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Density functional theory for colloidal rod-sphere mixtures
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We present a density functional theory for a model colloidal mixture of hard spheres and infinitely thin hard
rods. For these freely rotating particles, we use a fundamental measures approach to obtain a functional that
features the correct dimensional crossover and the exact low density limit. For isotropic bulk fluid mixtures, the
free energy, and hence the demixing phase diagram, are identical to that obtained from free volume theory.
Results for the partial pair correlation functions of the bulk mixture are in good agreement with those of our
simulations.
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Colloidal mixtures of differently shaped or sized particlesrelations, to its behavior in inhomogeneous situations, as, for
serve as well-defined model systems for the study of a widexample, induced by walls, or to the free interface between
range of phenomena in condensed matter. These includéemixed phases.
structural correlations, demixing phase transitions, and freez- In this work, we present a density-functional theory
ing. Such systems can be prepared so that they possess gf2FT) [9] for the binary needle-sphere mixture that allows us
marily hard body pair interactions; hence, entropy plays thd0 study correlations in bulk as well as in arbitrary inhomo-
dominant role. Creating binary mixtures by adding a secon@eneous situations. It is based on Rosenfeld’s fundamental
component to monodisperse colloidal hard sphérS) pro- ~ Mmeasures theor}10,11] and Tarazona’s latest extension to

vides the work horse in the field. Among the various differ-thiS [12], ensuring that local packing effects are correctly

ent second components are smaller-sized spherical particl g,cluded. The frgg energy of the homogeneou_s ﬂu",j’ and
ence, the demixing curve, are the same as in BF's free

leading to binary hard sphere mixturgl, globular nonad- .
i : ; volume theory. Our DFT features the correct virial expan-
sorbing polymer$2], and rodlike colloid43,4] or polymers. sion. In the literature it has been stated by several authors

:E t{]esed_sriuatlons,ffthe;_adqht;ve |st_oftek:1 :egardfr(]j as z;n age&%l,l&ll}, that an impossibility of deconvolution of the
at mediates an etiective interaction between the spneres ayer function forarbitrary convex bodies prohibits this

means of the depletion mechanism. For rods conS|der§b ort of geometrically based DFT. Here we give an explicit
recent work was done to reveal the nature of the depletioRqnterexample: albeit dealing with a model where interac-
[5.6]. The benefit of this approach is the analogy to simplejons between rods are absent, we present the first such
substances possessing an attractive pair potential. Howeveheory for freely rotating anisotropic particles. Our func-
the depletant’s degrees of freedom are no longer accessiblgonal has the correct dimensional crossover to situations of
and, in general, effective many-body interactions betweemeduced spatial dimensionality, an important property that
the spheres occur, which are difficult to treat. Both draw-only recently was achieved for one-component hard spheres
backs can be circumvented by treating the full binary mix-[12]. As an application, we reconsider the phase diagram and
ture, without any explicit integrating-out procedure. then focus on the bulk pair correlations in the sphere-needle
A simple rod-sphere model was introduced by Bolhuismixture where we find good agreement between the DFT
and FrenkelBF) [7]. It consists of a mixture of hard spheres results and our computer simulations.
and hard, infinitely thin rod¢needles The needle volume, Let us first describe the needle-sphere model. We con-
and hence the interaction between needles, vanishes in tHler a mixture of hard spheréspeciesS) with radii R, and
limit. Clearly, this is a gross simplification. However, rod infinitely thin needlegspeciesN) with lengthL, and number
aspect ratios can be as high as 25 in experiments with silicdensitiesps and py, respectively. The pair interaction be-
coated boehmite rodgl] mixed with silica spheres, and the tween spheres i¥sg= if the separation between sphere
rod densities are typically well below the Onsager nematiccenters is less thanR, and zero otherwise; the pair interac-
isotropic transitior{4]. BF's model can be thought of as the tion between a sphere and a needl¥ ig=, if both over-
simplest in the present context, playing a role similar to thdap, and zero else; the interaction between needles vanishes
Asakura-OosawdAO) model[2] for the case of spherical for all separationsyyy=0. We denote the sphere diameter
colloids and added polymer. BF’'s computer simulationsby o=2R, and the sphere packing fraction by
showed that the model undergoes a demixing transition inte=47R3pg/3. In Fig. 1 a snapshot from computer simulation
sphere-rich(rod-poo) and sphere-pookrod-rich) phases. (described beloyis shown to illustrate the model.
They also extended Lekkerkerker’'s free volume thel@}y In order to construct the DFT, we start with a geometrical
for the AO model to their case. Comparing with simulation representation of the particles in terms of weight functions
results for the binodals, they found that : . the accuracy W'M, wherei labels the species, angd=3,2,1, and 0 corre-
of the theoretical curves is surprisingd’7]. Subsequently, sponds to the particles’ volume, surface, integral mean cur-
finite rod thickness could also be treaf&d. Little attention,  vature, and Euler characteristic, respectivglil]. The
however, has been payed to the model’s bulk structural comweight functions are determined to give the Mayer bonds
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speaking,w§N describes how a sphere looks from the
viewpoint of a rod. Technically, it generates the
Mayer bond through —fg\(r,Q)=w5(r")Owd(r",Q)
+wiNr’, )Owl(r”,Q), wherer is the difference vector
between sphere and needle position. The weight functions
are used to smooth the possibly highly inhomogeneous den-
sity profiles by convolutions,

nN(r,Q)=pn(r’,Q)OwWN(r",Q), (6)
n3(r)=ps(r")HOW(r"), @)
nsNr,Q)=pg(r)OWsNr",Q), ®)

wherepg(r’), andpy(r’,Q) are the one-body density distri-
FIG. 1. Snapshot from simulation of the rod-sphere mixture atbutions of spheres and needles, respectively. Note rtHat
L=o, 7=0.3, py=28pg (statepoint Il in Fig. 2 The rods are ren- and nf are “pure” weighted densities, involving only vari-
dered with a finite diameter of 0.02 ables of either specig40,11]. In contrast, oun3"is a con-
volution of the sphere density with an orientation-dependent
fii=exp(Vj))—1 by a linear combination of terms weight function; hence, it combines characteristics of both
wo(r')Ows_ ("), where g(r")Oh(r) =[x g(x)h(r  species.
—X). For needles, we follow Refl11] to obtain Finally, the(Helmholtz excess free energy is obtained by
L integrating over a free energy density,
wg‘(r,ﬂ)=%f s+, 1
L

d?Q ‘
Fedpsml=keT [ & [ oaqih, @

1

wg‘(r,ﬂ)z 5[6(r+QL/2)+ S(r—QL/2)], (2 wherekg is Boltzmann’s constant is temperature, and the

(local) reduced free energy density is a simple function

whered(r) is the Dirac distribution{ is a unit vector point- ~ (not a functional of the weighted densities,, . The variable

ing along the needle axis, ands the spatial coordinate. The X runs over space, as usudl0,11]. Here we allow® to

function w) describes the linear extent of a neediis], ~ depend on orientation, and hence integi@tever the unit
whereasw! is characteristic of its endpoints. For infinitely SPhere. The functional form ob is obtained by consider-
thin needles, both surface and volume vanish, and so shouffion of the exact zero-dimensionalR) excess free energy.

the corresponding weightsyy =w}=0. Indeed, as will be For the present model this is identical to the AO cpEd,
seena posteriorj such terms are not needed to construct thd'@MelY, the statistics of hard andy" ideal particles, and is

DFT. For spheres, th | weight functigas,1 given by Fop/kgT=(1-7—7")In(1=7)+7 [17]. Consid-
or spheres, the usual weight functiq 3 are ering multicavity distributions[12], we obtain ®=dg

w3(n)=0(R-r), w5(r)=38R-r), (3) +Psywith

®g=—ngIn(1—n3)+(nin3—nZ;-n3,)/(1—-n3)

Wo,(N=w5(Nr/r, Wi (r)=w5(r)[rr/r?=1/3], (4)
. +[(n3)%3=n3(n35)?+3(ng5N5,n5
wherer =|r|, 6(r) is the step function, antl is the identity
matrix. Further, linearly dependent, weights awg(r) —3detn;,)/2])/[87(1—n3)?], (10)
=w3(r)/(4mR), W3 (1) = wy,(r)/ (4mR) w5(r) = wi(r)/R. . o
The weight functions for spheres have different tensorialhich is equal to the pure HS cafE0,12. The contribution
rank: w$, wS, wS, andw$ are scalarsw®, andwS, are due to the presence of the needles is

vectors; andv,,, is a(tracelessmatrix. These functions give nNRSN
the Mayer bond between pairs of spherfd®)] through Dgp=—n |n(1_n§)+1_25, (12)
— fsd2=W3owW5+W5Zow;—W>,0wS; . However, they are 1-n3

not sufficient to recover the sphere-needle Mayer Hdridl

This is achieved through where the arguments are suppressed in the notation; see Egs.

(6)—(8). This completes the prescription for the functional.
, (5) We investigate some of the properties of the homoge-
neous, isotropic bulk mixture. In this case the weighted den-
which contains information aboioth species: it is nonvan- sities become proportional to the respective bulk densities,
ishing on the surface of a sphere with radiBs but this  n,=¢ p;, where the proportionality constants are fundamen-
surface is “decorated” with anQ2-dependence. Loosely tal measures given byé =[d®>xw,. For spheres §§

wiNr, Q) =2|wS,(r)-Q
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FIG. 2. Phase diagram of the rod-sphere mixture as a function of 2 T
sphere densityy and scaled needle densipyglL?c. Shown is the }
universal spinodaldashed ling For L/oc=1 the binodal(thick }
line), tie lines(thin straight lineg Fisher-Widom ling(dotted ling, 'l
and statepoints | and (trossepare indicated. Circles represent the L5 l|
critical points forL/0=0,1,2,4, and 8. The thin line is the meta- |l
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stable binodal forL/oc=0. Inset shows corresponding plots as a

function of needle reservoir densipy,L?c. Note that there are now 2
. . N 1 r

separate spinodalslashed lines 2

S

=47RI3,65=47R?,£5=R,£5=1, whereas for needles) \
=L/4£y=1, and, there is also a combined fundamental
measuret; "= 47R?(= £5). Then the excess Helmholtz free
energy per volume/ is given byFq{ps,pn)/V="Tus(ps)

05

statepoint I
----- statepoint II

—pnkeTIn a(pg), wherefys(ps) is the excess free energy [ critical point
density of pure hard spheres in the scaled-parfiBlercus- 0 0 ) 4 p 8 10
Yevick (PY) compressibility approximation anda=(1 kG

—n)exd —(3/2)(L/o) »/(1— 7n)], which is identical to that

of Ref.[7], leading to(spherg gas-liquid phase separation  FIG. 3. Pair structure for spheres as obtained from DFT at
[7,18]. As an explanatory case, we chodser=1, and dis- L/o=1, 7=0.3, py=0 (statepoint)] andpy=4.58 366L o (state-
play the gas-liquid portion of the phase diagram as a functiooint 11). (a) Partial sphere-sphere pair correlation function com-
of 7 andpyL2c in Fig. 2. We find that in this representation Pared to MC simulation. Results for statepoint | are shifted upwards
the spinodals for all size ratios=L/o collapse onto each by one unit for clarity. The inset shows the DFT result inside the
other and are given analytically bypSNpi”I_20'=8(1 core for. statepoint 11(b) Corresponding partia! strggture fgctor at
+27])2/(37T7])- The critical point moves along this curve as statepoints | and Il, as well as at the gas-liquid critical point.

a function ofs (see Fig. 2 fos=0,1,2,4, and Band is given  region, we find that it smoothly approachgs-1/4, p\L2c

by [7] #ei=(10+3s—3V4+125+5%)/(16—-12s). The  =24/r, pLL20=32/7 for s—0. This is in contrast to free
Fisher-Widom line[19] divides the phase diagram into re- yolume theory for the AO model, where demixing is pre-
gions of different asymptotic decay of the free bulk pair cor-empted by freezing at a similar size rafit6], but with the
relations. Here the decay is damped oscillatory for smalimetastablg critical point shifting to high density, thereby
needle densities, where the packing of spheres dominates.dtossing hard sphere fluid-solid coexistence. Whether this
becomes monotonic upon increasing needle density; the idefifference has implications for the existence of an isostruc-
ality between needles washes out the oscillations. In the inséfiral solid-solid transition in the present model constitutes an
of Fig. 2 the dependence on the actual needle density in th@teresting aspect.

system is replaced by that in a needle reservoir, in chemical Next we investigate the bulk pair structure. The pair direct
equilibrium with the system, which is given here by correlation  functions  are obtained as ¢jj=
=apy. The reservoir density plays a role similar to that of —(kBT)*lﬁzFEXC/éSpi5,3j . Due to their geometric represen-
inverse temperature in simple systems, and the topology ahtion as convolutions of single particle functions, the

the phase diagram resembles that of a simple substance. Dganish beyond the range of interaction, similar to what is
mixing is preempted by freezing fe<0.3, as shown by BF. found in PY. The Ornstein-Zernik@2z) relations then yield
However, if we trace the critical point inside the metastablepartial structure factors and pair correlation functions. In or-

050201-3



RAPID COMMUNICATIONS

MATTHIAS SCHMIDT PHYSICAL REVIEW E 63 050201R)

der to test the accuracy of the theoretical results, we have Let us conclude with two remarks. First, in view of the
carried out canonical Monte Carld1C) computer simula- successful treatment of the bulk, the present theory offers
tions with 256 spheres and up to 2048 needles; for the paifirect access to a wide range of interesting interfacial and
correlations, 19 moves per particle were performed. Here confined situations, such as wetting, layering transitions, and
we focus on the correlatiorgs{r) between spheres. Figure capillary condensation, as well as the study of the free inter-
3(a) shows results fol./o=1, »=0.3, and two different face between demixed fluid phases. Especially appealing is
needle densitiespy=0 (statepoint I, depicted in the phase the perspective to investigate the degree of universality of
diagram Fig. 2, andpy=8ps=4.58 366L°v (statepoint Il.  the entropic wetting scenario in the AO mod&D], found

In the absence of needlestatepoint | the DFT result repro-  yecently by a similar DFT treatmeiil7]. For the current
duces the rather accurate PY solution for hard spheres. Inyodel "interesting orientational behavior of the rods may be
creasing the needle densitgtatepoint I, where the snap- nicinated: For example, at the frégas-liquid interface

shot, Fig. 1, is takenleads to an increase of the contact between demixed phases, the rod orientations will in general

value; the period of oscillations becomes shorter, hence thg’how a tendency to order, although the distributions are iso-

spheres tend to be at smaller separation. The DFT prov'des.t?opic in both bulk phases. Second, the crucial extensions of
good description of the MC results, except for an underesti-

mation of the contact value and nonzero values inside thgeomdgtry—:)ased DFT dgone mdttrrllls .Wtorkd arf:- theflgtegglatlon
core. This could be remedied by using the test-particle limitCVer director spactEq. (9)], and the introduction of double-

i.e. minimizing the grand potential in the presence of aindexed weight functionEq. (5)]. Whether these technical

sphere fixed at the origin. The corresponding structure facio0!S permit the treatment of other rotating hard bodies con-
tors Ss{k) are shown in Fig. ®). Adding needlegstate- stitutes an important point for future investigations.

point 1) leads to a small shift towards largksvalues, as

well as to an increase iis40). In addition, we plotSs k) | thank Bob Evans and Holger Harreis for valuable re-
at the critical point obtained from the free enerddgdk marks, and Gerrit Vliegenthart and Arjun Yodh for stimulat-
—0) divergesconsistently. ing discussions.
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