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Amphiphilic hard body mixtures
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In order to study ternary amphiphilic mixtures, we introduce a simplistic model of hard spheres correspond-
ing to water and hard needles corresponding to oil and amphiphilic particles, where the hydrophilic head is
modeled as a hard sphere and the hydrophobic tail as an infinitely thin needle attached radially to the sphere.
For this system, we construct a geometry-based density functional and perform Monte Carlo computer simu-
lations. The equation of state derived from the theory is found to be in remarkable agreement with our
simulation results. We investigate the theoretical demixing phase diagram, and find that the predicted trends
strongly support the amphiphilic character of the model.
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[. INTRODUCTION to investigate amphiphilic mixtures. The particles possess
continuous(off-lattice) positions and orientations, and we
Adding amphiphiles to a system of oil and water consid-prescribe the microscopic interparticle interactions. In our
erably enhances the miscibility of these substances. Ammodel, only hard core pair interactions are present; hence the
phiphilic molecules consist of a hydrophilic head group andbehavior is solely driven by entropy. Using hard core sys-
a hydrophobic tail, which prefer being dissolved in water andtems has proved to be fruitful for important phenomena like
oil, respectively. The physics of amphiphilic systems is im-freezing[21] and liquid crystalline ordering, and we believe
portant in many areas, including industrial and domestic apthat this could also be the case for amphiphiles. To study the
plications like washing, cleaning, emulsification, and manymodel, we construct a geometry-based DFT. This approach
more. Due to the different preferences of their constituentspriginates from Rosenfeld’s fundamental measure theory for
amphiphiles adsorb at oil-water interfaces and facilitate thénard sphere mixturg®22-25, which was also formulated for
creation of such interfaces. Depending on the thermodynameonvex bodies[26] and parallel hard cubef27,2§. Re-
cal variables, these interfaces arrange in a rich variety ofently, within geometry-based DFT, a range of models has
structures[1-4], and much theoretical work has been de-been treated successfully, including the Asakura-Oosawa
voted to understanding the underlying basic mechanismsolloid—ideal-polymer mixturg29], the Widom-Rowlinson
Microscopic approaches have often used a lattice fluid modahodel [30], and a model due to Bolhuis and Frenkall],
[5-8], while coarse grained continuum descriptions are prowhere hard spheres are mixed with infinitely thin needles
vided by Ginzburg-Landa{9] or integral geometrical10]  [32]. This needle-sphere mixture displays a demixing phase
models. transition crudely reminiscent of that of water and oil. Here,
Density functional theoryDFT) [11] is a powerful ap- we use this as a starting point, and supplement it with a third
proach to inhomogeneous statistical systems, and has bespecies of particle that consists of a sphere to which a needle
applied to study amphiphilic behavior on different levelsis attached rigidly. The spherical part is a caricature of the
from microscopic to macroscopic. A model for membraneshydrophilic head and the needle models the hydrophobic tail
vesicles, and micellesl2] based on a description for effec- of an amphiphilic molecule. Hence we arrive at a simplistic
tive amphiphile interactions arising from the presence of solimodel for a nonionic amphiphile ternary mixture, featuring
vent molecules has been studied. The phase behavior ofexplicit water-oil asymmetry. Hybrid shapes of spheres and
symmetrical ternary mixture was found to exhibit three-(thin) rods are also realized in the colloidal domain by mi-
(isotropig-liquid-phase coexistendd.3]. This approach was crotubules inside vesicld$83,34], and by rodlike fd bacte-
generalized to asymmetric interactions between amphiphilesophage viruses bound to silica bed@$].
and water and oil, and lamellar and micellar phases were As will be seen below, our hard body amphiphiles are
found[14]. The structure of droplet microemulsions was alsononconvex particles. In order to deal with nonconvexity, we
treated[15]. The problem of separation of length scales intocarry over the recipes developed for convex partifssg, at
those of the microscopic domaimelevant for building up the expense of a certain violation of the overlap condition
interface$ and those of the mesoscopic regiitie capture  within the theory. As we will show in detail, the violation is
the degrees of freedom of supramolecular aggregates quantitatively small and does not hinder the development of
addressed within a one-dimensional model of molecular aga powerful theory.
gregation [16], and later on generalized to the three- Our final aim is to elucidate the phase behavior of the
dimensional cas¢l17]. The phase behavidrl8] and gas- system. To have benchmark results to test the theory against,
liguid nucleation [19] of amphiphilic binary mixtures we have carried out Monte CarlMC) computer simula-
consisting of Lennard-Jones monomers and bonded dimet®ns, and have obtained results for the equation of state for
has been investigated. Furthermore, a DFT approach hdgpical compositions of species and over a broad range of
been applied to nucleation in micellar solutidi2g)]. densities in regions where the system remains in a fluid state.
In this work we propose a simple atomistic model in orderComparing with the theoretical results, we find nice agree-
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FIG. 1. Sketch of the model amphiphilic mixturéa) Am-
phiphilic molecules consisting of a hard, infinitely thin needle of
length L, which is attached radially to a hard sphere of radius
The orientation of the particle is described by the unit ve€orb)
Pure amphiphile system(c) Ternary system consisting of am-
phiphiles, hard sphere@vaten, and hard, infinitely thin needles
(ail).

FIG. 2. Snapshots from computer simulatio@@ Pure am-
phiphile system; the particles possess different gray levelsTer-
ment, and hence are confident in trusting the theoretical renary mixture of spheregblack), needles(gray), and amphiphiles
sults for the phase diagram, without further checking againsgwhite).

simulations. We find that amphiphiles mix better with either

spheres or needles than do spheres with needles. The ratio of

tail length to head radius acts as a control parameter govern-

ing the relative affinity of amphiphiles for either spheres orgcriped below of this model.

needles. . . _ We also consider a three-component mixture(ipfpar-

The paper is organized as follows. In Sec. Il we define thgjcles with amphiphilic charactefii) particles corresponding
ternary hard body mixture of amphiphiles, _SDh_GVGS, andp water, and(iii) particles corresponding to oil molecules.
needles, as well as a mulUcomppnent ge_nerallzatlon thereotqy our amphiphilegspeciesd), adding two further species
In Sec. Il we develop the DFT first for this general system.for which their shape possesses an amphiphilic character is
and then specialize to the actual ternary mixture as well as t8traightforward. We use hard sphefepeciesS) with radius
a pure system of amphiphiles. We also discuss the problem s a caricature of water. The role of oil is played by hard,
arising from the nonconvexity of the particles. Our computerinfinitely thin needles(speciesN) of length L. Hence we
simulation technique is presented in Sec. IV. In Sec. V Weyrive at a model that we refer to as tieenary mixture see
investigate demixing phase behavior for homogeneous quicrkig_ 1(c) for a sketch. The number densities are denoted by
states. Discussion and an outlook are given in the concludingi i=A,N,S, the sphere diameter by=2R, and the size
Sec. VI. ratio by q=L/R. The packing fraction of spheres igg
=47R%pg/3, and that of amphiphilic heads ispa
=47R3p,/3. We show a typical particle configuration in
Fig. 2(b) as an illustration.

Let us introduce amphiphilic hard core particles, which  Additionally, we generalize to a multicomponent mixture
consist of a hard sphere of radiisand an infinitely thin ~ where the species are labeledifjpdopting a discrete picture
needle of length.. The needldtail) is attached radially to of mixtureg; the spherical head groups of specigmssess
the spherdhead; see Fig. 1a) for a sketch of the resulting radii R; and the needle tails have lengths This multicom-
geometrical shape. The direction of the needle is denoted hyonent mixturewill be used below to formulate the DFT.
Q. A single-component system of amphiphilege Fig. 1b) Clearly, it includes the case of monodisperse amphiphiles, if
for an illustratior] is ruled by the number density,. We  only a single specieA is present. Also the ternary mixture is
refer to this system in the following gmire amphiphilessee  obtained as a special case. kFerA,N,S, we simply set_

Fig. 2(a@ for a snapshot from a computer simulatigtle- =Ly, Ls=0, Ra=Rg, andRy=0.

Il. THE MODEL
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. THEORY where the star denotes convolutiong(r’)*h(r")
= [d®xg(x)h(r—x). The Helmholtz free energy iE=F"

_ _ _ - +F®¢ whereF®arises from interactions and the ideal gas
The DFT we propose is a weighted density approximacontribution is

tion. By convolutions of the position- and orientation-

A. Density functional

dependent density profiles(r,Q), weighted densities are 3

obtained. These weighted densities are converted by a simple Fp, d°x i(r,€2)

function into an excess free energy density. This is a local

guantity, depending on space point and orientation. The glo- x{ln[pi(r,Q)A?]— 1}, 9

bal excess free energy is obtained by integration over space
and rotator degree of freedom. The weight functions withwhere A; is the thermal wavelength of specie§Note that
which thep;(r,Q) are convoluted are obtained by geometricthe normalization is such thai(r,Q)=p(r) for isotropic
considerations and describe the geometrical shapes of tlwientation distributiong.The excess free energy is
particles. We first formulate the theory for the general mul-

ticomponent mixture, and then specialize to pure am- “ .
phiphiles as well as to the ternary mixture. F c[{p‘(r’ﬂ)}]_kBTj dr

AN,

(10
1. Multicomponent amphiphiles

wherekg is Boltzmann’s constant ariithe temperature, and
he (local) free energy densitgp is a simple functior(not a
unctiona) of the weighted densities, . Considering multi-

We start by giving the weight functions. Those that are
characteristic functions of the needle part of the particles ar

defined as cavity distributiong 25, we obtain® = ® s+ ® with
v_vg>(r,ﬂ)=%f:1ﬂd|5(r+lﬂ) (1) ®s=—noIN(1=nz)+(NgNp—Ny1-Ny2)/(1-Ng)
+[(n2)/3=15(n, )+ 3(Ny o+ Az Ny
v_vg)(r,ﬂ)z%[5(r+(Ri+Li)Q)—5(r+RiQ)]. 2 —3 detfiy)/2]/[87(1—ng)?], 11

_ _ o _ which is equal to the pure HS ca22,25. The contribution
Here and in the following, the overbar indicates nedtié)  due to the presence of the needles is

guantities. The weight functions that describe the sphere part

of the particles are equal to those for pure hard spheres _ﬁz
(HS’s) [22,25 and are defined as ®=-noIn(1=ng)+ - n (12
wy'(n)=6(Ri—r), wy'(n=8R—r), (3 This completes the prescription for the functional for multi-
. component amphiphiles.
Wi =wy(r)-r/r, Wi (ry=wy(r)[rr/r2—1/3], o
(4) 2. Pure amphiphiles

.) For a one-component system of amphiphile particles with
(r,Q)=2|wi(r)-Q|, (5 radiusR and needle length, the general functional can eas-
. ily be reduced. The summations over spedias Eqgs. (6)—
wherer=|r|, 6(r) is the step function, andl is the identity ~ (8) vanish, and a density functional of a single density field
matrix. Further, linearly dependent, weights ard’(r)  pa(r,€) is obtained.
=w(n/(4=R), wi(r)=wl)(r)/(4=R;), and w{)(r)

=w{"(r)/R;. The weight functions possess different tenso- 3. Ternary mixture
rial rank: w$’, w{, w{), andw{’ are scalarsy!"} andw'!) We consider a mixture of spheré&peciesS) with radii R,
are vectorsw(') is a (tracelessmatrix. The weighted densi- needles(speciesN) with lengthL, and amphiphilegspecies
ties are A) with the samedimensions, namely, radiiand lengthL.
The weight functions for spherek §=0) simplify, such that
d2Q’ . wP=w{¥=0, andw? is identical to the corresponding
nu(r):Z fﬁpi(r',ﬂ')*wg)(r")’ (8 weight function in the case of the needle-sphere functional

[32]. All w'® are identical to those of the pure hard sphere
case[22,25. For needles, all densities with>1 vanish,
Q)= pi(r, Q«w(r",Q), »=0,1, (7 wMNM=0. This is expected from dimensional arguments, be-
: cause an infinitely thin needle does not possess surface area
. (U(’\T)Z), nor volume ¢ =3). The remaining weight function
Ta(r, Q) = 2 f n pi(r, Q)W ("), (| Wils |dent|ca_l to that in the ca_se (_)f the n_eedle_-sphere func-
i ™ tional. The weight function fop =0 is also identical to that
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TABLE I. Overview of simulated systems. Particle numbgis

(a) (b) ©) v of :
for needles(N), amphiphiles(A), and spheregS) are given. 7y
denotes the total packing fraction spphericalentities.

(d)

(e) Species # #A #S Mot
% %\ Pure A 1000 A
S 1000 7s
FIG. 3. Configurations of overlapping amphiphiles. Cases wherejnary AN 1000 1000 A
the Mayer function is correct within the DFT=—1: (a) sphere- SN 1000 1000 s
sphere;(b) sphere-needlelc) sphere overlapping simultaneously AS 500 500 At s
with the needle and the sphere of a second particle. Problem Cases, ASN 1000 500 500 N
where f=—2 within the DFT: (d) simultaneous sphere-needle y AT s

overlap;(e) sphere overlapping with the needle and the sphere of 1000 500 1000
the second particle, so that the inner needle end point is outside the 1000 1000 500
first sphere.

in this case, and is obtained as the su§)’+w{". Note ~whereV is the system volume. We find the exact result for
that in the present description the position coordinate of th¢pure amphiphiles as

needle is one of its end points, whereas using the needle 3

midpoint might be more intuitivédsee Ref[32]). Both de- exact_ 4 91 5_10 4 3p2

scriptions are of course equivalent, and are related by a 2AA 15(L+R)2{ 2L°=10L°R+5L R+ 5(25+6v3)

simple coordinate transformation.
X L?R3+5(41+ 12v3)LR*+ (91+ 30v3)R®

B. Mayer bonds 1 2[R+ (L+R)2]%, (14)
The Mayerf;; bond between speciesnd; is f;;=—1, if

the two particles overlap, and zero otherwise. Withinwhich holds for the case>(v3—1)R. For L>R, the ex-

geometry-based DFT, thk; are represented as tifeega- ~ pansion is

tive) Euler characteristics of the overlap region of the two

bodiesi andj. For convex bodies, the overle}p _region i_s also Bgﬁt: 16773[2LR2+

convex, and hence carries Euler characteristic of unity. For

nonconvex bodies the situation is more complicated. The ,

overlap region may consist of several disconnected portiondvhere 20/3-2v3=10.1308. The result from DFT is

and its Euler characteristic equals the number of these 32

portions. BoAA= 16773< 2LR%+ — RS) , (16)
For our model, the two-particle Mayer bonds are correct 3

within the DFT, if no amphiphile is involved, i.efggand

fsn. Furthermore,fay is also correct. Problems arise be-

tween two amphiphilesfas, as well as between an am-

phiphile and a spherd,s. In Figs. 3a—0 we display the

20 2V3
g'f‘

3 R4
R +O(T”, (15)

which is free of terms of ordeR*/L and higher. Note that
the term of orderLR? is the dominant contribution from
sphere-needle overlap. This is exact in the DFT. The term of
. . order R® stems from the hard core between spheres, and is
fr?:izgvehserehtgreel\:lr?gel\;lgogrdt:ir?grrseg;’cirr]rde;lgﬁ?niglow overestimated by about 5% in the DFT. All higher-order cor-
w y IS ' 1Y rections are not reproduced in the DFT result. We conclude

V;;' hl;[ OT'S%Th b?ok?lg)r/r;slggrlwlz S;(;?OC;E?S t:r?}t ;rr]ﬁmftggigiilthat forL>R the DFT result is an excellent approximation to
9 P 9 y ’ exact - Eyen for L/R=10, the relative deviation is only

for a given position and orientation of the first particle the _3pf S -
second particle’s positioand orientation are restricted. Boaa/Baan=1.017. FDc;rTsthr;Stineedlds,— R, the deviation
grows somewhat t@; /B, xa=1.036.

C. Second virial coefficients

o . . IV. COMPUTER SIMULATION
In order to measure quantitatively the degree of violation

of the overlap condition, we evaluate the second virial coef- We use the canonical ensemble to carry out Monte Carlo
ficient for amphiphiles from the DFT and compare it to the simulations. Our method of obtaining the pressure is based
exact result, which we can obtain analytically. Note that thison the probability density of a successful small change in
is precisely a test of the accuracy of the present approach #ystem volume. In order to perform such a compression, we
the low-density limit. For simplicity, we perform the calcu- enlarge the dimensions of each particle by a facteral
lation for pure amphiphiles. The second virial coefficient iswherea=0.001 25-0.005, and test for overlap. The statis-
defined as tics of this test yields the pressupe
We have carried out simulations at 48 state points with

different densities and compositions of species. At each state

point 10 Monte Carlo cycles were done. Particle numbers
(13 range from 1000 to 2500 particles; see Table | for details. As

1
BZ,ij =— EJ dsrdzﬂdsl"dZQ'fij(r,Q;rlaQI)a
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a compromise between considerable needle length and maaedding spheres to pure amphiphiles. For the full ternary mix-
ageable simulation box size, we pick the size rafieL/R  ture, we can also, somewhat surprisingly, find an analytical
=10 for all runs. The simulation box is chosen to be largerexpression for the spinodal depending on all three densities.
than twice the particle length in order to avoid problems with  In the case of one-component hard spheres our theory
multiple overlap of periodic images. In terms of the total reduces to the Rosenfeld functiohaPl] in Tarazona'’s latest
packing fractiony,,= s+ 75, We simulate in the rangey  tensorial versior[25]. The excess free energy density per
=0.05-0.3 by varying the simulation box size. volume for pure hard spheres with packing fractigrand
radiusR derived from the DFT is identical to the result of the
Percus-Yevick compressibilityscaled-particle approxima-
V. FLUID PHASES tion, and is given aBF®Y 5s)/V=®d,s, where 8= 1/kgT

We proceed from simple to complex, and hence start witfRnd
a discussion of one-component fluid phases, in particular, of 5
the pure amphiphile system. We then turn to (tieee bi- D7) = 37[37(2—n)—2(1—7)"In(1-7)] 17)
nary systems that are obtained by selecting pairs out of the HL 77 8mR3(1—7)? '
three species. Formally, these are obtained from the ternary
sphere-amphiphile-needle system by setting the density dfhe pure system of needles constitutes an ideal gésaof-
one of the species to zero. Finally, we investigate the fullinteracting rotators. Hence the excess free energy vanishes
ternary mixture. exactly, and indeed we recover thisivial) result, ®=0.

In the following we restrict ourselves to homogeneous,This is merely a check of the above meth@ec 1l A) for
isotropic fluid states, which are characterized by spatiallygenerating DFTs from the zero-dimensional limit, and dem-
and rotationally invariant density distributiong;(r,€2) onstrates that this does not lead to artificial interactions.
=const. Any mesophases, like lamellar or micellar ones, as
well as liquid crystalline ordering, are explicitly excluded A. Pure amphiphiles
from our investigation. However, such density distributions . )
allow for phase separation into macroscopically demixed, 1h€ System of one-component amphiphiles provides a
phases. The strategy is to apply the DFT to the homogeneoﬂngt nontrivial test case. For thg homogeneous, isotropic bulk
densities and hence to derive the bulk free energy and th@hasepA(r,Q)zconstéx\c/ve obtain the excess Helmholtz free
equation of state. This task can be performed analytical\?N€rgy per volumg@F=4V==,, with

within the present theory. We then check the numerical ac- 9g,2
curacy of the equation of state obtained via differentiation of D p=Dpg(7a) + _3q77A—_ (18)
the free energy against computer simulation results. Finally, 167R*(1— 7)

we calculate the theoretical demixing phase diagrams includ-
ing binodal, spinodal, and critical point for the binary mix- In this additive expressionp s is the residual contribution
tures. In the final case of the ternary mixture, we restricffor =0, stemming only from the presence of the spherical
ourselves to the spinodal. heads. The contribution due to the presence of the needle

In detail, our calculations are as follows. For homoge-tails scaledinearly with size ratiog. The dependence om,
neous, isotropic states, the weighted densities become pris a rational expression typical of geometry-based DFT, with
portional to the bulk density,=3;&"p;. The proportion-  a(formal divergencen,— 1. Clearly, for largey this second
ality constants are given as fundamental measuffs (erm dominates ovebys. _
=fd3rwg)(r). For the ternary case, the fundamental mea- In order tp_ check the quality of this result, we compare the
sures are for spherﬁ=4wR3, §§=477R2, §f= R, §§= 1, compressibility factorZ=/3p(p,_Wh§re the pressure =
for amphiphiles §§=47TR3, 5’2*:477R2, g’i\:R+L/4, 5’3 —'aF/a\'/ and the total densn_y) |n_th|s casep=p,, against

— >4 simulation results foq=10 in Fig. 4a). Also shown are

=1, and for needleg, =L/4, {,=1. Note that, although an resyits for the pure hard sphere case. The compressibility
amphiphile consist of a sphere and a needfe= £&3+£)  factor is considerably larger for amphiphiles than for
does not hold for alb. This is becausg(’) =1 for all species, spheres. This is to be expected, as we compare states with
because each particle consists of a single body and henegjual packing fractions of spheres, but wigmphiphile$
possesses Euler characteristic unity. Hence the weighted deand without(spherejstails. The interactions of the tails with
sities in isotropic bulk fluids becomen;=47R3(ps  the sphere lead to the observed increase by more than a fac-
+pa)/3(= 7o), Np=47R%(ps+ppa)(=37t/R), N1=R(ps  tor of 2. The shapes of both curves, however, are similar.
+pp) [ =370t/ (47R)], No=pst pal =37t/(47R%)], and  The theoretical results are slightly smaller than the MC data,
ni=(pn+pa)lld, ng=py. but the general agreement is remarkable. Finally, we note

We obtain the spinodal for demixing from the bulk free thatZ is a quite sensitive quantity. Recall that our approxi-
energy by solution of de%(F/V)/apiapj:O, which indicates mation is on the level oF®*¢, andZ is obtained by differen-
the boundary of stability. This was carried out previously fortiation and division by density, operations which in general
the case of the binary needle-sphere mixtysg=0) [32],  will enhance any deviations. We also plot the low-density
and auniversal (g-independent spinodal was found. Here behavior governed by the second virial coefficient both from
we follow the same recipe for the remaining two binary mix- DFT and from the exact calculation. They essentially coin-
tures, namely(i) adding needles to pure amphiphiles dmng  cide on the resolution of the plot.
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Za ©  Amphiphiles " " — (needle-poo)r.phase an_d a sphere-po@rgedlg-rich phase.
7p @ Sphees The mechanism for this phase separation is, crudely speak-
sl @ o ing, the gain in configurational entropy in both demixed
phases. In the needle-rich phase, interactions are consider-
5¢ [ ably reduced, because the needles do not interact among

themselves, and the presence of spheres is only a perturbing
“impurity” effect to essentially an ideal gas of needles. The
sphere-rich phase, however, is only weakly disturbed by the
presence of the needlg32]. Bolhuis and Frenkel developed

a first order perturbation theory that is similar to Lekkerkerk-

0 005 01 015 02 025 03 er’s free volume approach for the Asakura-Oosawa colloid—
Mot ideal-polymer mixture. The present DFT approach recovers
Z3 I Nesde/Amphiphile " y y their result[32]; the excess free energy per volume is

€©  Sphere/Amphiphile
7r @ Needle/Sphere

(b) BF&€ 3q
v~ Phs(79)tpn ﬁ—ln(l—ns) - (19

It is interesting to compare this result with that of the above
case of pure amphiphiles, E(8). To do so, we naively set
ps=pn, and compare witlb , for a single component. The
results are not identicdlvhich should not be expectgdut
differ by a logarithmic expression. Its origin can be traced
back to the fact that the needles in the binary mixture are
A 2 'prpAgpS:'gﬂg Termary mixtur " individual particleg vv_ith an Euler charqcteristic of unity. Il_’n
7t PAPAPS= the case of amphiphiles, the needle tails alone have vanish-
ing Euler characteristic, and the corresponding term in the
free energy functional vanishém bulk). Note also that this
term is independent af (as is the Euler characteristidn
summary, we stress thdt, cannot be obtained by the trivial
restriction of equal densities in the free energy of the binary
sphere-needle mixture. The naive calculation yields an addi-
tional term in the compressibility, which ig independent
, . . . . and given byna/(1—n,). This is a small contribution for
o 001 01 02 °-25,7t0t°-3 largeq, but destroys the hard sphere limit fpr- 0, which is
correct in the proper DFT result.

FIG. 4. Compressibility factoZ as a function of total packing As was already found in Reff31], a comparison with the
fraction 7. Simulation results(symbol$ are compared against simulation results demonstrates the excellent quality of the
theoretical predictions(lines). Straight lines indicate the low- equation of state obtained from the theory. We repeat this
density limit governed by the second virial coefficiefd Pure  comparison in Fig. #), using the compressibility factor
systemsib) binary mixtures;(c) ternary mixtures. from both simulation and theory. Indeed, both results are in
good agreement.

In the case of the needle-sphere binary mixture the ana-

Once a system possess two distinguishable components lytic expression for the spinodal was found to [132]
may undergo a demixing phase transition into two macro-

B. Binary mixtures

scopically distinct phases with different compositions of par- A1+ 279)?
ticles. In our case, binary mixtures are obtained by setting prq2R3=—nS. (20)
the density of one of the species of the ternary mixture to 37s

zero. For these systems, we shall investigate how the size
ratio q plays the role of a control parameter for demixing This is universalq independentin the “natural” variables
behavior, and especially enlighten the limgs-0,.. Then 5 andpyg?R®. Note thatpyg? is exactly the proper scaling
we focus on the interesting question of how amphiphiles mixn the Onsager limit. The critical point in the limit— o is
with either needles or spheres, compared to the mixing begp R3= #[1+ (44/3)q *+0(q~?)] and qns=(4/3)1
havior of needles and spheres. —(28/3)g~1+0(q"%]. We display the demixing phase
diagram in Fig. 5 forg=10,20,50, as well as the metastable
(with respect to freezing 31] caseq= 0. For small densities
According to computer simulation results by Bolhuis andthe system is in a mixed state; increasing density leads to
Frenkel[31], a mixture of spheres and infinitely thin needles demixing. The critical point moves toward smallgg asq
displays a demixing phase transition into a sphere-riclgrows.

1. Needles and spheres
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sphere-needle amphiphile-needle

0 0.1 0.2 0.3 0 0.05 0.1 0.15 0.2 0.25 0.3

up M

FIG. 5. Phase diagram for the sphere-needle mixturegfor FIG. 6. Phase diagram for amphiphile-needle mixture dor
=10,20,50 as a function of sphere packing fractipnand scaled =0,10,20. The dots mark the critical points. The cgse0 is equal
needle densitypg?R3. The binodals(thick lines, g-independent to the sphere-needle binary mixture.
spinodal(thin line), and critical pointgdots are shown.

3. Amphiphiles and spheres

2. Amphiphiles and needles The excess free energy is
Adding needles to a fluid phase of amphiphiles should be gEere 9
easier than adding needles to a hard sphere fluid of the same a7A 70t 23)

=D pg( 7o) + :
density: The amphiphile tails are expected to create free vol- v RSN T 16mR3 (11— o)
ume for the needles, an effect that is absent in the case of

hard spheres as a host fluid. The excess free energy for tH4'€T€ 7= 7t 7. Here both densities are intimately
amphiphile-needle mixture is coupled, throughb 5 as a function of the total packing frac-

tion. The additional contribution is again lineardnand has

a similar but not identical dependency on the densities as in
BFExe 3974 the other cases. See Figh#tfor comparison with the simu-
v~ Palma) ton g S In( = ma) | (21 Jation results:

The spinodal for the amphiphile-sphere binary mixture is

_ . _ obtained as
This result is the same as in the case of the sphere-needle

mixture, but with® s replaced byd . Hence the contribu- pa8(q’ —1)R%3
tion due to the presence of the free needles is the same in

both cases. In other words, the free needles interact only with =1+q'—7<q'—1)(q'+2)
the heads of the amphiphiles. Clearly, this is true for the : : : .
interaction potentials. On the level of the free energy, it rep- +13q'(1+09'/3)[1+ ns(a'—1)(a' 7s=2)], (24)

resents an approximation and will not hold in general for the h '—30/8
exact free energy. See Fig(b} for comparison with the whereq = sg/c. .
simulation results. We next discuss the limiting cases. Clearly, for needles

i : L ; with vanishing lengthg=0, the amphiphiles reduce to
The demixing spinodal of the amphiphile-needie blnaryspheres, and the system reduces to pure hard spheres. A par-

mixture is . i ) .
ticularly interesting case is the crossover between short and
long needle tails. For amphiphiles with largethe system
) 4(1+274)2 demixes. For smalj the phase transition is clearly absent, as
pnTL :3—77A+2(1(1_’7A)- (22 both species become identical. The interesting question is

how the crossover between the two cases happens. We find

that demixing is absent fay<g* =8/3. If g* is approached
We next investigate the limit of short needlgs;» 0. Atfixed  from above, the spinodal shifts to large amphiphile densities,
scaled density,7L?R, the model reduces to the sphere- and diverges formally. However, this scenario is likely to be
needle mixture. This is physically reasonable, because thgreempted by freezing. For long needtes «, the effect of
amphiphile shape reduces essentially to a sphere to whiahe attached head groups vanishes, and the amphiphiles be-
only a very short needle is attached. The latter should nohave like effective needles. Hence the model reduces to the
matter. The free needles still play a role, because their demeedle-sphere mixture. As regards the spinodal, the limit is
sity py grows large apy7L?R is kept constant. See Fig. 6 attained at quite large size ratigs
for the demixing phase diagram as a function g{ and In Fig. 7(a) we display the demixing phase diagram as a
q?pn for g=0,10,20. Asq increases, the spinodals shift to function of both packing fractionss and 7,. In order to
higher densities, and the critical point moves to smadlgr ~ have packing fractions inside the assumed fluid region, we
In the case of long rodgy—ce, the location of the critical use the rough criterionys+ 7,<<0.5, which is about the
point is qpyR3®=(4/m)[1+2q 1+0(q %] and gz, value at freezing of pure hard spheres. Rather long needle
=(2/3)[1—2q 1+ 0O(q ?)]. tails with q>20 are needed to access this region. The limit
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FIG. 7. Phase diagram for the amphiphile-sphere mixture for 0.2
g=20,50¢: (a) as a function ofpg and 7, ; (b) as a function ofyg
andp,g?. The casay= is equal to theuniversal result for the 0.15
sphere-needle binary mixture. ?2
e
: . . 0.1
gq—o can be traced by using the scaled denpity®R® in- :7:
stead of the packing fraction; see Figb) In this represen-
tation, a well-defined limiting curve is obtained, which again 005 amphiphile-sphere, i=S$
coincides with the universal needle-sphere spinodal.
Let us discuss the disappearance of the demixing transi- 05 0.4 088 o1
tion in both binary systems that contain amphiphiles. This A

CrUCﬁII);I'Idepengls or! the S.Ize ratq) In tge case of the FIG. 8. Comparison of phase diagrams for different binary mix-
amphiphile-needle mixture, increasingeads to a suppres- tures atq=50. Thick lines are binodals, thin lines spinodals, and

sion of demixing, i.e., to a shift toward higher densities. INye gots mark the critical pointéa) Sphere-needle and amphiphile-
contrast, for amphiphile-sphere mixturedgecreasing qis  needie;(b) sphere-needie and amphiphile-sphei®; amphiphile-
necessary to suppress demixing. In conclustpiunes the  npeedie and amphiphile-sphere.

character of the amphiphiles, whether spheroptshaall q)

or needle lovinglarge ). higher densities than the sphere-needle system, i.e., it still

remains in a mixed state after the sphere-needle system has
already undergone the demixing transition. Note that this
The sphere-needle mixture will constitute our referencehappens even though the amount of particle “material” is
system, with which we compare both other binary sub-larger in the amphiphile-needle case due to the additional
systems possessing amphiphiles. The amphiphile-needle sysresence of the amphiphile tails. However, this is precisely
tem can be regarded as a derivative of the needle-spherehat is expected for amphiphilic behavior: The amphiphiles
system that is obtained by replacing each sphere particle imix better with the needle phase than do pure spheres.
the needle-sphere system with an amphiphile particle. It is Next we seek to investigate how the behavior of the
interesting to investigate the differences of these two similammphiphile-sphere system changes, if we replace the am-
systems, namely, to monitor the effect of the attachedhiphiles with needles. In Fig.(B) we compare both phase
needles. In Fig. & we show the demixing phase behavior diagrams forg=>50 as a function of sphere packing fraction
as a function of packing fraction and scaled needle densityys and the respective densitipg and py, which we scale
In order to compare with the needle-sphere mixture, we uswith the volume of a sphere®R®/3. The amphiphile-needle
75 and ng as variables for the respective systems. Hence weemixing curve is shifted toward larger densities compared
compare states with the same packing fraction of sphere$p the sphere-needle case. This means that amphiphiles mix
whether these are part of amphiphilés the amphiphile- better with spheres than pure needles do. Again, this behav-
needle cageor free(in the sphere-needle cas&e observe ior is precisely the expected one for particles with am-
that the amphiphile-needle system demixes for considerablghiphilic character.

4. Comparison of binary mixtures
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The final comparison aims at the question of which spe- 3070t
cies, needles or spheres, mixes better with amphiphiles. In pn=pn(1— ﬂtot)exr{ - m) (28

Fig. 8(c) the amphiphile-needle phase diagram is compared "ot

with the amphiphile-sphere phase diagram. As variables, w,
use the packing fraction of spheres and the number densiti
of either spheres or needlésgain scaled by the volume of a
spherg. The amphiphile-sphere spinodal is at slightly higher
densities. The difference decreases upon increagifg the
tendencies of spheres and needles to mix with amphiphiles A complete investigation of the demixing phase diagram

are roughly equaland become identical fay—c.) of the ternary mixture is beyond the scope of the present

In summary, we observe a strong shit of the COex'StenC%\/ork, and we restrict ourselves to a study of the spinodal.

lines toward higher densities in those systems where Pafrpe spinodal for the full three-component system can be

ticles are replaced by amphiphiles. Note that all our compari-.. .
" ) < obtained as

sons are done at equal densities. This also means that in the

case with amphipiles space is more density filled with par- 1

ticles, because amphiphiles are larger than either spheres or  p\7R%g?=——[§(2 70+ 1)*+ 2 9a(1~ 7100)

needles. In spite of this, the system favors the mixed state. Ttot

All these findings strongly support the initial assumption,

that our model particles indeed possess amphiphilic charac-

ter.

fuhich has the same structure as in the sphere-needle binary
Case, except that thtotal number of spheres contributes
through#,,, Not only the free ones througy. It is the total
packing fraction of spheres, whether pure or the heads of
amphiphiles, that interacts with the needles.

— 307 7a( Mot 7a) 1s (29

where 7,,:=7a+ 75. This is an explicit expression for the
needle densitypy as a function of the densities of spheres
C. Ternary mixture and amphiphiles. It can easily be converted into reservoir
For the three-component system of spheres, needles, aﬁ%presentatpn. using E¢28). _leen the complexity of Fhe
o model containing three species, two of them possessing an-
amphiphiles, the Helmholtz excess free energy per volume . Lo . )
. . ; isotropic shapes, we find it quite remarkable that a simple
for homegeneous, isotropic states is

expression can be obtained for &pproximate spinodal.

BFexe 30 7101 Note that for fixed size ratiq the ternary mixture has three
T=¢>HS( Tot) T PN m—ln(l— Niot) thermodynamic variables, namely, the densities of the three
"ot species. The spinodal is a two-dimensional manifold, which

90 7 Mot is embedded in the three-dimensional phase space.
167R(L— 760 (29
VI. CONCLUSIONS AND OUTLOOK

=—[pn+F 370t/ (AR TIN(1— 70p) We have proposed a hard body model for a ternary am-
phiphilic mixture. Water molecules are represented by hard
3 7ot spheres, oil molecules by infinitely thin hard needles, and

b 1670(2— 7o) +30(1— es, _ _
167R>(1— 77t0t)2[ Mo 2 7o) +30(1= 7100 amphiphiles are a hybrid of both. Clearly, this can at best

% _ AR (1— 26) mimic the complex molecular inter_actions in a real system.
(7ot— 1) +ATAR N (1= 7ior) ] Nevertheless, our model featuresntinuousdegrees of free-
dom, in contrast to widely used lattice models. Our aim was
From the excess pressurepe,=—dF*99V=—-®  to demonstrate that this model carries various characteristics
+2ip;id®P/dp;, we obtain theexcesg compressibility factor  of real amphiphilic mixtures. Using a specifically designed
as density functional theory, we have investigated the bulk fluid
demixing phase diagram, and have discussed its rich behav-

BPexc Mot ior, demonstra;ing that_ phase boum_jaries are qualitatively in
p = a1-y )3[(1_ Do) [ 39+ 4(1— 7401 | accordance with physical _expectatlon._ We expect that our
tot theory accounts also for inhomogeneities on small length
47— Ans(1— Diop) scales similar to the particle dimensions. As its hard sphere

+9 37t 47ROy ] 27 counterpart(Rosenfeld’s functionalyields excellent results

when compared to simulations, we expect a similar quality
of results for our system. Such applications to inhomoge-
wherep=pa+ pn+ ps is the total density. We compare this neous situations have been left out of the current work. The
expression with results from computer simulations in Fig.next step is to show whether the model exhibits lamellar and
4(c) for two different compositions of species, and find goodmjcellar phases. Their existence is crucial to the ability of the
agreement over the entire density range considered. hard body amphiphile mixture to describe real systems.

The densitypy, in a reservoir of needles that is in equilib-  As possible further directions of research, we mention the
rium with the system is related to the system density viaquestion of how freezing of hard spheres is affected by the
pPN= PN €XP(—Buy), Where the(reduced excess chemical presence of amphiphiles, as well as the nature of the solid
potential for the needles Buy=Jd®/dpy . Here the resultis phases built by the amphiphiles, which poses a challenging
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packing problem. Furthermore, the study of the interface®FT. Geometry-based DFT is a systematic way to treat such

between demixed phases will be especially intriguing due tdvard core systems, whereas the scaled-particle or free vol-

the number and nature of the different phases in the bulkime approaches require considerable physical insight to be

phase diagram. This touches on the very relevant question éérmulated. This is an advantage in terms of comprehensibil-

how the amphiphiles are arranged at the oil-water interfaceity; however, it becomes increasingly difficult to apply these
Concerning the general status of the theory, we are facedpproaches to more complex systems like the one considered

with an important example where geometry-based DFTin this work.

yields previously unknown bulk thermodynamics. This is in

contrast to the cases of hard spheres, the Asgkury—Oosawa ACKNOWLEDGMENT

model, and Bolhuis-Frenkel’s needle-sphere mixture, where

expressions from scaled-particle or free volume theory were One of us(M.S. would like to thank B. Mulder for an

previously known, and where these results were rederived biynspiring discussion.
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