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Freezing between Two and Three Dimensions
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The freezing transition of hard spheres confined between two parallel hard plates is studied for
different plate separations interpolating between two and three spatial dimensions. Using Monte
Carlo simulations and free volume theory, the full phase diagram is obtained exhibiting solid-to-
solid transitions between buckled, layered, and rhombic crystals. While the fluid-solid transition
is always strongly first order, both strong and very weak transitions occur between different
crystalline structures. All predicted transitions should be experimentally observable in confined
colloids. [S0031-9007(96)00444-9]

PACS numbers: 64.70.Dv, 61.20.Ja

The physics of fluids confined between two parallelplate separations lying between one and two sphere
plates can be quite different from their three-dimensionatliameters. The phase diagram is found to exhibit a rich
(3D) bulk behavior as the confinement drastically af-structure with a fluid phase and many different solid
fects structural correlations, dynamical properties [1], anghases including buckled, layered, and rhombic crystalline
the location of phase transitions [2]. The dimensionalstructures. We find a first-order freezing transition which
ity of the confined fluid may be continuously interpolatedcan be followed by a further solid-to-solid transition
between three and two by varying the plate separatioas the density is increased. Interestingly enough, these
distance from macroscopic towards molecular spacingsolid-to-solid transformations can be strong or very weak.
Many recent studies devoted to the freezing transitioWe also present a simple theory for the phase diagram,
in strictly three- or two-dimensional fluids have demon-combining free volume theory of the crystalline phase
strated that the transition can be quite different in 3Dwith an effective-diameter theory of the fluid phase, which
and 2D [3]. While it is a first-order transition in 3D, it yields qualitative and semiquantitative agreement with our
may be a two-stage continuous transition in 2D with anexact simulation data.
intermediate hexatic phase possessing long-ranged bond-Our model consists oN hard spheres of diameter
orientational order. confined between parallel hard plates with afe@nd gap

Much less is known about freezing of fluids limited in thicknessH = (h + 1)o7, such thath = 0 corresponds
one direction, i.e., systems intermediate between 2D antb the 2D limit of hard disks. Since temperature is ir-
3D. Inrecent years, this subject has received a boost fromelevant for excluded-volume interactions, the only ther-
experiments on colloidal dispersions confined between twanodynamic quantities are the reduced particle density
glass plates [4—6]. Such samples are realizations of corpy = No?/AH and the effective reduced plate separa-
fined fluids on a mesoscopic length scale with the advartion h. The particle coordinate perpendicular to the plates
tage that the particle trajectories can be followed directlyis z, with —ho /2 = z < ho /2.
by video microscopy and correlations can be measured in In our Monte Carlo simulations, we use the canonical
real space. For varying plate separations, a sequence efisemble with particle numbers ranging frolm= 192 to
crystalline layerings were observed corresponding to a cag¥ = 1156 in order to check systematically for finite-size
cade of solid-solid transitions. Theoretical work, on theeffects. Careful attention is paid to the boundary condi-
other hand, is much less comprehensive and has maintions, which are crucial in a system exhibiting structural
been done in the framework of a hard-sphere model corphase transitions. To allow any periodically ordered
fined between hard walls: Pieranski and co-workers havstructure to fit into the simulation box for a suitable
calculated the close-packed density [7] and used a ceflarticle numbeN, the box is allowed to change its shape
model to calculate some solid-to-solid transitions [8]. Thein the course of the simulation while its volume is fixed.
structure of the confined hard sphere fluid was investigate@he area in the lateral plane is a parallelogram with
by Percus [9] and Wertheim, Blum, and Bratko [10], butperiodic boundary conditions. MC moves concerning its
without addressing the freezing transition. Finally, withinangles and aspect ratio are performed, so that the system
a Landau approach, a transition from a crystalline monoean relax to equilibrium via shearing and squeezing.
layer to a buckled solid phase was recently pointed out between 10 and00 X 10° MC steps per particle were
Chou and Nelson [11]. computed to determine the equation of state for fiked

The aim of this Letter is to determine by Monte in the region of a phase transition. Phase transitions are
Carlo (MC) simulation the full phase diagram for the detected by looking for van der Waals loops in the equa-
confined hard-sphere model for arbitrary density andion of state for fixedh. By performing a Maxwell
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construction, the corresponding density jump is 1 . , o ——— Coa
calculated by equating both the Ilateral pressures }5\., 2A ™,
pla = —H 'dF/dA (F denoting the Helmholtz free 0.8 ,,/“'““““\*'%tvm___,“__;_
energy) and the chemical potentials of the coexisting [ f 201 !_:‘fg,
phases. As a consistency check, we have also used 0.6L T—Irwﬂaﬂ-}»"

the single occupancy cell method [12] fdr = 0.85 h g % b

finding the same phase boundaries. In addition, we : 1;..1‘ Ry / _

have monitored the behavior of suitably defined or- 0.4 "N\ S forbidden
der parameters in order to characterize the emerging I "\};\1‘&‘ 5,

crystalline phases. We introduce a set of double- 0.2- fluid . By 1
indexed complex order parametetg,,, defined via . \X \ .
Wy = (N 3N_, (W, ()| exdlimarg¥, (a)]).  Here 0 . — .
(---y denotes a canonical average ardl,(a) = 0.6 0.8 ), 1 2

N ! EB expin®,p), where the sum is overN, _ .
: : : . FIG. 1. Simulated phase diagram for hard spheres of re-
neighbors of particlea possessing lateral dIStances‘duced density py; between parallel plates with effective

smaller than 1.2 and having opposite signs in their eqyuced separatiorh. Symbols indicate different system
coordinates an®,z is the angle between the bond of sizes: N = 192 (+); N = 384,512 (¢); N = 576 (A); N =

particlesa and 8 and an arbitrary axis. The quantity 1024,1156 (0). The statistical error is of the order of the
¥, tests for solid structures with am(- n)-fold rota- S)Ar;‘b°+hseing . eSO:X a?c?l?esde?j e?r%?turis(ﬂrwgﬁédbb 22’ dgsﬁgg ine
tional symmetry. |.3y Cal(_:ulatlng the order.par&_lm_eter_se olid lines are gui%es to the ey)é. Thin horiz)(;ntal “tie-lines”
{W,n} during the simulation, one can readily distinguishepresent two-phase coexistence.
between different local surroundings of particles and thus
identify the crystalline structure. An abrupt change in the
order parameters signals a phase transition.

In Fig. 1 the resulting phase diagram is shown in the
plane spanned by the reduced particle dengity and the corresponding unit cells are depicted in Figs. 2(a) and
the effective plate spacing. The region in phase space 2(b). Both structures possess two-fold rotational symme-
is naturally limited by the close-packed density (dashedry. Interestingly enough both the buckling and the rhom-
line). Different symbols represent different system sizedic phase ardighly degenerate.For the buckling phase,
showing that the dependence on system size is only weatere is linear buckling (constituted by a single rectangular
Forh = 0, in agreement with recent simulations of Weberunit cell), periodic zig-zag buckling (built up from left and
and co-workers [13], we recover the first-order freezingright kites), and a random succession of both [shown in
transition of hard disks into a triangular lattice. As Fig. 2(a)]. Still, in the horizontal direction, there is strict
is increased, the fluid freezes first into one triangulaperiodicity. Likewise, the rhombic phase can appear to
layer and with increasing density subsequently undergodse linear rhombic (with a single rhombic elementary cell),
a further first-order transition into a crystalline structurezig-zag rhombic (with an alternating succession of the two
of buckled linesi§). For intermediatdn, the fluid freezes rhombi), and again a random succession of both as shown
into two layers of a square lattig@]) via a strong first- in Fig. 2(b). All of these structures are close packed at
order transition and then transforms into the bucklingthe corresponding values bf Away from close packing
phaseslf). The latter transition is marked k& symbols  we cannot distinguish within our simulation which of these
indicating phase boundaries, where the equation of stagghases is the thermodynamically stable one since the free
shows no van der Waals loop, but the order parametemnergy differences are too miniscule. Let us remark that
exhibit anomalous behavior. Within the finite resolutionthis is quite similar to the 3D hard-sphere crystal, where the
of the simulation we could not distinguish whether such ahree close-packed structures fcc, hcp, and random stack-
transition is weakly first order or continuous. However,ing are extremely close in free energy and the actual crys-
for h = 0.6, for example, we can exclude a density jumptalline structure depends on the history of the sample.
Apyg larger than 0.0004. Hence tR&1 — b transition is The identification of the different solid phases is
extremely weak. For even highér, a transition occurs illustrated in Fig. 3 where the behavior of three order
from the 20 phase into a crystal with two triangular parameteraly,, ¥,;, andW¥,; is shown across thei] —
layers(2A). Finally there is a new stable crystalline phaser andr — 2A transition (see the grey arrow in Fig. 1). In
which we call rhombicK) since its unit cell is a rhombus. the region where th@[ structure is stable, the quantity
It is a close-packed structure but its stability also extendaV',, reaches its maximum value whill,; vanishes. On
towards slightly smaller densities. Th&1— r and the other handW¥, vanishes in th& A region when¥,;
2/ — r transitions are again very weak. is almost unity. The intermediate region is not a two-

Let us add some more details for the two less comphase-coexistence region: As can be deduced from a
mon phase$® andr. Typical particle configurations and nonvanishing¥,;, a structure with a two-fold rotational
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spheres, however, the free volume cell changes also its
shape as the density is varied. This implies that the
number of free lattice parameters is larger than the number
of constraints, in contrast to 3D where only the parameter
a is fixed by prescribing the density. Maximizing the
free volumeV, numerically with respect to the additional
parameters, the final value ofkzTIn(V;/o?) provides
an upper bound for the free energy per partidlig?’
denoting the thermal energy.

The fluid in slab geometry is approximately treated
as a strictly two-dimensional hard-disk system with an
effective diameter* obtained from the implicit relation

FIG. 2. Typical configurations of the andr phases. Note ha /2 ha /2

the strict periodicity in the horizontal direction. (&uckling (c")? = o? — f dz, f dz,
phase—The four different local neighborhoods are marked —ha /2 —ha /2

as two “kites” and two rectangles with different relative 2 .
orientations. (b)Rhombic phase—-Two differently oriented X (z1 — 22)7p(z1,07)

rhombi are shown. . o
X p(z2,07)/[pu(h + 1)o7 T, 1)

symmetry is stable, which is further identified with the where the one-particle density profile(z, o*) is
rhombic phase by inspecting typical configurations. given by pu(h + Dexga(c?)z2]/N (a(c*)) with

We emphasize that the fluid freezing transition is firsthormalization N (a) = /7 /a o2erfi(Ja ho/2) and
order. In fact we checked that bond-angle orientational, () = 7p,(h + 1)g(c%)/0?, erfi  denoting  the
correlation functions with two, four, and sixfold symmetry jmaginary ~ error  function.  Here, g(o*) = [1 —
decay exponentially with distance in the fluid phase and, ,*)/2]/[1 — 5(c*)P? is the contact value of the
reach a finite plateau value in the solid phase. At least fopp pair correlation function within scaled particle
a system size oN = 1156, we never found an interme- theroy, and 7(c*) = (7/4)pu(h + )o*2/a? is the
diate “duatic,” “tetratic,” or “hexatic” phase characterized gffective area fraction of the 2D system. The expres-
by an algebraic decay of the corresponding orientationaljon (1) takes into account the fact that two spheres can
correlation. This fact, of course, does not exclude the ocpe |aterally closer thawr if they differ in their z coor-
currence of such phases in larger systems and in systefifates. Finally the Helmholtz free energy is obtained
that are governed by softer interactions. via integration of dF/dA = —kgTpy(1 + W)[1 +

Let us now briefly describg our thepretical approach.ﬂ.pH(h + 1)0*2g(c%)/20%]/c? guaranteeing the cor-
The solid phases are described using the cell modghct second virial coefficient in the low density limit. The
proposed in Ref. [8], which has an explicit solution injntegration constanf, is empirically chosen to fit the
the 3D bulk [14]. The free volume cell is a shrunken |gcation of the hard-disk freezing transition.
Wigner-Seitz cell of the underlying fcc lattice with  The theoretical phase diagram is shown in Fig. 4. It
a lattice constanta — o)/2, a denoting the nearest- |ooks similar to the exact simulation data reproducing the
neighbor distance in the fcc lattice. For confined hardstapility of the six different phases found in the simulation

[15]. All transitions are first order. The density gap be-

— tweenb — 20 andr — 2A is extremely small in agree-
20 2 rhombus 2A ment with the simulation; for instanc&,py = 0.00047 at
h = 0.72 for theb — 20 transition. Also the fluid- 1A
and 1A — b transitions are quantitatively correct. An-
other interesting property concerns the above-mentioned
degeneracy of the andr phases. Indeed, also away from
close packing, the free volumes are identical for differ-
ent realizations of thé andr phases and hence the cell
model cannot distinguish between the subspecies. One
can thus conclude that the cell model, which requires much
less numerical effort than a direct simulation, gives reliable

£ g

074 076 078 080 082 results as far as the topology of the phase diagram of con-
h fined hard-body systems is concerned. Some details of the
FIG. 3. Behavior of the order parametebs,, Wy, andW,,  Phase diagram, however, are not reproduced. The slope
in three different phase<((, r, and2A) versush for py = of the 20 — b line is positive in simulation but nega-
1.134. This path is indicated in Fig. 1 as a grey arrow. tive in cell theory. Hence the cell theory overestimates
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