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We address gauge invariance in the statistical mechanics of quantum many-body systems. The
gauge transformation acts on the position and momentum degrees of freedom and it is represented
by a quantum shifting superoperator that maps quantum observables onto each other. The shifting
superoperator is anti-self-adjoint and it has noncommutative Lie algebra structure. These properties
induce exact equilibrium sum rules that connect locally-resolved force and hyperforce densities for
any given observable. We demonstrate the integration of the framework within quantum hyperden-
sity functional theory and show that it generalizes naturally to nonequilibrium.

The systematic treatment of gauge invariance is key to
relating the symmetries that are inherent in a physical
theory to the validity of exact identities. Typically such
equations have the form of conservation laws that re-
strict the behaviour of the fundamental physical degrees
of freedom, which are often taken to be fields. The gauge
transformations can carry intricate mathematical struc-
ture, have profound consequences for our understanding
of nature, and they reside at the core of important mod-
ern developments in theoretical physics [1, 2].

As a central tool to analyze invariances, Noether’s the-
orem [3] was used in various different statistical mechan-
ical settings [4–11]. A specific ‘shifting’ operation was
argued to constitute a gauge transformation for classi-
cal statistical mechanics in equilibrium [12–15] and un-
der general Hamiltonian dynamics [16]. The shifting is
a canonical transformation both in classical [17, 18] and
quantum mechanical form [19]. The classical framework
leads to force and generalized ‘hyperforce’ correlation
functions that satisfy exact sum rules [12, 13, 18, 20]
and it allows one to construct and test novel sampling
schemes [12, 14]. As a special case the Yvon-Born-Green
equation [21–23], which expresses the position-resolved
equilibrium force density balance, follows and it is gen-
eralized to a dynamical ‘hypercurrent’ identity [16].

Here we present the generalization of the classical
gauge invariance to quantum many-body systems. We
demonstrate that all salient features of the classical gauge
theory remain intact, including the validity of exact static
hyperforce and dynamical hypercurrent sum rules, see
Eq. (19). The perseverance of this theoretical structure is
remarkable, given the fundamental changes in the under-
lying microscopic description of the many-body physics.

When working with discrete particles instead of fields,
then a quantum many-body description involves the po-
sition and momentum degrees of freedom of each particle.
The quantum nature of the problem is reflected by the al-
gebraic commutator structure of the canonical quantum
operators. Formulating a reduced picture can be based
efficiently on the density operator ρ̂(r) =

∑
i δ(r − ri),

see e.g. Ref. [24], where the sum runs over all particles
i = 1, . . . , N , the variable N is the total number of parti-
cles, δ(·) denotes the Dirac distribution in d dimensions,
ri is the position of particle i, and r is a generic position.

When considering a general quantum observable Â, the
quantum dynamics are given by the associated Heisen-
berg equation of motion, ∂Â(t)/∂t = (−i/ℏ)[Â(t), H(t)],
where [ · , · ] denotes the commutator, H is the Hamilto-
nian, ℏ indicates the reduced Planck constant, i is the
imaginary unit, t denotes time, and we let Â be sta-
tionary, such that it carries no mere parametric depen-
dence on time. Choosing the density operator as the
observable of interest, Â = ρ̂(r), the generic Heisenberg
equation of motion reduces to the continuity equation,
∂ρ̂(r, t)/∂t = −∇ · Ĵ(r, t). Here Ĵ(r, t) is the one-body
current operator (defined below). Its dynamics follow
again from Heisenberg’s equation of motion, which yields
∂mĴ(r, t)/∂t = F̂(r, t), where the result is the one-body
force density operator (also described below) and m indi-
cates the particle mass. Hence one has arrived at a spa-
tially resolved analog of Newton’s second law and upon
building the quantum average one recovers Ehrenfest’s
theorem, again in a spatially resolved version. The cru-
cial step in the derivation is to obtain a microscopic ex-
pression for the force density operator [24] by calculat-

ing explicitly the commutator (−i/ℏ)[mĴ(r, t),H(t)] =

F̂(r, t). This formulation forms a perfectly valid starting
point for developing the quantum statistical mechanics
of N -body systems.

Here we first take a step back and lay out the canon-
ical quantization according to Dirac’s correspondence
principle [25] by starting from a classical N -body sys-
tem. The role of the commutator is then played by the
(scaled) Poisson brackets and general classical observ-

ables Âcl(r
N ,pN ) are functions on the N -body phase

space. We use shorthand notations for positions, rN =
r1, . . . , rN , and for momenta, pN = p1, . . . ,pN , with
pi denoting the momentum of the classical particle i =
1, . . . , N . The Liouville equation for the time evolution
of a classical observable is ∂Âcl(t)/∂t = {Âcl(t), H(t)},
where the Hamiltonian is now a phase space function
and { · , · } indicates the Poisson brackets [26]. The time
argument t indicates dynamical dependence according
to the Heisenberg picture, which here is classical [26].
As the phase space variables are canonical, they satisfy
{ri, rj} = {pi,pj} = 0 and {ri,pj} = δij1, where δij is
the Kronecker symbol and 1 denotes the d× d unit ma-
trix. Choosing the observable of interest as the classical
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one-body current, Â = Ĵcl(r), and applying the Liou-
ville equation of motion yields the classical force den-
sity phase space function F̂cl(r, t) = {mĴcl(r, t),H(t)}.
The prior quantum description then follows identically
by replacing Poisson brackets with (scaled) commutators,
i.e., { · , · } → (−i/ℏ)[ · , · ] and identifying classical phase
space variables with their corresponding quantum oper-
ators.

The recent classical gauge theory is based on viewing
the above Poisson brackets {mĴcl(r, t),H(t)} as an oper-
ator that acts on H(t) [16]. Upon exchanging the order
of arguments and multiplying by −1, this generates the
following classical ‘shifting’ operators [12, 13, 16], which
are given, in classical Schrödinger form [26], as:

σcl(r) = { · ,mĴcl(r)}, (1)

and we refer to Ref. [16] for the explicit phase space form.
The classical shifting operators (1) represent a canonical
transformation [27] and they generate a specific gauge
transformation on phase space [12, 13]. The shifting op-
erators possess remarkable algebraic properties, such as
being anti-self-adjoint on phase space and having non-
trivial (Lie algebra) commutator structure. This differen-
tial operator structure has profound consequences when
applied to classical statistical mechanical averages both
in thermal equilibrium [12, 13] and in general nonequilib-
rium situations [16]. A range of exact sum rules follows
and these have been shown to be computationally acces-
sible using classical particle-based simulations [16, 18].

Here we formulate quantum shifting gauge invariance
and start by applying Dirac’s correspondence princi-
ple [25] to the Poisson bracket form (1) of the classial
shifting operators σcl(r). This leads one to postulate the
following quantum ‘shifting superoperator’:

σ(r) = − i

ℏ
[ · ,mĴ(r)], (2)

where the (scaled) quantum one-body current operator
in Schrödinger form is:

mĴ(r) =
1

2

∑
i

[p̂iδ(r− ri) + δ(r− ri)p̂i], (3)

with p̂i = −iℏ∇i denoting the momentum operator of
quantum particle i, where ∇i = ∂/∂ri. Equation (2) de-
fines a quantum superoperator, as this applies to Hilbert
space operators (first argument of the commutator) and
it also returns a Hilbert space operator (the result of
the scaled commutator). We demonstrate in the follow-
ing that the shifting superoperator (2) is the appropriate
quantum mechanical entity to encapsulate statistical me-
chanical gauge invariance by laying out several of its key
properties.

As a seemingly trivial initial case, applying the shifting
superoperator to the identity operator 1 yields

σ(r)1 = 0, (4)

which follows from the definition (2) and the identity

commuting with the current operator, [1,mĴ(r)] = 0.
The application of the superoperator to the negative
Hamiltonian yields the force density operator,

F̂(r) = −σ(r)H, (5)

which constitutes the Schrödinger form of F̂(r, t) and is
specified in more detail later. Equation (5) follows from
the definition (2) and the Heisenberg equation of motion
for the current density.
When considering a general quantum observable Â and

applying σ(r) we refer to the result as the hyperforce
density operator

ŜA(r) = σ(r)Â, (6)

which is the quantum analog of the corresponding clas-
sical phase space function [12, 18] and is expressed as

ŜA(r) = (−i/ℏ)[Â,mĴ(r)] according to the commuta-

tor form (2). That ŜA(r) is indeed a quantum observ-

able, Ŝ†
A(r) = ŜA(r), follows from [σ(r)Â]† = σ(r)Â for

Â = Â†. This property can in turn be derived from

[σ(r)Â]† = σ(r)Â†, (7)

where Â can be general (not necessarily self-adjoint).
Equation (7) is a consequence of the commutator struc-
ture (2) and the self-adjointness of the current operator,

mĴ(r) = mĴ†(r).

For completeness, adjoining an operator Â is indicated
by the dagger, Â†, and defined throughout in the stan-
dard way [25, 28] as ⟨n′|Ân⟩ = ⟨Â†n′|n⟩ for all n and n′

of a general N -body Hilbert space basis |n⟩. By exten-
sion [29], the adjoint O† of a general superoperator O is

defined as Tr Â†OB̂ = Tr (O†Â)†B̂, where Â and B̂ are
general Hilbert space operators and Tr · =

∑
n⟨n| · |n⟩

indicates the trace over Hilbert space. This will be im-
portant for the statistical mechanics described later.

In this extended sense, the shifting superoperator is
anti-self-adjoint,

σ†(r) = −σ(r), (8)

which follows from the quantum trace being invari-
ant under cyclic permutations [29]. More specifically,

Tr Â[B̂, Ĉ] = Tr [Ĉ, Â]B̂, where one chooses Ĉ =

(−i/ℏ)mĴ(r). Together with Eq. (2) this leads to

Tr Â[σ(r)B̂] = −Tr [σ(r)Â]B̂, (9)

where replacing Â with Â† and combining with Eq. (7)
gives Eq. (8).

While the relationships (4)–(9) point towards the
prowess of individual uses of the shifting superoperator,
one needs to consider multiple instances of σ(r) to reveal
the full mathematical structure. Before we demonstrate
below the existence of a Lie superoperator algebra, we
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first address the commutator of two shifting superopera-
tors:

[σ(r),σ(r′)] = [∇δ(r− r′)]σ(r) + σ(r′)[∇δ(r− r′)],
(10)

where [∇δ(r − r′)] is the derivative of the Dirac distri-
bution and the brackets limit the scope of ∇. Analo-
gously one can express ∇δ(r − r′) = (i/ℏ)[p̂, δ(r − r′)]
upon introducing a generic momentum operator p̂ =
−iℏ∇ that satisfies the canonical commutator relation-
ship [r, p̂] = iℏ1 with the generic position r. The com-
mutator of two superoperators O1 and O2 is defined as
[O1,O2]Â = O1(O2Â)−O2(O1Â) for any general opera-

tor Â.
To connect to the quantum shifting transform [19]

and to be able to identify the Lie superoperator alge-
bra we consider the integrated shifting superoperators
Σ[ϵ] =

∫
drϵ(r) · σ(r), where the brackets indicate func-

tional dependence on the shifting field ϵ(r). An explicit
form of Σ[ϵ] is obtained by expressing σ(r) via the com-
mutator (2), using the scaled current (3), and carrying
out the position integral, which yields:

Σ[ϵ] = − i

2ℏ
∑
i

[ · , ϵ(ri) · p̂i + p̂i · ϵ(ri)]. (11)

As an illustration of Eq. (11) we consider the effect
of 1 + Σ[ϵ] acting on the fundamental position and mo-
mentum degrees of freedom. The result is (1+Σ[ϵ])rj =
rj + ϵ(rj) and (1 + Σ[ϵ])p̂j = p̂j − [(∇jϵ(rj)) · p̂j + p̂j ·
(∇jϵ(rj))

T]/2, where the superscript T indicates transpo-
sition of a d×d matrix. Thus we recover the (linearized)
quantum canonical shifting transformation of Ref. [19],
where quantum canonical transformations [30] general-
ize their classical counterparts [27].

Working with the superoperator (2) allows one to make
significant progress over the results obtained via the
explicit quantum canonical transformation [19], as we
demonstrate in the following. Given two shifting fields
ϵ1(r) and ϵ2(r) the corresponding integrated superoper-
ators form a noncommutative Lie algebra,

[Σ[ϵ1],Σ[ϵ2]] = Σ[ϵ∆]. (12)

The explicit form of the difference shifting field is

ϵ∆(r) = ϵ1(r) · ∇ϵ2(r)− ϵ2(r) · ∇ϵ1(r), (13)

which is identical to the standard Lie bracket of the two
vector fields ϵ1(r) and ϵ2(r), as holds also classically [12,
13]. Using the generic momentum operator p̂ allows one
to express Eq. (13) alternatively as ϵ∆(r) = (i/ℏ)

(
ϵ1(r) ·

[p̂, ϵ2(r)]− ϵ2(r) · [p̂, ϵ1(r)]
)
. The derivation of Eq. (12)

is based on resolving the nested commutators on the left
hand side. The commutator relationship (10) between
the localized superoperators σ(r) and σ(r′) then follows
via building the mixed second functional derivative of
Eq. (12), δ2/[δϵ1(r)δϵ2(r

′)], observing that δΣ[ϵ]/δϵ(r) =
σ(r), and simplifying.

Having laid out the geometrical structure of the quan-
tum mechanical shifting, we turn to its statistical me-
chanical consequences. We consider the following generic
many-body Hamiltonian

H =
∑
i

p̂2
i

2m
+ u(rN ) +

∑
i

Vext(ri), (14)

where u(rN ) is the interparticle interaction potential
and Vext(r) is an external one-body potential. We first
consider stationary Hamiltonians H0, where the sub-
script 0 indicates the absence of explicit time dependence.
The corresponding canonical quantum partition sum is
Z = Tr e−βH0 , where β = 1/(kBT ) with Boltzmann
constant kB and absolute temperature T . The canoni-
cal free energy is F = −kBT lnZ and thermal equilib-
rium averages of general quantum observables are given
by ⟨ · ⟩ = Tr · e−βH0/Z.
One defining feature of any gauge transformation is

that its application leaves measurable quantities invari-
ant, which in the present case are quantum statistical
mechanical averages. Applying the integrated shifting
superoperator (11) to a given observable Â will in general

have a nonvanishing effect on Â, such that (1+Σ[ϵ])Â =

Â + Σ[ϵ]Â ̸= Â, since Σ[ϵ]Â ̸= 0. However, on av-

erage ⟨Σ[ϵ]Â⟩ = 0, irrespective of the specific form of

the gauge function ϵ(r) and of the observable Â; we re-

call the thermal mean as ⟨Σ[ϵ]Â⟩ = TrΣ[ϵ]Âe−βH0/Z

with Σ[ϵ] acting on the product Âe−βH0 . That the
average vanishes can be seen by expressing Σ[ϵ] in

the form given above Eq. (11) to re-write ⟨Σ[ϵ]Â⟩ =∫
drϵ(r) · ⟨σ(r)Â⟩, where ⟨σ(r)Â⟩ = 0 due to ⟨σ(r)Â⟩ =

⟨[σ†(r)1]†Â⟩ = −⟨[σ(r)1]†Â⟩ = 0, as follows from the
anti-self-adjointness (8) and Eq. (4).

The localized shifting superoperator (2) has no depen-
dence on the gauge function and hence it forms a very
efficient starting point for the derivation of sum rules. As
a prerequisite, we consider applying the shifting super-
operator to the Boltzmann factor:

σ(r)e−βH0 =

∫ β

0

dβ′e−β′H0F̂0(r)e
β′H0e−βH0 , (15)

where the force density operator (5) is

F̂0(r) = −σ(r)H0. (16)

Equation (15) follows from the commutator form (2)
and the general property of exponentiated operators

[B̂, e−βĈ ] = −
∫ β

0
dβ′e−β′Ĉ [B̂, Ĉ]eβ

′Ĉe−βĈ by setting

B̂ = (i/ℏ)mĴ(r) and Ĉ = H0. The additive struc-
ture of the Hamiltonian (14) induces the force den-

sity splitting [24] into F̂0(r) = ∇ · τ̂ 0(r) + F̂int,0(r) −
ρ̂(r)∇Vext,0(r), where τ̂ 0(r) is the kinetic stress tensor

[19, 24], F̂int,0(r) = −
∑

i δ(r− ri)∇iu0(r
N ) is the inter-

particle force density, and Vext,0(r) is the external poten-
tial, all for the equilibrium system.



4

To start the sum rule construction, we first build
the equilibrium average of the trivial Eq. (4). This
yields 0 = ⟨0⟩ = ⟨[σ(r)1]†⟩ = ⟨σ†(r)⟩ = −⟨σ(r)⟩ =

−Trσ(r)e−βH0/Z = −⟨βF̂0(r)⟩, which follows from
Eq. (8), writing out the canonical average, using the
Boltzmann operator identity (15) and identifying the
thermal average. Defining the mean force density as
F0(r) = ⟨F̂0(r)⟩ leads to

F0(r) = 0, (17)

which is the equilibrium force density balance [19, 24].

To incorporate general observables Â into the frame-
work, we apply the averaging strategy to the adjoint of

Eq. (6). On the left hand side this yields ⟨Ŝ†
A(r)⟩ =

⟨ŜA(r)⟩ = SA(r), where we have used the self-adjointness
of the hyperforce density operator and then have de-
fined the mean hyperforce density SA(r). On the

right hand side one obtains ⟨[σ(r)Â]†⟩ = ⟨Â†σ†(r)⟩ =

−⟨Â†σ(r)⟩ = −Tr Â†σ(r)e−βH0/Z = −
(
Â|βF̂0(r)

)
,

where we have first built the adjoint of the shifting
superoperator, used its anti-self-adjointness (8), and
then written out the thermal average. In the last
step we have first applied Eq. (15) and in the nota-
tion used the Mori(-Kubo-Bogoliubov) product ( · | · )
as a general means to describe response [29, 31, 32].
The Mori product constitutes a scalar product of
two general operators Â and B̂ and it is defined as

(Â|B̂) = β−1
∫ β

0
dβ′Tr Â†e−β′H0B̂eβ

′H0e−βH0/Z, where

here B̂ = βF̂0(r). An alternative and equivalent form

is (Â|B̂) = β−1
∫ β

0
dβ′⟨Â†B̂(iℏβ′)⟩, with B̂(iℏβ′) denot-

ing the Heisenberg operator evaluated at imaginary time
t = iℏβ′, see e.g. Ref. [33]. When applied to the present
case we obtain:(

Â|βF̂0(r)
)
=

∫ β

0

dβ′⟨Â†e−β′H0F̂0(r)e
β′H0⟩, (18)

where we have identified the thermal average ⟨ · ⟩ on the
right hand side.

We recall that Eq. (18) is the thermal average of the
adjoint right hand side of Eq. (6), which equals SA(r), see
above. Restoring the equality and re-arranging one ob-
tains the following equilibrium quantum hyperforce bal-
ance:

SA(r) +
(
Â|βF̂0(r)

)
= 0, (19)

which is exact. Since Â = Â† both terms in Eq. (19)
are real-valued. Hence one can express the Mori prod-
uct alternatively as (βF̂0(r)|Â) or as the covariance

cov
(
Â|βF̂0(r)

)
=

(
Â|βF̂0(r))− ⟨Â†⟩⟨βF̂0(r)⟩, where the

latter holds true due to the vanishing mean force den-
sity (17). The sum rule (19) can alternatively be ob-
tained by considering the forces in an extended ensemble
with modified Hamiltonian, see Appendix A.

As a consistency check, choosing Â = 1 in Eq. (19)

gives from Eq. (6) the result ŜÂ=1(r) = 0, which from
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FIG. 1. Demonstration of the general sum rule (19) applied

to the observable Â = βH0 of a harmonic oscillator with fre-
quency ω. The results are for different values of scaled inverse
temperature βℏω = 0.5, 1, . . . , 6 (from magenta to blue) and
shown as a function of the scaled coordinate x/a with length-
scale a = ℏ/(mω). Shown are thermal density profile ρ(x)a

(top panel), kinetic Mori term cov
(
βH0|βF̂id(x)

)
a (middle

panel), and external force Mori term cov
(
βH0|F̂ext(x)

)
a (bot-

tom panel). Both Mori covariances display pronouced spatial
structuring. For each value of β the sum of the ideal and
external covariances vanishes. In general the interparticle co-
variance term will contribute.

Eq. (19) equals −
(
1|βF̂0(r)

)
= −βF0(r), such that the

hyperforce density balance (19) reduces to the equilib-
rium force density balance (17). As a specific example

we choose the sum of positions, Â =
∑

i ri, which yields

from Eq. (6) the hyperforce density operator as ŜA(r) =
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(−i/ℏ)[
∑

i ri,mĴ(r)] = ρ̂(r)1, as follows from explicit
calculation of the commutator. Then the sum rule (19)

yields the density profile: ρ(r)1 = −(
∑

i ri|βF̂0(r)). For

the choice Â = βH0, due to Eq. (17) the sum rule (19)
attains the form cov

(
βH0|βF0(r)

)
= 0. The harmonic

oscillator, as a toy model, is used to exemplify the valid-
ity in Fig. 1.

The shifting superoperator can be used in flexible ways
and we present in Appendix B the derivation of gen-
eral two-body and product sum rules. While we have
worked with fixed number of particles, all our consid-
erations and resulting sum rules remain valid in the
grand ensemble. One merely needs to replace the canon-
ical trace with the grand canonical analog, Tr ′ · =∑∞

N=0

∑
n⟨n| · |n⟩eβµN/N !, where µ denotes the chemi-

cal potential. The gauge theory applies to both fermions
and bosons, as the exchange symmetry is encoded solely
in the nature of the Hilbert space basis |n⟩.

In conclusion, we have addressed the consequences of
invariance against shifting in quantum many-body sys-
tems. Despite its limitations [34] we found Dirac’s cor-
respondence principle to be highly useful for postulating
the superoperator (2). All subsequent results follow rig-
orously within the quantum treatment, without invoking
the classical physics again. That the formal structure of
the resulting quantum gauge theory mirrors closely that
of the classical version [12–16] is remarkable, given the
stark differences between the mathematical objects that
are involved. The quantum sum rules become formally
analogous to their classical counterparts [12, 13] upon

identifying the quantum operators ŜA(r) and Â with the
respective classical phase space functions and reducing
the Mori product to the thermal average of the classical
phase space product.

Due to its applicabilty to general observables, the hy-
perforce sum rule (19) provides much potential for the
integration within further theoretical approaches. As a
demonstration of such uses, we present in Appendix C
the quantum version of hyperdensity functional theory
[35, 36], which provides a framework to represent the
thermal equilibrium behaviour of general observables as
density functionals [37]. Dynamical situations in which
the initial thermal system with Hamiltonian H0 is driven
out of equilibrium by a general time-dependent Hamilto-
nian H are addressed in Appendix D. In this nonequi-
librium setup the dynamical gauge invariance yields an
exact ‘hypercurrent’ sum rule (36), which provides a
nonequilibrium generalization of the thermal hyperforce
balance (19) and is the quantum analog of the corre-
sponding classical result [16].

In future work, it would be interesting to further ex-
plore connections with modern developments in den-
sity functional theory [38–45] and with standard ap-
proaches, such as linear repsonse and the Green-Kubo
theory [31, 46], and with quantum work relations [47]
as well as with the recent gauge treatment of quantum
thermodynamics [48, 49].
We thank F. Sammüller and R. Evans for useful dis-

cussions. This work is supported by the DFG (Deutsche
Forschungsgemeinschaft) under Project No. 551294732.
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in the extended ensemble with extended partition sum
ZA = Tr e−βHA . Expansion to linear order in λ yields
⟨F̂A(r)⟩A = ⟨F̂0(r)⟩+λ[⟨ŜA(r)⟩+cov(βF̂0(r)|Â)]/β = 0,
where both orders in λ necessarily vanish separately.
The zeroth order recovers the original force density bal-
ance (17) and the linear order gives the hyperforce sum
rule (19).

B. Product and two-body hyperforce sum rules

The shifting superoperator (2) can be used in flexible
ways. When e.g. applied to products of observables, one
finds ŜAB(r) = σ(r)ÂB̂ = ŜA(r)B̂+ÂŜB(r), which leads
via (19) to the hyperforce product sum rule

⟨ŜA(r)B̂⟩+ ⟨ÂŜB(r)⟩+
(
ÂB̂|βF̂0(r)

)
= 0. (21)

Higher-body correlation functions follow via averaging
superoperator products, such as σ(r′)σ(r)1 = 0. This
yields a quantum analog of the ‘3g’-sum rule [20]:(

βF̂0(r)|βF̂0(r
′)
)
+ ⟨K̂0(r, r

′))⟩ = 0, (22)

where the Hamiltonian ‘curvature’ operator is K̂0(r, r
′) =

−σ(r)σ(r′)βH0, which is equivalent to the force den-

sity gradient operator σ(r)βF̂0(r
′) via Eq. (16). Alter-

natively, Eq. (22) is obtained from the hyperforce sum

rule (19) upon simply setting Â = βF̂0(r
′) therein. Fur-

ther multi-body sum rules follow from the Lie commuta-
tor structure (10) and will be presented elsewhere.

C. Quantum hyperdensity funtional theory

We formulate the quantum analog of the classical hy-
perdensity functional theory [35, 36]. We work in the
grand ensemble with the primed trace Tr ′ · and chem-
ical potential µ and consider the extended Hamiltonian
HA = H0−λÂ/β, cf. Eq. (20). We first make the hyper-
force sum rule (19) more explicit by inserting the decom-

position of the force density operator F̂0(r) into kinetic,
interparticle, and external contributions, as given below
Eq. (16). This yields, upon using the Mori covariance,

SA(r) +∇ · cov
(
Â|βτ̂ 0(r)

)
+ cov

(
Â|βF̂int,0(r)

)
− χA(r)∇βVext,0(r) = 0, (23)

where χA(r) is the hyperfluctuation profile,

χA(r) = cov
(
Â|ρ̂(r)

)
, (24)

which will provide the link to density functional theory.
For the extended system, the grand potential density

functional is

Ω[ρ] = F [ρ] +

∫
drρ(r)[Vext,0(r)− µ], (25)

where F [ρ] is the intrinsic free energy functional, which
contains kinetic, Hartree, exchange, correlation, and en-
tropic contributions, generated by the extended interpar-
ticle potential uA(r

N ) = u0(r
N )− λÂ/β.

Mermin’s minimization principle [37] ascertains that
Ω[ρ] is minimized by the equilibrium density profile ρ0(r)
and that the value of the density functional at the
minimum is the true grand potential, Ω[ρ0] = Ω0 =
−β−1 lnTr ′e−β(HA−µN). At the minimum the functional
derivative vanishes, δΩ[ρ]/δρ(r)|ρ=ρ0

= 0. Calculating
the functional derivative yields the Euler-Lagrange equa-
tion,

C1(r; [ρ])− βVext,0(r) + βµ = 0, (26)

where we have dropped the subscript 0 of the equilibrium
density profile and have defined the full one-body direct
correlation functional C1(r; [ρ]) = −δβF [ρ]/δρ(r), which
in particular includes the kinetic contributions.
Differentiating the Euler-Lagrange equation (26) with

respect to λ yields

CA(r; [ρ]) +

∫
dr′C2(r, r

′; [ρ])χA(r
′) = 0, (27)

where the hyperdirect correlation functional is given by
CA(r; [ρ]) = ∂C1(r; [ρ])/∂λ|ρ and the full two-body di-
rect correlation functional is defined as C2(r, r

′; [ρ]) =
δC1(r)/δρ(r

′). The hyperfluctuation profile (24) emerges
in Eq. (27) due to

χA(r) =
∂ρ(r)

∂λ
, (28)

as can be verified explicitly on the basis of the explicit av-
erage ρ(r) = ⟨ρ̂(r)⟩A, taken in the extended grand ensem-
ble (see Appendix A). Furthermore, parametric differen-

tiation yields the mean of the considered observable Â,

A = −∂βΩ0

∂λ
. (29)

Functional relationships are as follows:

CA(r; [ρ]) =
δA[ρ]

δρ(r)
, (30)

A[ρ] =

∫
D[ρ]CA(r; [ρ]), (31)

where the functional line integral [51] in Eq. (31)
is the inverse of Eq. (30). Briefly, one can derive
Eq. (30) by recognizing that A[ρ] = −∂βΩ[ρ]/∂λ =
−∂βF [ρ]/∂λ|ρ, where the latter identity follows from
∂Ω[ρ]/∂λ = ∂F [ρ]/∂λ|ρ +

∫
drχA(r)δΩ[ρ]/δρ(r)|λ and

the minimization condition δΩ[ρ]/δρ(r) = 0. Exchang-
ing the order of differentiation in ∂

(
δF [ρ]/δρ(r)

)
/∂λ|ρ =

δ
(
∂F [ρ]/∂λ|ρ

)
/δρ(r) yields Eq. (30), in analogy to the

classical case [35, 36].
Taking the limit λ → 0 restores the original ensemble

with Hamiltonian H0.
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D. Dynamical gauge invariance

We take the thermal equilibrium physics, generated
by H0, as the initial state at time t = 0 and con-
sider the dynamics for t ≥ 0 as induced by an, in gen-
eral, explicitly time-dependent Hamiltonian (14). The
mass m, the interparticle potential u(rN ), and the ex-
ternal potential Vext(r) can all depend on time and
we suppress such mere parametric time dependence in
the notation. The quantum propagator U(t, 0) per-
forms the time evolution, which is unitary such that
U†(t, 0)U(t, 0) = U(t, 0)U†(t, 0) = 1 and U(0, 0) = 1.
Heisenberg operators are then given in the standard way
as Â(t) = U†(t, 0)ÂU(t, 0). The nonequilibrium physics
is then described by time-dependent averages that are
built over the ensemble of initial states, A(t) = ⟨Â(t)⟩.

We introduce temporal dependence in the quantum
gauge theory by following the lines of construction of
the classical dynamical formulation [16]. Generalizing
Eq. (2) allows one to define the following dynamical shift-
ing superoperator:

σ(r, t) = − i

ℏ
[ · ,mĴ(r, t)] (32)

where the (scaled) Heisenberg current operator is

mĴ(r, t) = U†(t, 0)mĴ(r)U(t, 0). Several basic properties
of σ(r, t) follow analogously to those of the static coun-
terpart σ(r), cf. Eqs. (4)–(9). Specifically one obtains:
the trivial identity σ(r, t)1 = 0, the force density opera-

tor F̂(r, t) = −σ(r, t)H(t), and the dynamical hyperforce
density operator

ŜA(r, t) = σ(r, t)Â(t), (33)

where spelling out the right hand side yields the standard
Heisenberg form ŜA(r, t) = U†(t, 0)ŜA(r)U(t, 0) with

ŜA(r) given by Eq. (6). Furthermore anti-self-adjointness
holds, σ†(r, t) = −σ(r, t), and the dynamical trace iden-

tity is Tr Â[σ(r, t)B̂] = −Tr [σ(r, t)Â]B̂.
The implications of the dynamical gauge invariance

reach beyond the above generic Heisenberg time depen-
dence. To reveal this structure, in generalization of
the initial state force density operator (16), one applies
σ(r, t) to the initial state Hamiltonian H0. Hence we
define the quantum ‘shift current operator’ as

Ĉ(r, t) = −σ(r, t)βH0, (34)

which is identical to the commutator form Ĉ(r, t) =

(i/ℏ)[βH0,mĴ(r, t)], as is obtained from application of
the dynamical shifting superoperator (32). The shift cur-

rent operator (34) is a quantum observable, Ĉ(r, t) =

Ĉ†(r, t), as is inherited from mĴ(r, t) = mĴ†(r, t) and
preserved by the definition (32). Equation (34) is the
quantum analog of the classical hypercurrent observable,
which constitutes an initial state time derivative that is
accessible in trajectory-based simulations [12].
The mean shift current, C(r, t) = ⟨Ĉ(r, t)⟩, satisfies

the following exact shift current sum rule:

C(r, t) = 0, (35)

where the left hand side consists of a sum of kinetic, in-
terparticle, and external contributions, as follows from
the corresponding splitting of H0 in Eq. (34). Briefly,
Eq. (35) follows from averaging σ(r, t)1 = 0, such that

0 = ⟨σ(r, t)⟩ = Trσ(r, t)e−βH0/Z = (1|Ĉ(r, t)) and rec-

ognizing the resulting Mori product as ⟨Ĉ(r, t)⟩. At the
initial time, the shift current operator (34) reduces to
the (scaled) equilibrium force density operator (16), such

that Ĉ(r, 0) = βF̂0(r), and hence the shift current iden-
tity (34) becomes the force density balance (17).

The behaviour of general dynamical observables Â(t)
follows from generalizations of the derivations of
Eqs. (15) and (18). The dynamical shifting opera-

tor being anti-self-adjoint leads to ⟨[σ(r, t)Â(t)]†⟩ =

−⟨Â†(t)σ(r, t)⟩ = −(Â(t)|Ĉ(r, t)). Identifying the left
hand side as the dynamical hyperforce density SA(r, t) =

⟨ŜA(r, t)⟩ = ⟨Ŝ†
A(r, t)⟩ and re-arranging yields the follow-

ing hypercurrent sum rule:

SA(r, t) +
(
Â(t)|Ĉ(r, t)

)
= 0, (36)

where Ĉ(r, t) is given via Eq. (34). The second term
in Eq. (36) measures via the Mori product the corre-

lation between the dynamical observable Â(t) and the

shift current Ĉ(r, t). In general this average will be
nonzero, despite the mean hypercurrent C(r, t) vanish-
ing at all times, cf. Eq. (35). As a specific example,

choosing Â =
∑

i ri in Eq. (36) yields ŜA(r, t) = ρ̂(r, t)1.
Thus the dynamical density profile satisfies ρ(r, t)1 =

−
(∑

i ri(t)|Ĉ(r, t)
)
.
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