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Freezing between Two and Three Dimensions
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The freezing transition of hard spheres confined between two parallel hard plates is studied for
different plate separations interpolating between two and three spatial dimensions. Using Monte
Carlo simulations and free volume theory, the full phase diagram is obtained exhibiting solid-to-
solid transitions between buckled, layered, and rhombic crystals. While the fluid-solid transition
is always strongly first order, both strong and very weak transitions occur between different
crystalline structures. All predicted transitions should be experimentally observable in confined
colloids. [S0031-9007(96)00444-9]

PACS numbers: 64.70.Dv, 61.20.Ja
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The physics of fluids confined between two paral
plates can be quite different from their three-dimensio
(3D) bulk behavior as the confinement drastically
fects structural correlations, dynamical properties [1], a
the location of phase transitions [2]. The dimension
ity of the confined fluid may be continuously interpolat
between three and two by varying the plate separa
distance from macroscopic towards molecular spacin
Many recent studies devoted to the freezing transit
in strictly three- or two-dimensional fluids have demo
strated that the transition can be quite different in
and 2D [3]. While it is a first-order transition in 3D,
may be a two-stage continuous transition in 2D with
intermediate hexatic phase possessing long-ranged b
orientational order.

Much less is known about freezing of fluids limited
one direction, i.e., systems intermediate between 2D
3D. In recent years, this subject has received a boost f
experiments on colloidal dispersions confined between
glass plates [4–6]. Such samples are realizations of c
fined fluids on a mesoscopic length scale with the adv
tage that the particle trajectories can be followed direc
by video microscopy and correlations can be measure
real space. For varying plate separations, a sequenc
crystalline layerings were observed corresponding to a
cade of solid-solid transitions. Theoretical work, on t
other hand, is much less comprehensive and has ma
been done in the framework of a hard-sphere model c
fined between hard walls: Pieranski and co-workers h
calculated the close-packed density [7] and used a
model to calculate some solid-to-solid transitions [8]. T
structure of the confined hard sphere fluid was investiga
by Percus [9] and Wertheim, Blum, and Bratko [10], b
without addressing the freezing transition. Finally, with
a Landau approach, a transition from a crystalline mo
layer to a buckled solid phase was recently pointed ou
Chou and Nelson [11].

The aim of this Letter is to determine by Mon
Carlo (MC) simulation the full phase diagram for th
confined hard-sphere model for arbitrary density a
52 0031-9007y96y76(24)y4552(4)$10.00
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plate separations lying between one and two sph
diameters. The phase diagram is found to exhibit a r
structure with a fluid phase and many different so
phases including buckled, layered, and rhombic crystal
structures. We find a first-order freezing transition whi
can be followed by a further solid-to-solid transitio
as the density is increased. Interestingly enough, th
solid-to-solid transformations can be strong or very we
We also present a simple theory for the phase diagr
combining free volume theory of the crystalline pha
with an effective-diameter theory of the fluid phase, whi
yields qualitative and semiquantitative agreement with
exact simulation data.

Our model consists ofN hard spheres of diameters

confined between parallel hard plates with areaA and gap
thicknessH ­ sh 1 1ds, such thath ­ 0 corresponds
to the 2D limit of hard disks. Since temperature is
relevant for excluded-volume interactions, the only th
modynamic quantities are the reduced particle den
rH ­ Ns3yAH and the effective reduced plate sepa
tion h. The particle coordinate perpendicular to the pla
is z, with 2hsy2 # z # hsy2.

In our Monte Carlo simulations, we use the canoni
ensemble with particle numbers ranging fromN ­ 192 to
N ­ 1156 in order to check systematically for finite-siz
effects. Careful attention is paid to the boundary con
tions, which are crucial in a system exhibiting structu
phase transitions. To allow any periodically order
structure to fit into the simulation box for a suitab
particle numberN, the box is allowed to change its shap
in the course of the simulation while its volume is fixe
The area in the lateral plane is a parallelogram w
periodic boundary conditions. MC moves concerning
angles and aspect ratio are performed, so that the sy
can relax to equilibrium via shearing and squeezi
Between 10 and100 3 106 MC steps per particle were
computed to determine the equation of state for fixeh
in the region of a phase transition. Phase transitions
detected by looking for van der Waals loops in the eq
tion of state for fixedh. By performing a Maxwell
© 1996 The American Physical Society



VOLUME 76, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 10 JUNE 1996

is
re

in
s

w
or
in
le

s

of
y

se
sh
u

he

he

e
e
e

ea
er
ng

la
oe
re

ng

ta
te
n

h a
r,
p

r
se
.
nd

m
d

re-
e

e

ine.
s”

and
e-

m-
,
lar
d
in

ct
to

ll),
wo
own
at

se
free
hat
the
ack-
rys-

is
er

n
y

o-
m a
l

construction, the corresponding density jump
calculated by equating both the lateral pressu
plat ­ 2H21dFydA (F denoting the Helmholtz free
energy) and the chemical potentials of the coexist
phases. As a consistency check, we have also u
the single occupancy cell method [12] forh ­ 0.85
finding the same phase boundaries. In addition,
have monitored the behavior of suitably defined
der parameters in order to characterize the emerg
crystalline phases. We introduce a set of doub
indexed complex order parametersCmn, defined via
Cmn ; kN21

PN
a­1 jCnsadj expfimargCnsadgl. Here

k· · ·l denotes a canonical average andCnsad ;
N21

a

P
b expsinQabd, where the sum is overNa

neighbors of particlea possessing lateral distance
smaller than 1.2s and having opposite signs in theirz
coordinates andQab is the angle between the bond
particlesa and b and an arbitrary axis. The quantit
Cmn tests for solid structures with an (m ? n)-fold rota-
tional symmetry. By calculating the order parameter
hCmnj during the simulation, one can readily distingui
between different local surroundings of particles and th
identify the crystalline structure. An abrupt change in t
order parameters signals a phase transition.

In Fig. 1 the resulting phase diagram is shown in t
plane spanned by the reduced particle densityrH and
the effective plate spacingh. The region in phase spac
is naturally limited by the close-packed density (dash
line). Different symbols represent different system siz
showing that the dependence on system size is only w
For h ­ 0, in agreement with recent simulations of Web
and co-workers [13], we recover the first-order freezi
transition of hard disks into a triangular lattice. Ash
is increased, the fluid freezes first into one triangu
layer and with increasing density subsequently underg
a further first-order transition into a crystalline structu
of buckled lines (b). For intermediateh, the fluid freezes
into two layers of a square lattices2hd via a strong first-
order transition and then transforms into the buckli
phases (b). The latter transition is marked by_ symbols
indicating phase boundaries, where the equation of s
shows no van der Waals loop, but the order parame
exhibit anomalous behavior. Within the finite resolutio
of the simulation we could not distinguish whether suc
transition is weakly first order or continuous. Howeve
for h ­ 0.6, for example, we can exclude a density jum
DrH larger than 0.0004. Hence the2h ! b transition is
extremely weak. For even higherh, a transition occurs
from the 2h phase into a crystal with two triangula
layerss2nd. Finally there is a new stable crystalline pha
which we call rhombic (r) since its unit cell is a rhombus
It is a close-packed structure but its stability also exte
towards slightly smaller densities. The2h ! r and
2n ! r transitions are again very weak.

Let us add some more details for the two less co
mon phasesb and r. Typical particle configurations an
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FIG. 1. Simulated phase diagram for hard spheres of
duced density rH between parallel plates with effectiv
reduced separationh. Symbols indicate different system
sizes: N ­ 192 s1d; N ­ 384, 512 sed; N ­ 576 (_); N ­
1024, 1156 shd. The statistical error is of the order of th
symbol size. Six phases occur (fluid,1n, b, 2h, r , and
2n). The closed-packed density is marked by a dashed l
Solid lines are guides to the eye. Thin horizontal “tie-line
represent two-phase coexistence.

the corresponding unit cells are depicted in Figs. 2(a)
2(b). Both structures possess two-fold rotational symm
try. Interestingly enough both the buckling and the rho
bic phase arehighly degenerate.For the buckling phase
there is linear buckling (constituted by a single rectangu
unit cell), periodic zig-zag buckling (built up from left an
right kites), and a random succession of both [shown
Fig. 2(a)]. Still, in the horizontal direction, there is stri
periodicity. Likewise, the rhombic phase can appear
be linear rhombic (with a single rhombic elementary ce
zig-zag rhombic (with an alternating succession of the t
rhombi), and again a random succession of both as sh
in Fig. 2(b). All of these structures are close packed
the corresponding values ofh. Away from close packing
we cannot distinguish within our simulation which of the
phases is the thermodynamically stable one since the
energy differences are too miniscule. Let us remark t
this is quite similar to the 3D hard-sphere crystal, where
three close-packed structures fcc, hcp, and random st
ing are extremely close in free energy and the actual c
talline structure depends on the history of the sample.

The identification of the different solid phases
illustrated in Fig. 3 where the behavior of three ord
parametersC14, C21, andC23 is shown across the2h !

r andr ! 2n transition (see the grey arrow in Fig. 1). I
the region where the2h structure is stable, the quantit
C14 reaches its maximum value whileC23 vanishes. On
the other hand,C14 vanishes in the2n region whenC23
is almost unity. The intermediate region is not a tw
phase-coexistence region: As can be deduced fro
nonvanishingC21, a structure with a two-fold rotationa
4553
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FIG. 2. Typical configurations of theb and r phases. Note
the strict periodicity in the horizontal direction. (a)Buckling
phase.—The four different local neighborhoods are marke
as two “kites” and two rectangles with different relativ
orientations. (b)Rhombic phase.—Two differently oriented
rhombi are shown.

symmetry is stable, which is further identified with th
rhombic phase by inspecting typical configurations.

We emphasize that the fluid freezing transition is fi
order. In fact we checked that bond-angle orientatio
correlation functions with two, four, and sixfold symmetr
decay exponentially with distance in the fluid phase a
reach a finite plateau value in the solid phase. At least
a system size ofN # 1156, we never found an interme
diate “duatic,” “tetratic,” or “hexatic” phase characterize
by an algebraic decay of the corresponding orientatio
correlation. This fact, of course, does not exclude the
currence of such phases in larger systems and in syst
that are governed by softer interactions.

Let us now briefly describe our theoretical approac
The solid phases are described using the cell mo
proposed in Ref. [8], which has an explicit solution
the 3D bulk [14]. The free volume cell is a shrunke
Wigner-Seitz cell of the underlying fcc lattice with
a lattice constantsa 2 sdy2, a denoting the nearest
neighbor distance in the fcc lattice. For confined ha
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FIG. 3. Behavior of the order parametersC14, C21, andC23
in three different phases (2h, r , and 2n) versush for rH ­
1.134. This path is indicated in Fig. 1 as a grey arrow.
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spheres, however, the free volume cell changes also
shape as the density is varied. This implies that
number of free lattice parameters is larger than the num
of constraints, in contrast to 3D where only the parame
a is fixed by prescribing the density. Maximizing th
free volumeVf numerically with respect to the additiona
parameters, the final value of2kBT lnsVfys3d provides
an upper bound for the free energy per particle,kBT
denoting the thermal energy.

The fluid in slab geometry is approximately treate
as a strictly two-dimensional hard-disk system with
effective diametersp obtained from the implicit relation

sspd2 ­ s2 2
Z hsy2

2hsy2
dz1

Z hsy2

2hsy2
dz2

3 sz1 2 z2d2rsz1, spd

3 rsz2, spdyfrHsh 1 1ds22g2, (1)

where the one-particle density profilersz, spd is
given by rHsh 1 1d expfasspdz2gyN sssasspdddd with
normalization N sad ­

p
pya s2erfis

p
a hsy2d and

asspd ­ prHsh 1 1dgsspdys2, erfi denoting the
imaginary error function. Here, gsspd ­ f1 2

hsspdy2gyf1 2 hsspdg2 is the contact value of the
2D pair correlation function within scaled particl
theroy, and hsspd ­ spy4drHsh 1 1dsp2ys2 is the
effective area fraction of the 2D system. The expre
sion (1) takes into account the fact that two spheres
be laterally closer thans if they differ in their z coor-
dinates. Finally the Helmholtz free energy is obtain
via integration of dFydA ­ 2kBTrHs1 1 hd f1 1

prHsh 1 1dsp2gsspdy2s2gys2 guaranteeing the cor
rect second virial coefficient in the low density limit. Th
integration constantF0 is empirically chosen to fit the
location of the hard-disk freezing transition.

The theoretical phase diagram is shown in Fig. 4.
looks similar to the exact simulation data reproducing t
stability of the six different phases found in the simulatio
[15]. All transitions are first order. The density gap b
tweenb ! 2h andr ! 2n is extremely small in agree
ment with the simulation; for instance,nrH ­ 0.00047 at
h ­ 0.72 for theb ! 2h transition. Also the fluid! 1n
and 1n ! b transitions are quantitatively correct. An
other interesting property concerns the above-mentio
degeneracy of theb andr phases. Indeed, also away fro
close packing, the free volumes are identical for diffe
ent realizations of theb and r phases and hence the ce
model cannot distinguish between the subspecies.
can thus conclude that the cell model, which requires m
less numerical effort than a direct simulation, gives relia
results as far as the topology of the phase diagram of c
fined hard-body systems is concerned. Some details o
phase diagram, however, are not reproduced. The s
of the 2h ! b line is positive in simulation but nega
tive in cell theory. Hence the cell theory overestimat
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FIG. 4. Same as Fig. 1 but now obtained from effectiv
diameter and cell theory. The dotted tie lines represent reg
with three coexisting phases [19].

the stability of the buckled phase. Furthermore, the agr
ment of the fluid-solid coexistence region grows worse
h increases since within effective-diameter theory we m
a multilayer fluid onto a single-layer fluid.

In conclusion, we have calculated the phase diagram
hard spheres confined between two parallel hard plates
small plate separationsH ranging from one to two sphere
diameters. We have not considered possible transi
structures from two to three layers, which emerge
H . 1.82s for high densities. In that case, even mo
crystalline structures can compete in free energy and
phase diagram becomes increasingly complicated.
work is complementary to Ref. [16] working in the gran
isostress ensemble and to Ref. [17] focusing on transiti
in a multilayer system.

We finish with a couple of remarks: First, althoug
solely excluded volume interactions enter in our mod
it may be used also for softer interactions as long
they can be mapped onto an effective hard sphere sys
confined between effective hard plates. In particul
a charged suspension between charged plates coul
treated in this manner if the salt content is high. Seco
an experimental verification of the full phase diagram
highly desirable in confined sterically-stabilized colloid
suspensions or in charged but highly salted dispersio
Using video microscopy or scattering methods one sho
be able to locate the various transitions in order to test
predictions. We finally mention that similar solid-soli
transitions were recently found [18] for bilayer Wigne
crystals in a double quantum-well system exposed t
strong magnetic field.
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