⟨Ĉext(x, 0)R̂(0)⟩ =

⟨βF̂ext,0(x)R̂⟩.
The ideal and external parts of the hypercurrent cor-

relation function, ⟨Ĉid(x, t)R̂(t)⟩ and ⟨Ĉext(x, t)R̂(t)⟩, as
respectively given by Eqs. (70) and (71), are depicted
graphically in the second and third row of Fig. 3. We
recall the above description of the three considered cases
of no switching (first column), switching to softer con-
finement (second column), and switching to an unsta-
ble situtation by reversing the sign of the force constant
(third column); we return to the latter case at the end
of Sec. IVB4. As anticipated in the discussion given in
Sec. IVA on the basis of general arguments, the hyper-
force correlation funtions indeed display nontrivial time
dependence, and they provide arguably much deeper in-
sight into the dynamical structuring than does the dy-
namical density profile (first row in Fig. 3).

4. Reduction to limiting cases of the ideal gas

As a specific simple situation, it is interesting to con-
sider the dynamics when the model parameters are kept
constant at the initial time, k = k0 and m = m0, and
hence no switching occurs. Then b1 = 2α0 cos(2ω0t) =
βk0 cos(2ω0t) from Eq. (63) and b3 = 0 from Eq. (64).
Hence the ideal and external mean shift current both fol-
low from Eqs. (61) and (62) as Cid(x, t) = −Cext(x, t) =
βk0x cos(2ω0t)ρ0(x), where we recall α0 = βk0/2 as the

initial width parameter and ω0 =
√
k0/m0 as the ini-

tial frequency and note the period doubling effect. Fur-
thermore, for the present case of switching being ab-
sent, the hypercurrent identity (69), reduces from the
general nonequilibrium solution (72)–(74) similarly to
b0 = [1 − cos(2ω0t)]/2, b2 = βk0 cos(2ω0t), and b4 = 0,

which simplifies the ideal (70) and external (71) hyper-
current correlation functions. Hence the occurring oscil-
lation is characterized by a doubled initial frequency 2ω0.
It is remarkable that even in this arguably simplest setup
of noninteracting harmonic oscillators in thermal equilib-
rium, there is nontrivial temporal dependence exposed by
the hypercurrent approach; we recall the illustration of
the ideal and external hypercurrent correlation functions
in the first column of Fig. 3.
Turning to the case of nonequilibrium steady states

with constrained parameter choices km = k0m0, the co-
efficients of the shift current are b1 = βk0 cos(2ωt), b3 = 0
and hence Cid(x, t) = −Cext(x, t) = βk0x cos(2ωt)ρ0(x),
where the frequency is twice that after switching: recall
ω =

√
k/m and that this is in general different from the

doubled frequency 2ω0 identified above in equilibrium.
We recall that the density profile itself remains station-
ary in the present case. The hypercurrent coefficients are
b0 = [1 − cos(2ωt)]/2, b2 = 2α0 cos(2ωt) = βk0 cos(2ωt),
and b4 = 0.
As a final case, the presented general solution for the

contributions to the shift current identity (Sec. IVB2)
and to the hypercurrent balance (Sec. IVB3) remains
valid when the external potential is no longer confining
and thus k < 0. Then the trigonometric dependence be-
comes hyperbolic, such that e.g., cos(2ωt) = cosh(2|ω|t),
where |ω| = ω/i =

√
−k/m ≥ 0 with imaginary unit i,

which again results in non-trivial time dependence in the
dynamical correlation functions (70) and (71), see the
last column of Fig. 3 for the graphical representations.
Taking the limit k → 0, such that the system is free at
t > 0, allows one to make further simplifications to the
above analytical results.

C. Molecular dynamics simulations

1. Simulation methodology

We turn to simulations to gain further and deeper
physical insight into the nature of the hypercurrent corre-
lation structure beyond the simple nonequilibrium ideal
gas setup of Sec. IVB. We base our methodology on the
trajectory level, as described in Sec. IID and in particular
on the initial state differentiation laid out in Sec. III F.
We use two different methods to realize the initial state

time differentiation. As a basis for the time evolution
we use in both methods the velocity Verlet algorithm
[7, 8, 77], see Sec. IID, but we see no reason why one
should not be able to use other molecular dynamics time
integrators [8]. First, to realize the initial state deriva-
tive, we use automatic differentiation to keep track of the
effect of differential changes in the initial microstate of
each molecular dynamics trajectory. Results for the shift
current and for the hypercurrent correlation functions are
then obtained according to the trajectory-based picture
described in Sec. III F. Implementation-wise, the method
requires the molecular dynamics to be performed in an
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〈Ĉ
in

t
R̂
〉a

FIG. 7. Dynamical gauge correlation functions of the ideal gas (left column) and of mutually interacting particles (right
column) inside of an external double-well potential. Shown is the scaled dynamical density profile ρ(x, t)a (top row) and the
hypercurrent correlation function for the total position, consisting of the ideal part, ⟨Cid(x, t)R(t)⟩a (second row), external
part, ⟨Cext(x, t)R(t)⟩a (third row), and interparticle contribution, ⟨Cint(x, t)R(t)⟩a (bottom row). The system is in equilibrium
and thus the density profile is stationary. Note the spatiotemporal hypercurrent structure that is indicative of barrier crossing.

environment that provides ready access to the automatic
differentiation functionality; we use a custom molecular
dynamics implementation in the programming language
Julia [80] and note recent progress in differentiable molec-
ular dynamics [63], where libraries are available.

As a second and alternative route, we perform differen-
tiation via finite differences, which can be realized in any
molecular dynamics environment. Here the initial state
differentiation is based on dynamically propagating one
additional trajectory that differs from the corresponding
original trajectory by a single, additional time step that
is performed on the initial microstate and with respect
to the dynamics generated by the initial state Hamilto-

nian H0. The magnitude of this time step can be chosen
freely, as described below. The thus altered initial mi-
crostate is then propagated forward in time, in an identi-
cal way as the original corresponding trajectory, i.e., on
the basis of the given form of H for t ≥ 0. At (each)
target time t, the finite difference with the unperturbed
trajectory then provides the numerator for the finite dif-
ference ratio; the denominator is the time step used for
the perturbation of the initial state. To perform the dy-
namical evolution, we use a standard value of the size
of the time step, ∆t = 5 × 10−3tMD, with microscopic
time scale tMD = a

√
mβ, where a is the particle size (as

specified below). The initial time derivative is performed
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with a single, much smaller initial time step of 10−4tMD.
To first validate both simulation methods we use

the harmonic oscillator setup, as described above in
Sec. IVB, and compare against the analytical solution.
The use of the simulation methods in this case also serves
to demonstrate and illustrate the arguably more intuitive
access that the trajectory-based picture provides for the
dynamical gauge theory. Despite the simplicity of the
noninteracting sytem, we deem the test to be nontriv-
ial, due to the significant conceptual differences between
the three methods (analytical solution, automatic and
finite-difference trajectory differentiation) to obtain the
respective results. We recall the explicit phase space ma-
nipulations, described in Sec. IVB, to obtain the analyt-
ical solution and the trajectory-based formulation of the
initial state time derivative in Sec. III F.

In Fig. 4 we use the analytical solution as a reference
(left column) to compare the results from both simula-
tion methods: automatic differentiation (center column)
and finite-difference differentiation (right column). As
expected, the results for the dynamical density profile
ρ(x, t) are numerically identical. We recall that based
on the simulation, mere filling of a position- and time-
resolved histogram of particle positions is required. Av-
eraging over the initial ensemble, as is realized via Monte
Carlo simulations on the basis of the initial state Hamil-
tonian H0 and initial inverse temperature β, then yields
the numerical results.

Obtaining simulation results for the ideal and external
hypercurrent correlation functions, ⟨Ĉid(x, t)R̂(t)⟩ and

⟨Ĉext(x, t)R̂(t)⟩, requires to carry out explicitly the initial
state time differentiation, as is apparent from the defini-
tion (13) of the shift current observable. Figure 4 demon-
strates excellent agreement of the results from both sim-
ulation methods with each other and with the analytical
solution. Besides a strong validation of the computa-
tional methodology (we compare both simulation meth-
ods against each other for mutually interacting parti-
cles below) this also confirms the successful mirroring
of the dynamical gauge invariance theory, as developed
in Sec. III on the basis of phase space differential opera-
tor methods, using the arguably more intuitive trajectory
pricture; see the description in Secs. IID and III F.

2. Interacting particles in harmonic confinement

Both molecular dynamics simulation methods allow
one to go beyond noninteracting systems in a relatively
straightforward way, as the required time evolution re-
mains based on temporal discretization, here via the ve-
locity Verlet algorithm, and the initial state time deriva-
tive remains identical. As a crucial difference to the ideal
gas, the interparticle shift current observable Ĉint(x, t) no
longer vanishes, and all further shift and hypercurrent ob-
servables are naturally affected by the altered dynamics.

We consider mutually repulsive particles that inter-
act with a pair potential ϕ(r) as a function of (one-

dimenional) interparticle distance r. Figure 5 displays
results for the Weeks-Chandler-Andersen pair potential
as a prototypical short-ranged, strongly repulsive model.
Explicitly the pair potential is thereby given by ϕ(r) =
4ϵ[(r/a)−12 − (r/a)−6 + 1/4] for r ≤ 21/6a and zero oth-
erwise, where a is a lengthscale, ϵ is an energy scale, and
we choose temperature such that βϵ = 1.
The general center-of-mass sum rule (51) attains the

following one-dimensional split form:

ρ(x, t) + ⟨Ĉid(x, t)R̂(t)⟩+ ⟨Ĉint(x, t)R̂(t)⟩
+ ⟨Ĉext(x, t)R̂(t)⟩ = 0. (75)

Figure 5 displays results for the density profile and the
further three hypercurrent correlation functions on the
left hand side of Eq. (75) using various different switch-
ing setups; see the caption of Fig. 5. The simulation
results from automatic differentiation agree with those
from the finite-difference method within high numerical
accuracy. Besides providing a consistency check, this
agreement validates each method as being fit for apply-
ing the hypercurrent framework to systems of mutually
interacting particles. Despite our test system being only
one-dimensional, the fact that both differentiation meth-
ods perform well can also serve as a vindication of the
implied concept of initial state differentiation, as it arises
from the dynamical gauge invariance.

3. Towards reduced-variance sampling

We have thus far presented simulation results based on
the splitting of the hypercurrent correlation function into
ideal, interparticle, and external contributions as they
arise from the splitting of the initial state Liouvillian
L0; we recall Eq. (5). We next address the splitting of
the hypercurrent observable into acceleration and trans-
port contributions presented in Sec. III F; see specifically
Eq. (38) therein. For the present situation, we express
the general relationships (41) and (42) in the following
one-dimensional forms:

τC(x, t) = −ρ(x, t), (76)

Cacc(x, t) = ∇ρ(x, t), (77)

where ∇ = ∂/∂x and the general d-dimensional shift cur-
rent sum rule (43) simplifies to Cacc(x, t)+∇τC(x, t) = 0.
We consider the case of switching to a stiffer trap

and present the corresponding dynamical density profile
ρ(x, t) together with its numerically differentiated gra-
dient, ∇ρ(x, t), in the first and second rows of Fig. 6.
Thereby the results for the density profile are obtained
from histogram-resolved counting of particle positions.
Then calculating the numerical position derivative of the
data gives results for the density gradient, which displays
the typical effect of amplification of the statistical noise.
The third panel in Fig. 6 shows results for the mean

shift stress tensor (39), which we spell out in one di-
mension as: τC(x, t) = −β⟨∑i δ(x− x̂i(t))x̂

•
i (t)p̂i(t)⟩; we
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recall that the bold dot denotes the initial-time deriva-
tive (29). The simulation results for τC(x, t) are nu-
merically nearly identical to those in the first row of
Fig. 6, which validates the sum rule (76). The gen-
eral definition of the acceleration part (40) of the shift
current, as is relevant for Eq. (77), attains the form:
Cacc(x, t) = β⟨∑i δ(x − x̂i(t))p̂

•
i (t)⟩. The corresponding

simulation results are shown in the fourth row of Fig. 6.
It is noteworthy that these results i) are consistent with
those presented in the second row for ∇ρ(x, t), as ex-
pected from the sum rule (77), and ii) that they show
reduced statistical noise – see the right column of Fig. 6
where the number of trajectories has been reduced to
demonstrate the effect.

Hence, strikingly, each of the sum rules (76) and (77)
provides an independent means of practical access to the
dynamical density profile ρ(x, t). (Using Eq. (77) requires
spatial integration to undo the gradient operation; see
e.g. Refs. [81–83] that address this point in equilibrium.)
When using the finite-difference method to carry out the
initial time derivative, the computational overhead in-
volves a mere factor 2. The thus obtained results display
reduced statistical variance over the counting method.
Hence the present methodology offers a way forward to
generalize equilibrium reduced-variance (force-sampling)
methods [81–83] to nonequilibrium situations. This could
potentially be very general, when starting with the hy-
percurrent identities (46) and (47) that hold for general

observables Â. We have verified numerically both of these
identities in the present system and for the present choice
of hyperobservable (results not shown).

4. Double-well potential and barrier crossing

To demonstrate that genuine physical insight can be
gained from the present framework, we turn to the clas-
sical double-well problem and show in Fig. 7 results for
both the ideal gas and for repulsive Weeks-Chandler-
Andersen particles. As a choice for a specific situation,
we keep the external double-well potential unchanged
over time, Vext(x) = ϵ(x2 − x2

d)
2/x4

d, with constant dis-
tance xd = 2.5a between the maximum and each min-
imum; ϵ is the energy scale of the pair interaction po-
tential and a is the particle size and we consider βϵ = 1
as before. The density profile remains stationary in this
situation and it is identical to its initial equilibrium form
(see the panels in the top row of Fig. 7). Both the ideal
and external parts of the hypercurrent correlation func-
tion exhibit pronounced spatiotemporal structure; we re-
call the sum rule (51), which we find again to be satified
with high numerical accuracy.

The spatiotemporal structuring of the hypercurrent
correlation functions shows clear signs of barrier cross-
ings, see the diagonal streaks in Figs. 7. Comparing the
behaviour of the interacting system with that of the ideal
gas reveals that the presence of the repulsive interparticle
interactions leads to more immediate barrier crossing, as

is arguably consistent with intuition. We conclude that
the present setup offers fresh insight into the coupled
motion in complex energy landscapes and leave more de-
tailed investigations to future work.

V. CONCLUSIONS

In conclusion, we have explored the consequences of
dynamical gauge invariance against phase space shifting
in the nonequilibrium statistical mechanics of many-body
systems. The shifting transformation has been identified
previously for systems in thermal equilibrium [55, 56],
where it was shown to induce exact static identities, rang-
ing from global force [47] and variance identities [49],
force-force correlation ‘3g’-sum rules [51], to locally re-
solved quantum [50] and classical [53] force balance re-
lationships. The framework also allows one to obtain
very general hyperforce correlation identities [54] which
are embedded, via an associated generalized ensemble,
in hyperdensity functional theory for the behaviour of
general observables in equilibrium [67, 68].
The derivation of these prior equilibrium results was

based primarily on variational calculus and in particular
on exploiting the properties of functional derivatives with
respect to the shifting field that parameterizes the trans-
form on phase space. As the shifting field itself plays the
role of a mere gauge function [55, 56], here we have rather
worked with the equivalent differential operator formal-
ism [55, 56]. The higher level of abstraction that the op-
erator method provides over the variational method leads
to significant simplification of the complexity of the re-
quired algebra. We have shown that the static shifting
operators σ(r) acquire time dependence via the standard
embedding inside of a propagator ‘sandwich’ as given by
the time evolution (19) for σ(r, t). This particular prop-
agator structure might be more familiar from quantum
theory [78] than it is within the present classical physics,
but it indeed also constitutes a general property of (clas-
sical) differential operators, as laid out in Sec. II B.
The mechanism of temporal nonlocality that is inher-

ent in the dynamical gauge invariance is markedly differ-
ent from the more common memory integral formalism,
as is central in modelling via generalized Langevin equa-
tions [6, 7, 10] and power functional theory [18, 84–86].
Rather than a temporal integral, the gauge framework
features a time differential structure, which arises from
a specific differential change according to the time evo-
lution of the initial equilibrium ensemble. While this
operation can be seen technically as a perturbation, it is
also arguably the most natural one, as it is inherent in
the initial ensemble and the initial thermal distribution
function remains invariant under the change; we recall
the illustration shown in Fig. 1.
Our primary general results are the shift current bal-

ance (14) and the hypercurrent identity (26), which are
both exact. These sum rules acquire via decomposing
into ideal (kinetic), interparticle, and external contribu-
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tions the respective forms (15) and (28). We have consid-
ered four concrete examples of hyperobservables, where
in particular the correlation function of the sum of all
positions with the shift current equals the (negative) dy-
namical density profile, see Eq. (51).

The harmonically confined ideal gas served as a toy
model to illustrate some of the properties of the shift
and hypercurrent correlation function. An initial thermal
ensemble is thereby set into motion by switching both the
spring constant and the particle mass in the most general
case. Given the simplicity of the setup, the resulting rich
gauge correlation structure is striking, as it displays, e.g.,
period doubling effects and polynomial contributions in
position of higher order than one might expect naively to
find in a system of harmonic oscillators.

Our simulation results have confirmed the above pic-
ture via reproducing the analytical ideal gas solution,
which provides a consistency check, and via enabling us
to address the effects of interparticle interactions on the
gauge correlation behaviour. It is noteworthy that the
effects of interparticle interaction are incorporated effort-
lessly into the setup. These effects are contained in an
interparticle contribution to the shift current, which upon
averaging forms the mean interparticle shift current and
furthermore consitutes the correlator contribution in the
hypercurrent sum rule (28). All contributions to the shift

current observable Ĉ(r, t) are thereby accessible via au-
tomatic differentiation; we recall our description of the
virtues of the method in the introduction (Sec. I). Never-
theless, working with finite differences is entirely feasible,
as we have demonstrated; see the comparison of both sim-
ulation methods presented in Fig. 4 and in Fig. 5 (see its
two leftmost columns). The finite-difference method re-
quires only very moderate overhead over standard molec-
ular dynamics work, as one merely needs to analyze the
differences of pairs of trajectories that differ by a small
finite change in their initial microstates.

It is worth pointing out several differences of the dy-
namical gauge invariance theory with several established
methods in nonequilibrium statistical mechanics. The
present framework is exact and no approximations are
involved in the treatment of the many-body physics as
set up in Sec. II. Yet, investigating the combination with
approximate closure relations could be worthwhile. The
central concept of initial state time differentiation, as de-
scribed in Sec. III E, is different from standard dynamical
perturbation analysis against generic changes in the ini-
tial conditions. Here the change in initial conditions is
generated by the application of the initial state Liouvil-
lian L0, which is natural, as the initial thermal ensemble

is invariant under its action to generate the time evolu-
tion of the initial state.
The dynamical gauge invariance leads to shift cur-

rent and hypercurrent sum rules that are structurally
different from the Jarzynski equation [87] and the fur-
ther fluctuation theorems of stochastic thermodynam-
ics [13]. Yet, exploring connections and possible cross-
fertilization with stochastic thermodynamics constitutes
an interesting topic for future work. While the present
treatment is based genuinely on dynamical averages, as
is standard procedure [6], the dynamical gauge invari-
ance framework is distinct from the projection operator
formalism and from mode-coupling theory. Investigating
the consequences for these approaches is a valuable point
for future work. In particular tracing out the connections
with the Yvon theorem [7, 35], as used in Götze’s semi-
nal account of mode-coupling theory [11], constitutes an
intereresting topic.
The mapped averaging framework developed by Kofke

and coworkers [88–100] is a highly efficient sampling
scheme for equilibrium properties of complex systems.
Whether the present methodology could help to general-
ize the mapped averaging to nonequilibrium situations is
an interesting question. Furthermore, possible general-
izations of force sampling [81–83, 100–105], as used pre-
viously for local transport coefficients and mobility pro-
files within the Green-Kubo formalism [81, 104], could be
very interesting. The reduced-variance effect described in
Sec. IVC3 points to the practical feasibility. Finally, the
connection to power functional theory [18, 19] is worth
exploring and whether the present formalism can shed
further light on the limitations of the dynamical den-
sity functional theory [20]. Potential applications of the
dynamical gauge sum rules include the development of
convergence tests and sampling schemes for simulations
and to provide consistency checks for dynamical neural
functionals [18, 20, 21].
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