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Colloids confined to a flexible container
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A model of hard spheres trapped inside a container of fluctuating shape is proposed to describe colloidal
particles in a vesicle or in an emulsion droplet. The container is assumed to be the convex hull of the particles
and is described by an integral geometric approach including volume and surface terms. In the limit of large
volume coupling, the model reduces to the well-known geometric problem of natural bin packing. Using
computer simulations and cell theory, we calculate equilibrium properties for various finite numbers of con-
fined particles in conformations ranging from clusters to planar and linear structures and identify transitions
between these different conformations.
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I. INTRODUCTION

Clusters are present in a variety of systems, ranging fr
atomic systems@1# such as silicon@2# or noble gases@3# to
aggregated colloidal suspensions. Clusters are built up
finite number of particles that tend to be closely separa
The structural organization inside a cluster can be very
and originates from the interactions between particles
the interaction with the surrounding. One simple mechan
to generate such structures is the packing of hard sph
~HS! under different boundary conditions.

The efficient packing of spheres is an old problem dat
back to Kepler and Gauss@4#. One question concerns th
densest packing of an infinite number of spheres. Only
cently, a mathematical proof stating that no packing den
than a face-centered-cubic structure~fcc! is possible in three
dimensions was announced and published in parts@5#. Re-
lated problems are optimal shapes of compact strings@6# and
the efficient packing of a finite number of spheres insid
given container. A particular simple container is thenatural
bin. This is the smallest convex body that contains a giv
configuration of spheres. It is canonical to ask for the c
figuration of spheres that leads to the smallest natural
Contrary to intuition, this is not a spherelike cluster for
small number of spheres. Up to 56 spheres, a linear confi
ration in which the sphere centers lie on a straight line~‘‘sau-
sage’’! is denser than any spherelike or platelike configu
tion. In four dimensions, the crossover from a sausage
spherelike cluster happens at about 300 000 spheres.
effect has become known as the ‘‘sausage catastrop
@4,7#.

Hard spheres are widely used to model dense liquids
solids and they can be experimentally realized by susp
sions of sterically stabilizedPMMA particles@8,9#. Besides
the bulk freezing transition into an fcc crystal, hard sphe
have been considered in a variety of confining situatio
such as confinement between parallel plates@10,11#, inside a
spherical cavity@12–14#, or inside emulsion droplets@15#. In
all these cases, there is rigid confinement: The pores do
change their shapes.

However, shape fluctuations do exist in nature. Examp
are the deformations of liquid droplets in emulsions, wh
the surface tension between the continuous phase, say w
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and the dispersed phase, say oil, tends to keep the dro
shape spherical and thermal fluctuations tend to deform
ideal shape. Another system that exhibits many complica
shapes is vesicles@16,17#, which are closed two-dimensiona
membranes@18# that are suspended in a molecular liqui
Besides the fluctuations of a spherical object, toroidal c
figurations with holes or even starlike shapes are possi
They originate from the highly nontrivial membrane stru
ture itself, including curvature and elasticity contributions

Colloidal particles can be trapped inside larger objects
quite a number of ways. Experimentally realized examp
are magnetic beads inside biological cells@19#, liquid drop-
lets inside liquid droplets in double emulsions@20#, small
vesicles inside giant ones@21#, and colloidal particles inside
lipid bilayer vesicles@22#. Vesicles in contact with nanopar
ticles and colloids were studied also theoretically@23#.

In the present work, we investigate which shape fluct
tions can be driven not by the membrane itself but by coll
dal particles that are imprisoned inside the object. The sh
fluctuations are coupled to the positions of the colloidal p
ticles resulting in new cluster structures as well as n
vesicle shapes. One interesting question is whether the p
liar transition from a compact cluster to a linear configu
tion, the sausage catastrophe, is present in a system tha
only describes close-packed structures, but also account
the entropy due to the positional degrees of freedom of
particles. We consider particles inside a container, which
modeled through a coarse-grained approach involving an
tegral geometric description. Integral geometry is a powe
tool that is becoming increasingly popular@24#. There are
applications ranging from microemulsions@25# to complex
fluids @26,27#. The basic ingredients of our model involve
surface tension and an external pressure acting on the
tainer modeled as surface and volume couplings. As a re
we identify different types of conformations correspondi
to rodlike, platelike, and spherelike vesicle shapes, and
determine their relative stability as a function of temperat
by using cell theory and computer simulations.

The paper is organized as follows. In Sec. II, we defi
our theoretical model for colloids inside a fluctuating obje
A cell theory is developed in Sec. III. Details of the Mon
Carlo computer simulation are given in Sec. IV. Resu
©2001 The American Physical Society01-1
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thereof are presented in Sec. V, and compared to cell the
We finish with concluding remarks in Sec. VI.

II. MODEL OF COLLOIDS IN A CONTAINER

A. Definition of the model

We considerN hard spheres with diameters with position
coordinatesr i , i 51,...,N in three spatial dimensions that in
teract with the pair potential,

f~r !5H ` if r ,s

0 otherwise,

wherer is the separation distance between two particles.
number of particles we consider is finite and small, typica
N52255.

The particles are wrapped into a closed membrane th
modeled as the convex hull of the set of spheres$r i%. Math-
ematically, the convex hull of one or more geometric bod
is the smallest convex body that encloses the basic objec
body is called convex if for any two points inside the bo
all points that lie on a straight line between both points
also inside the body. The convex hull is a uniquely defin
object.

The physical motivation for using the convex hull is
situation in which the surface tension between the inside
the outside is large enough so that any free deformation
the membrane can be neglected. On the other side, the
mal energykBT of the colloids is large enough, so that the
can move and squeeze the membrane. To allow for volu
growth, oil may diffuse into the inside of the vesicle.

Once we have established the membrane shape,
straightforward to assign a potential energyfHull to it by
considering integral geometry,

fHull5JVV1JAA1JMM1Jxx. ~1!

Here, the Minkowski functionals or Quermass integrals~see,
e.g., Ref.@25#! are volumeV, surface areaA, integral of
mean curvatureM, and the Euler characteristicx of the con-
vex hull. For a convex bodyx54p holds, soJx is an irrel-
evant parameter for the current investigation and is se
zero without loss of generality. A nonzero value ofJx may
be of interest once fission processes of the container
taken into account, or, e.g., toroidal shapes are conside
Furthermore, we set the coupling to the mean curvature
zero, JM50. This ensures that the model does not fav
spontaneous curvature. The remaining coupling constant
volume coupling,JV , modeling an external pressure actin
on the container, and a surface tensionJA . We define dimen-
sionless parameters aslV5JVs3/(kBT) and lA
5JAs2/(kBT). See Fig. 1 for a sketch of the model.

B. Computational details

Let us show how the container volume and surface a
can be computed efficiently. We exploit the relation of t
convex hull of a set of spheres and the convex hull of
corresponding sphere centers. In both cases the crucial p
is to identify which points~or spheres! contribute to the hull,
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i.e., lie at the boundary, and which of the points lie insi
and do not contribute to the hull. For a collection of poin
this is a well-known problem in geometry and efficient n
merical algorithms are available@28#. We start from the setr i

and identify the boundary points, denoted byr j
(0) . The r j

(0)

define the corners of a polyhedron, which we call thecoreof
the container. Elementary geometry is used to calculate
Minkowski functionalsV0 ,A0 ,M0 of the core. In particular,
the core surface is obtained by summing up the surface a
of all its faces. The integral mean curvature is

M05
1

2(k
l kak , ~2!

wherel k is the length of ridgek andak is the angle between
the normal vectors of the two faces adjacent to ridgek. As
the actual container is the parallel body of radiusR to the
container core, we can use Steiner’s theorem~see, e.g., Ref.
@25#! to obtain

V5V01A0R1M0R214pR3/3, ~3!

A5A012M0R14pR2, ~4!

M5M014pR. ~5!

C. Relation to the Helfrich Hamiltonian

Concerning the status of the modelfHull introduced
above, we note that the familiar Helfrich Hamiltonia
@29,17# for membranes is recovered if the membrane conf
mations are restricted to convex hulls of spheres. To see
consider

fHelfrich5 R dAFk2 S 1

r 1
1

1

r 2
2

1

r s
D 2

1
k̄

r 1r 2
G , ~6!

where r S is the radius of spontaneous curvature,k is the
bending rigidity,k̄ is the elastic modulus of Gaussian curv
ture, and the local curvature radii on the surface are deno
by r 1 and r 2 . If the set of possible surface shapes is
stricted to convex hulls ofN spheres of radiusR, we obtain

fHelfrich5
k

2r S
2 A1S k

R
2

2k

r S
DM1~k1k̄ !x, ~7!

FIG. 1. Sketch of the model of colloids inside a container. T
circles represent the particles with diameters; r i andr i are position
vectors. The solid line is the convex hull with surfaceSand volume
V. The model considered in this work is three-dimensional.
1-2
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COLLOIDS CONFINED TO A FLEXIBLE CONTAINER PHYSICAL REVIEW E63 051401
which is a linear combination of Minkowski functionals
apart from the missing volume term precisely like the co
tainer energyfHull . The parameters are related byJA
5k/(2r S

2), JM5(k/R)2(2k/r S), andJx5k1k̄.

D. Ensembles

The central quantity in the microcanonical ensemble is
density of states, defined as

V~V8,A8!5E dr1¯E drN

3d@V82V~$r i%!#d@A82A~$r i%!#, ~8!

where the integration only runs over allowed hard-sph
configurations. The~microcanonical! entropy is obtained as
S5kB ln V. The central quantity in the canonical ensemble
the partition sum

Z5
1

L3NN! E dr1¯E drNe2bf~r1 ,...,rN!, ~9!

where L is the thermal wavelength of the colloids. Th
Helmholtz free energy isF52kBT ln Z. Note that as we are
dealing with a finite system, the canonical and the micro
nonical ensembles are not equivalent.

III. CELL THEORY

The cell theory~CT! is a simple, yet accurate, approach
hard-sphere systems. Crystals are well-described in b
@30,31# as well as in rigid confined geometries@10,11# and
near walls@32#. Here we generalize the concept to flexib
confinement. The striking feature of yielding an exact up
bound to the free energy is preserved.

A. General scheme

Our strategy consists of two steps. First, we constrain
colloids to fixed cells in space. Instead of integrating over
space, we require the center of each particlei to lie inside its
cell Ci . Thus, the integration region in the partition sum@Eq.
~9!# becomes smaller. Second, we construct a bodyK* that
is larger than any possible containerK in this restricted sys-
tem. Replacing the volume and the surface in the Boltzm
factor by those ofK* , the Boltzmann factor also become
smaller and the approximate partition sumZ* we obtain is a
lower bound to the exact partition sumZ. From that naturally
an upper bound to the free energy is obtained.

In detail we proceed as follows. Let us introduce the n
tion of cellsCi , i 51,...,N, which are geometric objects tha
are constructed such that they have a distance of at leas
particle diameters from each other. If each particlei is
confined to its cellCi , the particles of neighboring cell
cannot overlap. We can then drop the hard-core term in
Boltzmann factor and obtain
05140
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Z>
1

L3N E
C~1!

dr1¯E
C^N&

drN exp@2bfHull~$r i%!#

~10!

5
1

L3N E
C~1!

dr1¯E
C~N!

drN exp@2lVV~$r i%!

2lAA~$r i%!#, ~11!

where the factor 1/N! in the definition ofZ, Eq. ~9!, is can-
celed by the number of possibilities to distributeN particles
on N cells.

In order to obtain a tractable integral, we construct
approximate container

K* 5 ø
r iPCi

K~$r i%!, ~12!

which is the union of all possibleK that are realized if each
particle moves freely inside its cell. The crucial point is th
K* is independent of the position coordinatesr i . This will
allow us to carry out the integrations over space, Eq.~11!.
K* depends, however, on the shape and positions of theCi .
In particular, it can be computed as the parallel body
radiusR of the convex hull~C, see also Sec. II A! of the cells,

K* 5GR , ~13!

G5C~C1 ,...,CN!, ~14!

where the subscript denotes the parallel body with radiusR.
If G is known, Steiner’s theorem can be used to calculate
volumeV* and surface areaA* of K* . Due to the definition
of K* and the fact that only convex bodies are involved,

V* >V~$r iPCi%!, ~15!

A* >A~$r iPCi%! ~16!

hold. Finally, the lower boundZ* ,Z for the partition func-
tion is obtained as

Z* 5
1

L3N E
C~1!

dr1¯E
C~N!

drNe2lVV* 2lAA* ~17!

5exp~2lVV* 2lAA* !)
i 51

N

@v free
~ i ! /L3# ~18!

5exp~2lVV* 2lAA* !~v free/L3!N, ~19!

wherev free
( i ) is the volume of cellCi . The last equality holds

if all cells have the same volumev free5v free
( i ) . The free en-

ergy within CT is readily obtained as

F* 52kBT ln Z* ~20!

52NkBT ln~v free/L3!1kBT~lVV* 1lAA* !,
~21!

where the property of being an upper boundF* .F to the
exact free energy is inherited from the bound to the partit
1-3
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sum. The remaining task is to optimize with respect to
positions of the cells in space, their shape, and their s
Then V* and A* serve as estimates for average contai
volume and average surface area.

B. Application to different structures

The structure of the~crystalline! arrangement of particle
is an input to the CT. We prescribe this by specifying t
positionsci of the cell centers. All cells are chosen to have
identical shapeC. Calculation of the bodyG @Eq. ~14!# yields
volumeV* and surface areaA* of the approximate containe
K* . In the following, this recipe is carried out for the thre
types of conformations under consideration, see also Fig

1. Rodlike shapes (‘‘sausages’’)

We assume a one-dimensional arrangement of cellsci
5 ide, where the cells are labeled byi 51,...,N, d is the
distance between cell centers, ande is some unit vector tha
we refer to as ‘‘sausage axis.’’ The free volume for ea
particle is assumed to be rotationally symmetric arounde,
and to have different magnitudes along and perpendicula
e. Hence the cell is a cylinder with radiusr f and heightl f ,
and is aligned alonge. The distance between the centers
two neighboring cells must bed5s1 l f , so overlap of
neighboring particles cannot occur. Obviously the conv
hull G of the cells is a cylinder of lengthNl f1(N21)s and
radiusr f . Its Minkowski functionals are

VG5pr f
2@Nl f1~N21!s#, ~22!

AG52pr f@Nl f1~N21!s#12pr f
2, ~23!

MG5p2r f1p@Nl f1~N21!s#. ~24!

The volumeV* and surface areaA* of the approximate
container K* , see Fig. 2, are obtained through Steine
theorem as

V* 5pFNl fr f
21~Nr f

21Nl fr f !s1S N211
p

4 D r fs
2

1
Nl fs

2

4
1S N21

4
1

p

6 Ds3G , ~25!

A* 5p@2r f
212Nl fr f1~2N221p!r fs ~26!

1Nl fs1~N211p!s2]. ~27!

FIG. 2. Cell model for sausage configurations. Shown are p
ticles ~spheres!, cells ~cylinders!, and the containerK* ~enclosing
cigarlike shape!.
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F* can be easily minimized numerically with respect tol f
and r f .

2. Platelike shapes (‘‘Pizzas’’)

The cell centers are assumed to build a portion of a tw
dimensional~2D! hexagonal lattice with lattice spacingd.
Henceci5 jde11()/2)kde2 , where j, k are integers enu-
merating lattice sites, and theei build the basis of the Carte
sian coordinate system. The cells are assumed to be diffe
in magnitude within thee12e2 ‘‘pizza plane’’ and perpen-
dicular to it. For simplicity, we assume rotationally symme
ric cells arounde3 . Hexagonal shapes could be consider
but we expect the differences to be small@33#. HenceC
again is a cylinder with radiusr f and height l f , and is
aligned alonge3 . In order to avoid overlap,d5s12r f .

We obtain with straightforward calculus

VG5A9l f , ~28!

AG52A91U9l f , ~29!

MG5
p

2
U91p l f , ~30!

where

A95g2A81gU8r f14pr f
2, ~31!

U 95gU812pr f , ~32!

andA8 andU8 are the surface area and perimeter of the h
of the cell positionsci . The precise arrangement of cel
only enters throughA8 andU8. This remarkable property is
even true for arbitrary 2D cell arrangements other than p
tions of the hexagonal lattice.

3. Spherelike shapes (‘‘clusters’’)

In contrast to the above structures, clusters are~approxi-
mately! isotropic in all three spatial directions. Therefore, w
choose spherical cells of radiusr f .

From V8, A8, M 8 of the hull of theci , the bodyK* can
be computed as the parallel body with radiusR1r f . Volume
V* and surfaceA* are directly obtained without the need
calculateG as

V* 5V81A8~R1r f !1M 8~R1r f !
21

4p

3
~R1r f !

3,

~33!

A* 5A812M 8~R1r f !14p~R1r f !
2. ~34!

IV. COMPUTER SIMULATION

We have performed Monte Carlo~MC! simulations for
particle numbersN54,13,55. These were done in the c
nonical ensemble with prescribed~reduced! volume and sur-
face coupling. Each MC consists of a check for possi
overlap with other particles, as well as calculation of t
change in the hull potential energyfHull . For N.4, the

r-
1-4
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COLLOIDS CONFINED TO A FLEXIBLE CONTAINER PHYSICAL REVIEW E63 051401
quick hull algorithm@28# is used to identify the convex hu
of the position coordinates. Using umbrella sampling,
obtain the microcanonical entropy as a function of volu
and surface. This is a delicate task that we only do for sm
N54. Typically, between 107 (N54) and 53105 (N555)
MC moves per particle were done.

V. RESULTS

A. Entropy landscape

As an illustration, let us first show snapshots of typic
configurations including cluster, sausage, and pizza in Fig
For N54, we have calculated the complete entropy lan
scape as a function of volumeV and surface areaA ~see Fig.
4!. There are three maxima in the entropy, which are in
cated by the dark color. These are separated by ‘‘forbid
regions’’ ~white!, which do not contain any allowed configu
rations. The gap between the sausage and the pizza st
considerably bigger than the gap between the pizza and

FIG. 3. Different conformations.~a! Spherelike~cluster!, ~b!
platelike ~pizza!, ~c! rodlike ~sausage!.

FIG. 4. Contour plot of the entropyS(V,A)2lVV with lV

515 as a function of the container volumeV and surface areaA for
N54.
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cluster states. Figure 5~a! shows intersections of the entrop
landscape with lines of constant volume. One observes
for V fixed to 3s3, there are three separate regions of fin
entropy, representing the three classes of configurations.
this fixed volume, it is thus not possible to switch contin
ously from one class to the other. ForV53.2s3, on the other
hand, there is a connection between the cluster and the p
region, while the sausage configurations still appear in
separate peak. Only forV>3.6s3 is there a continuous con
nection between all these states. In Fig. 5~b!, intersections
with lines of constant surface area are shown. ForA
511.0125s2, only the cluster state has a finite entropy. F
intermediate valuesA511.5188s2,12.025s2 the pizza also
appears and is separated by a pronounced minimum from
cluster. ForA513.375s2, this minimum becomes shallowe
and shifts towards largerV. An additional maximum appear
for small V due to the sausage conformations.

B. Canonical averages

For largeN, it becomes increasingly hard to perform
sampling of the complete configuration space using simu
tions. The computation of the container properties slo

FIG. 5. One-dimensional cuts of the entropy landscape.~a! S/kB

at fixed values of volumeV/s3 ~as indicated! as a function of
surface areaA/s2. ~b! S/kB at fixed values ofA/s2 ~as indicated!
as a function ofV/s3.
1-5
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down the speed of the simulation. In addition, for many p
ticles the system has a large number of stable and metas
states, making the sampling with correct statistical weig
much more difficult.

However, it is possible to study specific structures of
system. This is similar to the treatment in CT. We will com
pare results from CT and MC for systems with small (N
54), medium (N513), and large (N555) particle num-
bers. Remember thatN555 is a boundary case, where th
sausage is still denser than any cluster.

We compute canonical averages^V& and^A&, for volume
and surface area, respectively, as a function of the coup
parameterlV . See Fig. 6~a! for a comparison of simulation
and cell theory forN54. The three structures occurring fo
this system—the sausage, the pizza, and the cluster—
studied separately.

First, note that the CT gives the correct succession of
structures. The volume of the sausage system is smaller
that of a cluster system, which in turn is less than the volu
of pizza configurations. On the other hand, the surface a
~see the inset! is largest for sausages, then comes the piz
and finally the cluster configurations. Upon increasinglV ,
both volume and area decrease, as expected, and the co
mations become more compressed.

Apparently the CT results give larger values for volum
and surface area than the computer simulation. However
general dependence of the volume coupling looks very s
lar, especially the limiting behavior forlV→0 and forlV
→`. The latter even gives the correct value, since the
becomes exact for zero temperature.

Remember that the CT neglects configurations where
ticles are located outside their cells. These have larger c
tainers than those taken into account in CT. Hence one m
be misled to conclude that CT should give too small^V& and
^A&. The fact that both quantities are overestimated is me
due to the construction of the approximate containerK* .
This object is a superset of all possible containers wh
particles are inside cells.

Next, we study the case ofN513 particles@Fig. 6~b!# as
an example of a system with an intermediate number of p
ticles. In order to apply CT to that system, we have
specify the configurations under examination. This is cl
for the sausage, and we choose an exemplary pizza. Fo
cluster, we pick a regular icosahedron, with an extra part
at its center. We chose this configuration because it
found frequently during simulation runs. However, th
structure has some special properties. First, it is not the d
est possible cluster forN513. One with smaller volume ca
be obtained by cutting a spherical region out of a clo
packed fcc lattice. Second, in this configuration all partic
in the outer shell have enough space to move around fr
on the surface of the central sphere. Therefore, the assu
tion made in CT that all particles are confined to separ
regions might be critical. The results are plotted in Fig. 6~b!,
which shows the same quantities as before. For the sur
area~inset!, we now see very good agreement between sim
lation and CT results. At first sight, the plot of the contain
volume shows the same tendencies as forN54. The general
behavior is correct, but the CT overestimates the volu
05140
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Here the discrepancy is smaller for sausage and pizza s
tures. Note, however, that the order of the lines is shift
Here, the CT gives a higher volume for the cluster than
the pizza configurations. We attribute this failure of CT
the special properties of the icosahedron cluster. The
ticles do not stay in the cells as assumed in the theory, s
cannot give accurate results.

FIG. 6. Average volumêV&/s3 as a function of volume cou-
pling lV from simulation~MC! and cell theory~CT!. Shown are the
values for sausage, pizza, and cluster configurations. The i
shows the average surface area^A&/s2 as a function oflV for
different particle numbersN. ~a! N54; ~b! N513; ~c! N555.
1-6
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COLLOIDS CONFINED TO A FLEXIBLE CONTAINER PHYSICAL REVIEW E63 051401
For N555, we cut out a portion of a hexagonal lattice f
a representative pizza configuration. Similarly, we constr
a cluster of 55 particles by cutting a spherical portion out
an fcc lattice. In Fig. 6~c!, results for average volume an
surface area are given. Excellent agreement between th
and simulation is found.

Summarizing these results, we find that CT gives the c
rect behavior of equilibrium properties of the system. It ov
estimates the mean volume, but this deviation decrease
larger particle numbers. One exception is the icosahe
structure of theN513 cluster, which causes a special dif
culty due to its geometric properties. As the complete pa
ing problem is a complicated one, we expect that more s
exceptional cases can be found by varyingN. The fact that
CT predicts more accurate results for higher particle numb
can be attributed to the relative decrease of the number
ticles at the boundary. We believe that the high accuracy
N555 is preserved whenN is increased, even far beyon
this value. Remember that in the thermodynamical limit,N
→`, CT gives a fair description of the bulk crystal@30,31#.

We next consider the question of how much each part
contributes to the total internal energy of the system. If
temperature of the system is increased, the container sw
which results in an excess volume compared to its clo
packed volumeVCP at zero temperature. This increase
container volume leads to a gain in internal energy per p
ticle, which is given ase5JV(^V&2VCP)/N. We plote/kBT
in Fig. 7 as a function of scaled temperature. Shown are
results from both simulation and CT forN54,13,55 and for
sausage, pizza, and cluster configurations. For compar
the exact solution forN52 is also shown. The dependen
on the scaled temperaturekBT/Jvs3 is weak. The simulation
data show a global shift to higher values asN increases, but
only a minor dependence on the conformation. CT fails
describe the behavior for smallN, but gives the correct re
sults forN555.

C. Transitions between different shapes

As the CT permits direct access to the free energy, we
calculate a ‘‘phase diagram’’ as a function of the coupli

FIG. 7. Excess~over ground-state! internal energye ~in units of
kBT! per particle as a function of temperature. Shown are the si
lation ~MC! and cell theory~CT! results for sausage, pizza, an
cluster configurations forN54,13,55, together with the exact solu
tion for N52.
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parameters. We define a stable phase as the structure wit
smallest free energy, which has the largest statistical wei
However, as the system is not in the thermodynamical lim
the probability for conformation with larger free energy do
not vanish. We find that either the sausage or the cluste
most stable, see Fig. 8. The horizontal axis is the ratio
tween volume and surface coupling,lA /lV . The vertical
axis is the inverse volume coupling 1/lV . Remember that
lV5Jvs3/kBT, so that 1/lV can be regarded as a temper
ture, whereaslA /lV5JA /(JVs) is independent of tempera
ture. For fixed temperature, we follow a horizontal path
the phase diagram by changing the ratiolA /lV . The con-
tainer is in either the sausage or the cluster state. For s
lA /lV the sausage is stable, as this is the most dense s
ture in terms of occupied volume. IncreasinglA /lV leads to
stabilization of the cluster, because this more compact ob
possesses smaller surface area. The location of the cross
~phase boundary! shifts towards largelA /lV upon increas-
ing temperature. IflA /lV is sufficiently large, the cluster is
the ground state atT50 and remains stable for smallT.
IncreasingT leads to a transition to the sausage. In bo
regions of the phase diagram, there are two metastable st
The free energies of those can also be compared in orde
conclude which of both is relatively more stable. The resu
ing boundaries show that close to the sausage-cluster tra
tion, the pizza is least stable, but at extremelA /lV it will be
more stable than the other metastable state. However,
pizza structure never has the lowest free energy of all th
conformations. For highT, it is expected that the containe
does not exert enough pressure on the particles to con
them to well-defined lattice sites, and melting will occur.
infinite bulk systems, this phenomenon depends crucially
dimensionality. It is absent~for short-ranged interactions! in
1D, and the location and even the scenario are differen
2D and 3D. In order to estimate where melting occurs in
present system, we use the following rough criterion. T
particles will be fluidlike if the nearest-neighbor distance e
ceeds the value in the corresponding bulk system, whic

u-
FIG. 8. Phase diagram forN555 confined colloids as a function

of the ratio between surface and volume coupling,lA /lV , and
inverse volume coupling 1/lV . The solid lines separates stab
states~uppercase!, the dashed lines separate metastable states~low-
ercase!.
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d51.086 in 2D andd51.11 in 3D. Within CT, the nearest
neighbor distance is directly accessible and the corresp
ing state point can be obtained. The fluid regions obtaine
this way are indicated in Fig. 8. As expected, the 2D and
fluid appear for large 1/lV ~large temperature!.

VI. CONCLUSIONS

We have investigated a system of spherical particles c
fined within a fluctuating container. Our model is a hybrid
colloidal cluster physics and membrane theory and cou
the degrees of freedom of the particles and the memb
resulting in new vesicle shapes as rodlike, platelike, a
spherelike forms. The container may be physically realiz
by a membrane that constitutes a vesicle or by an oil dro
in an emulsion. We allow this object to change its shape,
take into account an external pressure and a surface ten
towards the surrounding. Our theoretical model uses a
scription of the droplet shape on a coarse-grained level ba
on integral geometrical methods. The particles are mode
as a finite number of hard spheres, ranging from 2 to 55

For this system, we have demonstrated that a zoo of
ferent particle conformations arises. These fall into differ
classes, namely three-dimensional~3D!, planar~2D!, and lin-
ear ~1D! ones, called clusters, pizzas, and sausages, res
tively.

The breaking of rotational symmetry is especially str
ing, asa priori the model does not contain any anisotrop
interactions. The driving force of these transitions is mer
the highly nontrivial close-packed structure of a finite nu
ber of spheres. Here, this purely geometric packing prob
is cast into a physical one through the consideration of
entropy of the system. It allows us to investigate the beha
away from close-packing as a function of container volu
and surface area.

As an outlook, we comment on possible future wo
,
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ol
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Within the current model, there are still many open qu
tions. One could investigate the effect of nonvanishing c
pling to the integral mean curvature, i.e.,lMÞ0. This might
be a way to stabilize pizza structures, which were found to
only metastable in the current investigation. Furthermo
one could consider insertion and escape of particle, i.e.,
the grand-canonical ensemble with respect toN. A straight-
forward generalization is towards a collection of more th
one container. The coupling to the Euler characteristiclx

plays the role of a chemical potential of the containers.
the simplest model, one could neglect the steric interac
between the container hulls themselves, and only take
account the hard cores of particles of different containers

Furthermore, it would be interesting to model the co
tainer in more detail. Using Helfrich’s Hamiltonian and
microscopic model for the membrane constitutes an inter
ing as well as demanding perspective. It is in principle p
sible to find a suitable experimental setup in which one
able to observe the predicted transitions. Then one could
investigate the dynamics of the rare events of the confor
tional changes, which is also interesting from a more th
retical point of view. We also mention the interesting pro
lem of crystallization of many of these flexible objects fille
with colloidal spheres. Furthermore, it would be interesti
to investigate tangent hard spheres inside a flexible conta
in order to study a polymer chain confined to a vesicle.
this case, one would expect that the ‘‘pizza’’ conformation
much less stable. Whether our geometric approach can
used to study hydrophobicity@34# constitutes a further inter
esting point.
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