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Density-functional theory for fluids in porous media
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As models for substances adsorbed within amorphous solid matrices, we consider mixtures of spheres with
either hard or ideal interactions where sevénatrix) components are quenched and the remaifadgorbate
components are equilibrated. We propose a density-functional theory, based on the exact zero-dimensional
limit, which treats both matrix and adsorbate components on the level of the respective one-body density
profiles. As a test, we calculate pair correlation functions for hard spheres adsorbed in either a hard sphere or
an ideal sphere matrix, and find good agreement with our computer simulation results.
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[. INTRODUCTION cumbersome, if not inapplicable, in the case of more sophis-
ticated DFTs and continuum models.

The behavior of atomic, molecular, and complex fluids, In this work, we argue that a more general DFT is fea-
e.g., colloidal suspensions, adsorbed in porous media, is @ible, where the matrix is described on the level of (itwee-
considerable practical as well as fundamental interest. Disol0ody) density distribution of its constituent particles, and
dered substrates that are permeable to a substance are @fere the functionals the average free energaveraged
countered in environmental, biological, and industrial fields.over matrix realizations depending on matrix and adsorbate
From a fundamental point of view, one is interested howdensity profiles. We expect this to be very powerful, as ma-
condensed matter phenomeftige phase transitionsare al-  trix details (of single representationsre disregarded, and
tered by confinemenil] and the presence of disordgd]. only relevant statistical properties enter. Here, we present
The details of the porous medium are often disregarded angxplicit approximations for(a restricted set of common
to model such amorphous substances one relies on equiligdsorbate-matrix models. Our approach is an extension of a
rium fluid configurations of model systems. The advantagegheory for fully annealed mixturg$], which is considered to
are twofold:(i) The statistics of such model matrices are wellbe “for multicomponent HS fluids, the most accurate and
studied and understood, e.g., in the case of the hard sphesgccessful approximate functiondl8]. The theory captures
(HS) systems(ii) A direct link to the statistical mechanics of local packing effects, and correlation functions are predicted
equilibrated fluids is provided. The primary tool in the de-in @ nonperturbative fashion, without need of external input.
scription of adsorbates to such a matrix are quenchede demonstrate the good accuracy of the approach by com-
annealed QA) averageg3,4]. There the adsorbate free en- paring calculated pair distribution functions to computer
ergy (rather than the partition sunis averaged ovefmany  Simulation data.
representations of disorder. Hence the matrix is quenched,
while the adsorbate is annealéallowed to equilibratgin Il. MODELS
the presence of the disordered background. Typically, one
assumes that there is no back feeding toward the matrix: The To model adsorbates in porous media, we restrict our-
porous medium is unaffected by the presence of the adsoselves to mixtures with spherical symmetric pair interactions,
bate. Besides computer simulations, theoretical work igvhere each specigésconsists of spheres with rad®; . Two
mainly based on the replica trick, which relates the QA syskinds of pair interaction¥;;(r) between speciesandj as a
tem to a special limit of a corresponding fully equilibrated function of the separation distancere consideredi) ideal
extended(replicated system, which is tackled with integral interactions such tha¥;;(r)=0 for all distances; ii) hard
equation theory and replica Ornstein-Zernike equati@ng. core interactions such that;;(r)=Vyc(r)=, if r<r

Density-functional theory(DFT) [5] is a powerful ap- +R;, and zero otherwise. This covers additive hard sphere
proach to equilibrium(fully annealedl fluids [6] and solids  mixtures, mixtures of hard and ideal spheres like realized in
[7]. It models the influence of an external potential energythe Asakura-OosawgAO) colloid-ideal polymer modd]10],

V&t acting on the system. Commonly, DFT is applied to wellas well as the Widom-RowlisoWR) model [11], where
defined, idealized poresee e.g., Ref[8]). In principle, a  only particles of unlike species experience hard core repul-
disordered matrix may be represented by an appropviéite  sion. We further discriminate between quenchied@a) and
acting on the adsorbate. To treat amorphous pore structuresinealedi(=1b) species, whereis a composite index, such
within this approach requires solutidgminimization of the that the first digit 0,1 correspond to quenched and annealed
grand potential for a given V® and subsequent explicit species, respectively, arajb are integers that label the dif-
averaging “by hand” over many realizations & This ferent(subspecies.

was recently carried out with a mean-field DFT for a lattice Below we will consider two simple binary mixtures of
fluid model [9], and formidable insight into adsorption, one quenchedindex O and one anneale@ndex 1) compo-
metastability, and hysteresis was gained. However, the priment. The first case is constituted by hard spheres in a hard
ciple approach seems to be limited to simple models and isphere matrix, where all interactions are hard covg,
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=V, for i,j=0,1. In the second case we treat the hard BAo(;o):(l—;o)m(l—;o)+;o )
sphere adsorbate in an ideal sphere matrix, whégg ’

=0,Vo1=Vuc,V11=Vyc. (This is formally equivalent to an
AO model where the polymer species is quenched and cof—he result for(fully annealed hard spherefl2,13
To obtain the @ excess free energy of the annealed com-

loids are annealedIn both of these binary cases the inter- onentA, we proceed in a similar fashion than above, but

filgg(sms between matrix and adsorbate are hard core mtera\%ith the important distinction of using QA averages instead

of fully annealed ones. We consider each matrix configura-
tion as being fixedin effect exerting an external potential on

lll. THEORY the adsorbade and sum over all allowed adsorbate states

A. Zero-dimensional limit with the correct statistical weight in the grand ensemble of
the adsorbate. As indthe matrix has only two configura-

Let us start by conslderlng a situation Of_ extreme Conflne'tions(either the cavity is empty or a single matrix particle is
ment, where all particles are forced to sit on top of eacrbresen), this is an easy task and yields

other, a situation which allows for an exact solution of the
many-body problem. Although the detailed shape of the con-
fining external potentiaV® will not affect the excess free
energy, for clarity we explicitly choos&®{(r)=0 if r<e,
and « otherwise. This corresponds to a hard cavity of (
dependentradiusR; +e. Hence each particle’s center is al- The case of no matrix particles is the sum of the contribu-
lowed to move inside a sphere of volumerd®/3. In the  fions from the state empty of adsorbate particles and the state
limit e—0, a zero-dimensional @ situation is encoun- with a single adsorbate particlgThis is again similar to the
tered, and it is assured that all particles present in the cavitytructure of=,, Eq. (1).] In the case of one single matrix
overlap. particle the matrix-adsorbate hard core repulsion prohibits all
In the following, we first give a detailed derivation of the states except precisely that one where no adsorbate particles
0d free energy for two simple QA models. Then, in Sec.gre present. Clearly, all terms proportional to higher than

Il A3, we proceed to the case of general mixtures, where afinear powers inz;, vanish due to the hard core repulsion
arbitrary number of components is treated. Readers primarilgetween adsorbate particles.

1+2z; no matrix particle

= 3
171 else. ©

il

interested in the hard sphere examp(laad subsequent re- To obtain the QA free energy we need to average the
sults may wish to skip Sec. Ill A 3. logarithm of 2, over all matrix configurations. As In=10,
_ _ only the first line in Eq.(3) contributes, and its statistical
1. Hard spheres in a hard sphere matrix weight in the grand ensemble of matrix configurations is

In order to illustrate the general procedure, we start withl/Z, (the factor unity stems from the fact that matrix par-
an example where both calculations and notation are simpléicles are absehtHence the @ grand potential for the ad-
We consider a binary system of hard spheres, where specissrbate(}; is simply given by
0 is quenchedhence represents the majriand species 1 is
annealedhence represents the adsorbaide first step is to In(1+2,)
calculate the grand partition sug, for the matrix particles -B A (4)
in the Od situation. This problem is equivalent to calculating 0
the grand partition sum for pure hard spheresa[02,13. ) .

To obtain=,, we need to consider all states that are allowed'© OPtain the correspondingdOexcess free energh;, es-

(are compatible with the hard core exclugiofihose argi) ~ Sentially the same steps as those above in the Agsare
the empty state, andi) the state with exactly one hard required: The average particle number of adsorbates is given
sphere. Hence one obtains as 7,=—9BQ/9z;, and the Helmholtz free energy is ob-
tained asBA'= B0, + 71In(zy). Its excess part is obtained
Eo=1+2, (1) by subtracting theadsorbate ideal gas contributiongA;

_ tot__ _ - :
where the(scaled fugacity is zj=exp(Bu)(@mel3)A; 3, AAL = milIn(m) 1] As final result, we find

and B=1/kgT, wherekg is the Boltzmann constant and

being the absolute temperature, ang is the (irrelevany BAL(m0,71)= (1= 10— n)IN(1=mo—71)+ 7.~ (1
thermal wavelength of species=0,1. The first(second — —
term on the right hand side of E¢l) corresponds to case i —10)IN(1= 7). )

(i) above. The grand potential is then given & o . .

= —kgTInE,, and the mean particle numbgf, can be ob- As an aside it is interesting to note that in the prese_nt case

tained using the thermodynamic relatiop=z,dIn=o/dz, the sumAp+ A, equals the @ excess free energy of binary

The Helmholtz free energy is obtained by Loege;é)lre t'ransgannealed hard spheres. However, this constitutes a special
oty — = _ case. In general, we do not find a simple relation between the

form as BAg(70) = BQo+ 70ln(2). Its excess(over ideal oA and the corresponding fully annealed free enerdiBise

gas part is BAy= BAY'— no[In(50)—1]. Carrying out the relation to thereplicatedfully annealed system is discussed

calculations yields below in Sec. Il A 4)
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2. Hard spheres in an ideal sphere matrix where (for i=0a) the reduced fugacity is z
- 3 ; ; :
If the matrix particles are noninteracting, their grand par-= exp(Bu)4mel(3A7), i is the chemical potential, and;
tition sum is that of an ideal gas is the thermal wavelength of specigsiotation is suct(for
t=0) that=y =2 -0Zn,=0- - - » and theproduct runs
Eo=exp(zo), (6)  over all quenched species The grand potential i€),=

—kgTInZ,. In the context of fully equilibrated systems, it
where we use the same notation as in the preceding subsegsas demonstrated that imposing the exact crossover on an
tion. Carrying out the same steps as above yields(éxe  approximate functional may be exploited to derive system-

pected result that the @ excess free energy vanishes, atically DFTs for systems including hard sphefék the AO
model[14], and the WR mixtur¢16]. Here we add adsorbate
Ao(%):O- 7) particles. For a given matrix realizatigiNg,}, the matrix

particles are inert, and act as an external potential on the
The grand partition sum for the matrix is equal to the aboveddsorbate. Its grand partition sum is
result, Eq.(3), in the case of the hard sphere matrix. In order (2p) M5
- i — 1b
to obtain the @ QA grand potential for the adsorbat@,, :l({NOa}):{E H }

we again have to average the logarithm of the adsorbate par- Nt | b Nap!
tition sum over all matrix configurations. This yields ¢ & U11iN1o) g~ UorlINoah (N15) (11)
_In(1+2y) (8  To obtain the QA adsorbate grand potenfid, we need to
b oexpizo) average over all matrix realizations as
from which the adsorbate free energy is obtained as ~ B0 :i z (ZOa)NOT
. _ _ _ _ _ ' EO {Noat | @ Noa!
BA1(170,1m1) =[eXp( = 170) — n1]In[exp(— 7o) = 711+ 71 & YooiNoahIn =, ({Noa)) (12)
=1 Oas/-

+ 70eXP — 70)- 9
70BXP~ 7o) © FromQgy and(),, standard relations yield the mean num-
Note that in the fully annealed case, the present model i§ers of particlesyo,, 715 through = — 2,980/ 9z (for
equal to the AO model where specieqX) is identified as t¢=0a,1b). The Helmh(t)lttz free energy is obtained via Leg-
polymer (colloid), where the (exac) 0d free energy is endre transform agsA”= B0~ ZcuicdBL/Ipme= B

BA(70,71) = (1— 51— 10)IN(L—5,)+ 7, [14,15, clearly jLECIn(th)Eg lts excess(over ideal gap part is A
different from the above QA result. =BA -3 i lIn(m)—1]. Explicit dependence on the

natural variables i#\,({ 70}), andA({ 7gat,{ 71p)).
3. Multicomponent mixtures o{770a}) 1({70a} A 710})

Here we give a formal derivation for general mixtures 4. Relation to the replica trick

with more than two components. L particles of type be Before proceeding with the construction of the DFT, let us
in the cavity, andN;} denote the set of occupation numbers. e|ycidate the relation of the present analysis to the replica
Irrespective of the precise particle coordinates, (tieeluced  trick. Using the replica trick one starts from a fully equili-
potential energy due to interactions between like particles oprated system, in which the adsorbate species are replisated
type i is U(N;)=(N;i/2)(N;—=1)BV;i(r=0). The contribu-  times. The replicas do not interact among each oftrezir
tion from interactions between unlike particlésf typesi  interactions are ideglbut interact with the matrix particles
andj) is U(N;,N;)=N;N;BV;;(r=0). The total potential in the same fashion. Such replicated models still fall into our
energy may be expressed adJ({Ni})=Z;U(N;) class of modelgprovided the QA system aimed at ddes
+2i<jU(N;,N;), where the summations run over all spe- hence the above formalistfor A,) may be applied, and the
cies. Due to the nature of interactiond({N;}) takes on  0d excess free energh,, of the replicated system obtained.
values Op. Let us further decompose the occupation nUM-The 0d QA free energy is obtainable in the limjBA;
b_ers into(disjunc) subsets of quenched and annealed spe=|im_ [ dexp(— BA,)/ds]lexp(BAy). One can show thah,
cies,{Nga} U{Np}={N;}. The potential energy may be ar- = Ao({70a)) + A ({70a}{715)) for small's (where the ab-

ranged  similarly, such  that U({Ni})=Uoo({Noa})  sence of replica symmetry breaking is assumed
+Upi({Noat,{N1p}) + U11({N4p}), where Uy, stems from P y y g m

matrix-matrix, interactiond)y, from matrix-adsorbate inter-
actions, andJ;; from adsorbate-adsorbate interactions.
The grand partition sum for the matrix in the Gituation 1. Geometry-based free energy functional

B. Density-functional theory

IS Returning to three dimensions, we apply well-tried geo-
metrical recipes to derive approximate DF®s7,14,18. The
e~ Yoo {(Noah) (10) formalism requires as input thedOexcess free energk of

the model under consideration, and hence can be applied to

N
(Zga) 02

{Noa} { a  Noa!

it

0
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either the pure matrix, wher&=A,, to the adsorbateA
=A,, or even to the replicated systelm=A,. Within the
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2. Minimization principle

In order to apply the theory to an actual problem, the

framework, the excess Helmholtz free energy is expressed ggincipal way is as follows. We first need to obtain the matrix

P =keT [ dxe(nloon, a3

where{p;(r)} is the set of all density profiles. The reduced
free energy densityp is a function of a set of weighted
densities{ng)(x)}, wherei labels the species andthe type

of weighted density. The weighted densities are obtained b

convolutions with the actual density profilesng)(x)
=fd3rpi(r)wg)(x—r). As all nonvanishing interactions are

density profiles from minimizatiofwith respect to all matrix
density fieldspg,(X)) of the grand potential functional

QO[{pOa(X)}]:FSXT{pOa(X)}]+kBTJ d3x§ Poa(X)

X[IN(poa(X) A3, — 1]
Yy

+ [ a5 (VB0 - mowposx), 19

hard core, it is sufficient to take the usual fundamental mea-

sure weight function$6,7], which recover(upon convolu-
tion) the Mayer bonds exp{BVuyc(r)) — 1. They are defined
as

wo(n=6R-r)w(N=58R-r), (19

wh () =wlryr/r,wihr =wi(r) 3|, (15

r 1
r.2

wherer =|r|, 0(r) is the Heaviside step functio@(r) is the
Dirac distribution, and 1 is the identity matrix. Further,
linearly dependent, weights are{’(r)=w{)(r)/(47R)),
Wi () =wl(r)/(47R),wS (r)=w(r)/R;. The weight
functionsw!) have dimension of length®. They differ in
their tensorial rankw{’ ,w{? ,w{’ w{) are scalarsy(, w)
are vectorsw!), is a matrix; the subscript letters identify the
rank.

We determine the functional dependence d@fon the
weighted densities by imposing the exact crossoverdp 0
wherep;(r) = 5;5(r), and follow recent treatments of funda-
mental measure theofy] by considering multi-cavity limits
to obtain®=®,+ ®,+ &3, with contributions

®;=n{ e ({nP), (16)
®,=(nnP —nl-nlY) o;; ({n§'}), (17)
(OO (O ORNL) 3 (HAU) (k)
Dy=-—| ny'ny"ny"3—ny ngy - Ny + 5 [Ny Nionys
8 2
AR e (D, 1

whereVEXis an external potential acting ora0 generating

matrix inhomogeneities. At the minimum

50,
5POa(r) a

(20

Once thepg, are known, the adsorbate densities are obtained
from minimization[only with respect to the adsorbate den-
sity distributionsp4,(Xx)] of the grand potential

ﬁl[{POa(X)};{plb(X)}]

:FiXT{pOa(X)};{plb(x)}]+kBTf dsxg P1p(X)

K10 A%)~11+ | ¢ (Va0

— K1p) P1b(X), (21)

where VS acts on adsorbateb] and thep,(x) are treated
asfixed input quantitiesAgain, at the minimum
60
L_—o0.
Opap(r)

(22

Note that the(bulk) Gibbs adsorption equation is intrinsi-
cally fulfilled: (p1o— P V=—0[ 01— 01({poa
=0})]/dp1,, WhereV is the system volume, ang;° is the

density in equilibrium without matrix.

IV. RESULTS

A. Structural correlations

where repeated-index summation convention is used, and As an application, we consider the structural correlations

mth order derivatives of the d excess free energy ar

o {nh)=_a"BA{m})n; .. .dn. For t=0,12,
functionalsF{*° for matrix, adsorbate, and replicated system

e

of hard spheres adsorbed in sphere matrices. We consider the
two types of matrices summarized in Sec. Il, where the ma-
trix is either a hard sphere fluid, or a fluid of noninteracting
(hence freely overlappingpheres.

are obtained, respectively. Two routes to the QA free energy \;5qden and Gland3] derived a set of replica Ornstein-

functional are possible: either directly through, giving

¢, or via application of the replica trick t&5. The

Zernike(RO2) equations for one quenchéddex Q and one
annealedindex 1) species, given as

results from the two routes can be shown to be equal, which

is a sign of internal consistency of the current approach.

hoo= Coot Coo® Pohoo, (23
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No1= Co1t Co1® pohoot €11® p1hos, (24) 8 ' ' ' MC ——
25|
h11=C11+ Co1® poho1t €11® p1h1, (29

where® denotes the spatial convolutiom; =g;; — 1 are the

total correlation functionsg;; are the partial pair correlation 2 45|
functions, anc;; are the direct correlation functions. Given o0 \,
and Stell[4] have shown that Eq$23)—(25) are approxima- 1l i
tions; the exact ROZ equations contain contributions from E
nonvanishing direct correlation functions between different 05 | |
replicas. |
In liquid integral equation theories, Eq&3)—(25) are % ; » 3 . 5
supplemented byapproximatg closures, and the resulting /G
set of equations is solved numerically, see e.g., Ré&f,18,.
Here we proceed in a different fashion, ahetivethe direct 3 rop—
correlation functionsc;; from our density functional. Then DFT -~
we use Eqs(23)—(25) to obtain theh;; and hence thg;;(r), 25|
which will be compared to computer simulation data below.
This procedure constitutes a demanding test for the present 2r (b)
theory, as thec;;(r) are obtained by second functional de- Z 15
rivatives as o0
52FEX 1+
Coo(|r_r'|)zo—({p0], ; (26)
Opo(r) dpo(r’) po=const 05
omexa . () : : .
coullr— 7= T L 1PoiPa) L@ R
Spo(r)dpa(r)] . _ const
3 . . . ,
8°FUpoip] DNll‘?' """"""
cll(lr—r’|):—, . (29 25| .
5p1(1)0pa( ) o
2 L
Clearly, as the approximation is done on the leveF§i°, _ ()
any inaccuracies will be enhanced by taking two derivatives &b sy
to obtain thec;; . We find that the approximate ROZ equa- N
tions, Egs.(23)—(25), are sufficient within the present ap-
proximations, i.e., the direct correlation functions between 05 |
species from different replicas vanish identically.
In order to compare the DFT results, we have carried out o0 ] . . . s

Monte Carlo (MC) computer simulations with 1024 par- y
ticles, and 2 10° MC moves per particles. Averages were G

taken over 20 different representations of the matrix, which ~FIG- 1. Partial pair distribution functiorgs;(r) as a function of
we find to be sufficient to obtain reliable data. the scaled distanag o for hard spheres of diameterand packing

We first turn to the case of hard spheres in a hard spher&action 7,=0.15 adsorbed in a hard sphere matrix with the same
matrix. For simplicity, we consider the case of equal spherd@Metero and packing fractions,=0.15. Solid lines denote

. _ - . . _ onte Carlo results, dashed lines denote DFT results. Different
sizes op=0,(=0), and equal packing fractionsj= 7, howr(a) matrix-matrix pair correlations(b)

=0.15. (The total packing fraction is henogy+ 7,=0.3, a oo e SHOWNA Goo - P Yo

. . . . matrix-adsorbate pair correlation&) g,, adsorbate-adsorbate pair

moderately large valugTo obtain the matrix pair correlation correlations.
function go(r), we need to solve Eq23), which is com-

pletely decoupled from Eqg$24) and (25 containing also mation[6,7]. For ,=0.15 this is known to be very accurate,
adsorbate distribution functions. Hence as input anjyis  as can be seen in Fig(d, where we ploigy(r) along with
required. We obtain it from Eq26), whereFg*is the den- the corresponding result from computer simulation. Both
sity functional obtained from applying the procedure out-curves practically lie on top of each other.

lined in Sec. 11l B 1 to the HS @ excess free energy for hard In order to obtain the partial pair correlation functions
spheresA,, which is given in Eq.(2). F§* derived in this  involving the adsorbate speciag,(r) andgy;(r), we solve
way is equal to Rosenfeld’s function] in Tarazona’s ten- Egs.(24) and(25), where the direct correlation functiong,
sorial formulation[7]. This reproduces the direct correlation and cq; are obtained through Eq&27) and (28), with F*¢
function for pure hard spheres in the Percus-Yevick approxiobtained from the prescription in Sec. Ill B 1 applied to the
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0d free energy of hard spheres in a hard sphere makf, 3.5 y - - MC —
given in Eq.(5). We displaygg,(r) andg,,(r) in Figs. 1b), 3l DFT - ]
1(c), respectively. Both functions display considerably stron-

ger oscillations thargy,. For go; the agreement with MC 25

data is very good for/o=1.1. In the immediate vicinity of
contact,r/o=<1.1, and at contact;— o™, the DFT result
underestimates the simulation result. Inside the core region, 15
rloc<1, due to the overlap restrictiog;;(r)=0 is an exact
condition. Our theory fails to reproduce this and yields non-
zero valuegthe extreme value beingg(r=0)=—0.46]. 05|
This deficiency is known from other geometry-based density
functionals for fully annealed systerfis4,15, and could be 0 p 5 3 4 5
remedied with a test-particle limit calculation, i.e., minimiz- /G

ing the density profilegsee Sec. Il B 2in the presence of

an external potentiat®* that describes a particle fixed at the 3.5 - - - MC ——
origin. We expect such results to also improve the behavior | DFT - ]
for r/oc=<1.1, albeit at the expense of more numerical work.
Note further that the core condition is fulfilled in the low 25
density(virial) expansion, i.e., we recover the correct limit-
ing behaviorg;;—exgd — BV;j(r)]. Finally, g14(r), displayed
in Fig. 1(c), fares again better. The DFT result is very good 15+
even near contact, and the violation of the core condition is
smaller[g41(r=0)=—0.09.

To exemplify that the good quality of the DFT result is 05 |
not accidental, we change the matrix properties by switching ]
off the interactions between matrix particles. Hence the ma- 0o 1 2 3 4 5
trix is constituted by freely overlapping spheres that are ho- t/c
mogeneously distributed. Clearly, such configurations act
differently on the adsorbate than in the previous case of the 35 ; ; ; MC —
hard sphere matrix. Again we restrict ourselvesotp= oy al
(=0), and consider slightly higher packing fractiong
=17,=0.2. In order to calculate thg;(r), we proceed as in 25+
the previous case, but instead of using E@$.and (5) for
the Od free energiesA, and A,, we take the appropriate
expressions for the current model, given in E@8.and(9), 15}
respectively. DFT and simulation results are displayed in Fig.
2. As the matrix is an ideal gaggo(r)=1 for all distances,
and the DFT trivially fulfills this relation, a&§*“=0. The 05
core condition is again violatefithe extreme cases are , , ,
Oo1(r=0)=-0.84g4,(r=0)=—0.96]. Apart from that, the 0 1 2 3 4 5
accuracy ofgg(r) andgqy(r) is generally quite good and r/c
comparable to that found in the previous case. We conclude FIG. 2. Same as Fig. 1, but for a matrix of freely overlapping
that the DFT correctly describes the structural correlations ofpheres of diameter and packing fractiongy,= 7, =0.2.
bulk fluid states in homogeneously distributed random ma-
trices.

oo

o

11

trices, where we find good agreement with computer simu-
lation results. Possible future applications may focus on
V. CONCLUSIONS freezing in porous media; note that the bailo matriy HS
Eransition is described very accuratgl§]. Furthermore, the
) X . ;
Sﬁects caused by inhomogeneous matrices should be inter-

of our knowledge, for QA systems that treats the quencheestin Wetting ofmacroscopizsurfaces of the porous ma-
speciegwhich model a porous materjabn the level of their ng. g -roscop p
terial, confinement within slits, pores, or cavities that are

one-body density profiles. This provides an enormous Simfilled with porous material, as well as behavior near rough
plification over a treatment where the matrix particles are P ’ 9

described by an external potentiathich is a highly non- Wa_lls WOL_JIc_i be further interesting applications. Results for
trivial three-dimensional field for a single matrix realization fluid demixing will be presented elsewhdrt].

and averaging over matrix realization has to be done explic-
itly. We have presented evidence for the potential of our
approach, through the investigation of pair correlation func- | thank G. Kahl, R. Evans, H. lwen, and A. R. Denton
tions of hard spheres adsorbed in two different types of mafor inspiring discussions.

In summary, we have presented the first DFT, to the be
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