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Density-functional theory for fluids in porous media

Matthias Schmidt
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As models for substances adsorbed within amorphous solid matrices, we consider mixtures of spheres with
either hard or ideal interactions where several~matrix! components are quenched and the remaining~adsorbate!
components are equilibrated. We propose a density-functional theory, based on the exact zero-dimensional
limit, which treats both matrix and adsorbate components on the level of the respective one-body density
profiles. As a test, we calculate pair correlation functions for hard spheres adsorbed in either a hard sphere or
an ideal sphere matrix, and find good agreement with our computer simulation results.
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I. INTRODUCTION

The behavior of atomic, molecular, and complex fluid
e.g., colloidal suspensions, adsorbed in porous media, i
considerable practical as well as fundamental interest. Di
dered substrates that are permeable to a substance ar
countered in environmental, biological, and industrial fiel
From a fundamental point of view, one is interested h
condensed matter phenomena~like phase transitions! are al-
tered by confinement@1# and the presence of disorder@2#.
The details of the porous medium are often disregarded
to model such amorphous substances one relies on equ
rium fluid configurations of model systems. The advanta
are twofold:~i! The statistics of such model matrices are w
studied and understood, e.g., in the case of the hard sp
~HS! systems.~ii ! A direct link to the statistical mechanics o
equilibrated fluids is provided. The primary tool in the d
scription of adsorbates to such a matrix are quench
annealed~QA! averages@3,4#. There the adsorbate free e
ergy ~rather than the partition sum! is averaged over~many!
representations of disorder. Hence the matrix is quenc
while the adsorbate is annealed~allowed to equilibrate! in
the presence of the disordered background. Typically,
assumes that there is no back feeding toward the matrix:
porous medium is unaffected by the presence of the ad
bate. Besides computer simulations, theoretical work
mainly based on the replica trick, which relates the QA s
tem to a special limit of a corresponding fully equilibrate
extended~replicated! system, which is tackled with integra
equation theory and replica Ornstein-Zernike equations@3,4#.

Density-functional theory~DFT! @5# is a powerful ap-
proach to equilibrium~fully annealed! fluids @6# and solids
@7#. It models the influence of an external potential ene
Vext acting on the system. Commonly, DFT is applied to w
defined, idealized pores~see e.g., Ref.@8#!. In principle, a
disordered matrix may be represented by an appropriateVext

acting on the adsorbate. To treat amorphous pore struct
within this approach requires solution~minimization of the
grand potential! for a given Vext, and subsequent explic
averaging ‘‘by hand’’ over many realizations ofVext. This
was recently carried out with a mean-field DFT for a latti
fluid model @9#, and formidable insight into adsorption
metastability, and hysteresis was gained. However, the p
ciple approach seems to be limited to simple models an
1063-651X/2002/66~4!/041108~7!/$20.00 66 0411
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cumbersome, if not inapplicable, in the case of more sop
ticated DFTs and continuum models.

In this work, we argue that a more general DFT is fe
sible, where the matrix is described on the level of the~one-
body! density distribution of its constituent particles, an
where the functionalis the average free energy~averaged
over matrix realizations!, depending on matrix and adsorba
density profiles. We expect this to be very powerful, as m
trix details ~of single representations! are disregarded, and
only relevant statistical properties enter. Here, we pres
explicit approximations for~a restricted set of! common
adsorbate-matrix models. Our approach is an extension
theory for fully annealed mixtures@6#, which is considered to
be ‘‘for multicomponent HS fluids, the most accurate a
successful approximate functional’’@8#. The theory captures
local packing effects, and correlation functions are predic
in a nonperturbative fashion, without need of external inp
We demonstrate the good accuracy of the approach by c
paring calculated pair distribution functions to compu
simulation data.

II. MODELS

To model adsorbates in porous media, we restrict o
selves to mixtures with spherical symmetric pair interactio
where each speciesi consists of spheres with radiiRi . Two
kinds of pair interactionsVi j (r ) between speciesi and j as a
function of the separation distancer are considered:~i! ideal
interactions such thatVi j (r )50 for all distancesr; ii ! hard
core interactions such thatVi j (r )5VHC(r )5`, if r ,Ri
1Rj , and zero otherwise. This covers additive hard sph
mixtures, mixtures of hard and ideal spheres like realized
the Asakura-Oosawa~AO! colloid-ideal polymer model@10#,
as well as the Widom-Rowlison~WR! model @11#, where
only particles of unlike species experience hard core rep
sion. We further discriminate between quenched (i[0a) and
annealed (i[1b) species, wherei is a composite index, such
that the first digit 0,1 correspond to quenched and anne
species, respectively, anda,b are integers that label the dif
ferent ~sub!species.

Below we will consider two simple binary mixtures o
one quenched~index 0! and one annealed~index 1! compo-
nent. The first case is constituted by hard spheres in a h
sphere matrix, where all interactions are hard core,Vi j
©2002 The American Physical Society08-1
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MATTHIAS SCHMIDT PHYSICAL REVIEW E 66, 041108 ~2002!
5VHC, for i , j 50,1. In the second case we treat the ha
sphere adsorbate in an ideal sphere matrix, whereV00
50,V015VHC,V115VHC. ~This is formally equivalent to an
AO model where the polymer species is quenched and
loids are annealed.! In both of these binary cases the inte
actions between matrix and adsorbate are hard core inte
tions.

III. THEORY

A. Zero-dimensional limit

Let us start by considering a situation of extreme confi
ment, where all particles are forced to sit on top of ea
other, a situation which allows for an exact solution of t
many-body problem. Although the detailed shape of the c
fining external potentialVext will not affect the excess free
energy, for clarity we explicitly chooseVext(r )50 if r ,e,
and ` otherwise. This corresponds to a hard cavity ofi
dependent! radiusRi1e. Hence each particle’s center is a
lowed to move inside a sphere of volume 4pe3/3. In the
limit e→0, a zero-dimensional (0d) situation is encoun-
tered, and it is assured that all particles present in the ca
overlap.

In the following, we first give a detailed derivation of th
0d free energy for two simple QA models. Then, in Se
III A 3, we proceed to the case of general mixtures, where
arbitrary number of components is treated. Readers prima
interested in the hard sphere examples~and subsequent re
sults! may wish to skip Sec. III A 3.

1. Hard spheres in a hard sphere matrix

In order to illustrate the general procedure, we start w
an example where both calculations and notation are sim
We consider a binary system of hard spheres, where spe
0 is quenched~hence represents the matrix!, and species 1 is
annealed~hence represents the adsorbate!. The first step is to
calculate the grand partition sumJ0 for the matrix particles
in the 0d situation. This problem is equivalent to calculatin
the grand partition sum for pure hard spheres in 0d @12,13#.
To obtainJ0 we need to consider all states that are allow
~are compatible with the hard core exclusion!. Those are~i!
the empty state, and~ii ! the state with exactly one har
sphere. Hence one obtains

J0511z0 , ~1!

where the ~scaled! fugacity is zi5exp(bmi)(4pe3/3)L i
23 ,

and b51/kBT, wherekB is the Boltzmann constant andT
being the absolute temperature, andL i is the ~irrelevant!
thermal wavelength of speciesi 50,1. The first ~second!
term on the right hand side of Eq.~1! corresponds to case
~ii ! above. The grand potential is then given asV0

52kBTlnJ0, and the mean particle numberh̄0 can be ob-
tained using the thermodynamic relationh̄05z0] lnJ0 /]z0.
The Helmholtz free energy is obtained by Legendre tra
form as bA0

tot(h̄0)5bV01h̄0ln(z0). Its excess~over ideal

gas! part is bA05bA0
tot2h̄0@ ln(h̄0)21#. Carrying out the

calculations yields
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bA0~ h̄0!5~12h̄0!ln~12h̄0!1h̄0 , ~2!

the result for~fully annealed! hard spheres@12,13#
To obtain the 0d excess free energy of the annealed co

ponentA1 we proceed in a similar fashion than above, b
with the important distinction of using QA averages inste
of fully annealed ones. We consider each matrix configu
tion as being fixed~in effect exerting an external potential o
the adsorbate!, and sum over all allowed adsorbate sta
with the correct statistical weight in the grand ensemble
the adsorbate. As in 0d the matrix has only two configura
tions ~either the cavity is empty or a single matrix particle
present!, this is an easy task and yields

J15H 11z1 no matrix particle

1 else.
~3!

The case of no matrix particles is the sum of the contrib
tions from the state empty of adsorbate particles and the s
with a single adsorbate particle.@This is again similar to the
structure ofJ0, Eq. ~1!.# In the case of one single matri
particle the matrix-adsorbate hard core repulsion prohibits
states except precisely that one where no adsorbate par
are present. Clearly, all terms proportional to higher th
linear powers inz1 vanish due to the hard core repulsio
between adsorbate particles.

To obtain the QA free energy we need to average
logarithm of J1 over all matrix configurations. As ln 150,
only the first line in Eq.~3! contributes, and its statistica
weight in the grand ensemble of matrix configurations
1/J0 ~the factor unity stems from the fact that matrix pa
ticles are absent!. Hence the 0d grand potential for the ad
sorbateV1 is simply given by

2bV15
ln~11z1!

11z0
. ~4!

To obtain the corresponding 0d excess free energyA1, es-
sentially the same steps as those above in the caseA0 are
required: The average particle number of adsorbates is g
as h152]bV1 /]z1, and the Helmholtz free energy is ob
tained asbA1

tot5bV11h̄1ln(z1). Its excess part is obtaine
by subtracting the~adsorbate! ideal gas contribution,bA1

5bA1
tot2h̄1@ ln(h̄1)21#. As final result, we find

bA1~ h̄0 ,h̄1!5~12h̄02h̄1!ln~12h̄02h̄1!1h̄12~1

2h̄0!ln~12h̄0!. ~5!

As an aside it is interesting to note that in the present c
the sumA01A1 equals the 0d excess free energy of binar
annealed hard spheres. However, this constitutes a sp
case. In general, we do not find a simple relation between
QA and the corresponding fully annealed free energies.~The
relation to thereplicatedfully annealed system is discusse
below in Sec. III A 4.!
8-2
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DENSITY-FUNCTIONAL THEORY FOR FLUIDS IN . . . PHYSICAL REVIEW E66, 041108 ~2002!
2. Hard spheres in an ideal sphere matrix

If the matrix particles are noninteracting, their grand p
tition sum is that of an ideal gas

J05exp~z0!, ~6!

where we use the same notation as in the preceding sub
tion. Carrying out the same steps as above yields the~ex-
pected! result that the 0d excess free energy vanishes,

A0~ h̄0!50. ~7!

The grand partition sum for the matrix is equal to the abo
result, Eq.~3!, in the case of the hard sphere matrix. In ord
to obtain the 0d QA grand potential for the adsorbate,V1,
we again have to average the logarithm of the adsorbate
tition sum over all matrix configurations. This yields

2bV15
ln~11z1!

exp~z0!
, ~8!

from which the adsorbate free energy is obtained as

bA1~ h̄0 ,h̄1!5@exp~2h̄0!2h̄1# ln@exp~2h̄0!2h̄1#1h̄1

1h̄0exp~2h̄0!. ~9!

Note that in the fully annealed case, the present mode
equal to the AO model where species 0~1! is identified as
polymer ~colloid!, where the ~exact! 0d free energy is
bAAO(h̄0 ,h̄1)5(12h̄12h̄0)ln(12h̄1)1h̄1 @14,15#, clearly
different from the above QA result.

3. Multicomponent mixtures

Here we give a formal derivation for general mixtur
with more than two components. LetNi particles of typei be
in the cavity, and$Ni% denote the set of occupation numbe
Irrespective of the precise particle coordinates, the~reduced!
potential energy due to interactions between like particles
type i is U(Ni)5(Ni /2)(Ni21)bVii (r 50). The contribu-
tion from interactions between unlike particles~of types i
and j ) is U(Ni ,Nj )5NiNjbVi j (r 50). The total potential
energy may be expressed asU($Ni%)5( iU(Ni)
1( i , jU(Ni ,Nj ), where the summations run over all sp
cies. Due to the nature of interactions,U($Ni%) takes on
values 0,̀ . Let us further decompose the occupation nu
bers into~disjunct! subsets of quenched and annealed s
cies, $N0a%ø$N1b%5$Ni%. The potential energy may be a
ranged similarly, such that U($Ni%)5U00($N0a%)
1U01($N0a%,$N1b%)1U11($N1b%), where U00 stems from
matrix-matrix, interactionsU01 from matrix-adsorbate inter
actions, andU11 from adsorbate-adsorbate interactions.

The grand partition sum for the matrix in the 0d situation
is

J05 (
$N0a%

F)
a

~z0a!N0a

N0a! Ge2U00($N0a%), ~10!
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where ~for i 50a) the reduced fugacity is zi

5exp(bmi)4pe3/(3Li
3), m i is the chemical potential, andL i

is the thermal wavelength of speciesi; notation is such~for
t50) that ($Nta%[(Nt150

` (Nt250
` . . . , and theproduct runs

over all quenched speciesa. The grand potential isV05
2kBTlnJ0. In the context of fully equilibrated systems,
was demonstrated that imposing the exact crossover on
approximate functional may be exploited to derive syste
atically DFTs for systems including hard spheres@7#, the AO
model@14#, and the WR mixture@16#. Here we add adsorbat
particles. For a given matrix realization$N0a%, the matrix
particles are inert, and act as an external potential on
adsorbate. Its grand partition sum is

J1~$N0a%!5 (
$N1b%

F)
b

~z1b!N1b

N1b! G
3e2U11($N1b%)e2U01($N0a%,$N1b%). ~11!

To obtain the QA adsorbate grand potentialV1, we need to
average over all matrix realizations as

2bV15
1

J0
(

$N0a%
F)

a

~z0a!N0a

N0a! G
3e2U00($N0a%)ln J1~$N0a%!. ~12!

FromV0 andV1, standard relations yield the mean num
bers of particlesh̄0a , h̄1b throughh̄ tc52ztc]bV t /]ztc ~for
tc50a,1b). The Helmholtz free energy is obtained via Le
endre transform asbAt

tot5bV t2(cm tc]bV t /]m tc[bV t

1(cln(ztc)h̄tc . Its excess ~over ideal gas! part is bAt

5bAt
tot2(ch̄ tc@ ln(h̄tc)21#. Explicit dependence on the

natural variables isA0($h̄0a%), andA1($h̄0a%,$h̄1b%).

4. Relation to the replica trick

Before proceeding with the construction of the DFT, let
elucidate the relation of the present analysis to the rep
trick. Using the replica trick one starts from a fully equil
brated system, in which the adsorbate species are replicas
times. The replicas do not interact among each other~their
interactions are ideal!, but interact with the matrix particles
in the same fashion. Such replicated models still fall into o
class of models~provided the QA system aimed at does!,
hence the above formalism~for A0) may be applied, and the
0d excess free energy,A2, of the replicated system obtaine
The 0d QA free energy is obtainable in the limitbA1
5 lims→0@]exp(2bA2)/]s#exp(bA2). One can show thatA2

5A0($h̄0a%)1sA1($h̄0a%,$h̄1b%) for small s ~where the ab-
sence of replica symmetry breaking is assumed!.

B. Density-functional theory

1. Geometry-based free energy functional

Returning to three dimensions, we apply well-tried ge
metrical recipes to derive approximate DFTs@6,7,14,16#. The
formalism requires as input the 0d excess free energyA of
the model under consideration, and hence can be applie
8-3
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either the pure matrix, whereA5A0, to the adsorbate,A
5A1, or even to the replicated system,A5A2. Within the
framework, the excess Helmholtz free energy is expresse

Fexc@$r i~r !%#5kBTE d3xF~$na
( i )~x!%!, ~13!

where$r i(r )% is the set of all density profiles. The reduce
free energy densityF is a function of a set of weighted
densities$na

( i )(x)%, wherei labels the species anda the type
of weighted density. The weighted densities are obtained
convolutions with the actual density profiles,na

( i )(x)
5*d3rr i(r )wa

( i )(x2r ). As all nonvanishing interactions ar
hard core, it is sufficient to take the usual fundamental m
sure weight functions@6,7#, which recover~upon convolu-
tion! the Mayer bonds exp(2bVHC(r ))21. They are defined
as

w3
( i )~r !5u~Ri2r !,w2

( i )~r !5d~Ri2r !, ~14!

wv2
( i )~r !5w2

( i )~r !r /r ,ŵm2
( i ) ~r !5w2

( i )~r !F rr

r 2
21/3G , ~15!

wherer 5ur u, u(r ) is the Heaviside step function,d(r ) is the
Dirac distribution, and 1 is the identity matrix. Furthe
linearly dependent, weights arew1

( i )(r )5w2
( i )(r )/(4pRi),

wv1
( i )(r )5wv2

( i )(r )/(4pRi),w0
( i )(r )5w1

( i )(r )/Ri . The weight
functionswa

( i ) have dimension of length32a. They differ in
their tensorial rank:w0

( i ) ,w1
( i ) ,w2

( i ) ,w3
( i ) are scalars;wv1

( i ) ,wv2
( i )

are vectors;ŵm2
( i ) is a matrix; the subscript letters identify th

rank.
We determine the functional dependence ofF on the

weighted densities by imposing the exact crossover tod,
wherer i(r )5h̄ id(r ), and follow recent treatments of funda
mental measure theory@7# by considering multi-cavity limits
to obtainF5F11F21F3, with contributions

F15n0
( i )w i~$n3

( l )%!, ~16!

F25~n1
( i )n2

( j )2nv1
( i )
•nv2

( j )!w i j ~$n3
( l )%!, ~17!

F35
1

8p S n2
( i )n2

( j )n2
(k)/32n2

( i )nv2
( j )
•nv2

(k)1
3

2
@nv2

( i )n̂m2
( j ) nv2

(k)

2tr~ n̂m2
( i ) n̂m2

( j ) n̂m2
(k)!# Dw i jk~$n3

( l )%!, ~18!

where repeated-index summation convention is used,
mth order derivatives of the 0d excess free energy ar
w i . . . k($h̄ l%)[ ]mbAt($h̄ l%)/]h̄ i . . . ]h̄k . For t50,1,2,
functionalsFt

exc for matrix, adsorbate, and replicated syste
are obtained, respectively. Two routes to the QA free ene
functional are possible: either directly throughA1, giving
F1

exc, or via application of the replica trick toF2
exc. The

results from the two routes can be shown to be equal, wh
is a sign of internal consistency of the current approach.
04110
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2. Minimization principle

In order to apply the theory to an actual problem, t
principal way is as follows. We first need to obtain the mat
density profiles from minimization~with respect to all matrix
density fieldsr0a(x)) of the grand potential functional

Ṽ0@$r0a~x!%#5F0
exc@$r0a~x!%#1kBTE d3x(

a
r0a~x!

3@ ln~r0a~x!L0a
3 !21#

1E d3x(
a

~V0a
ext~x!2m0a!r0a~x!, ~19!

whereV0a
ext is an external potential acting on 0a, generating

matrix inhomogeneities. At the minimum

dṼ0

dr0a~r !
50. ~20!

Once ther0a are known, the adsorbate densities are obtai
from minimization@only with respect to the adsorbate de
sity distributionsr1b(x)] of the grand potential

Ṽ1@$r0a~x!%;$r1b~x!%#

5F1
exc@$r0a~x!%;$r1b~x!%#1kBTE d3x(

b
r1b~x!

3@ ln~r1b~x!L1b
3 !21#1E d3x(

b
~V1b

ext~x!

2m1b!r1b~x!, ~21!

whereV1b
ext acts on adsorbate 1b, and ther0a(x) are treated

asfixed input quantities. Again, at the minimum

dV1

dr1b~r !
50. ~22!

Note that the~bulk! Gibbs adsorption equation is intrins
cally fulfilled: (r1b2r1b

free)V52]@Ṽ12Ṽ1($r0a

[0%)#/]m1b , whereV is the system volume, andr1b
free is the

density in equilibrium without matrix.

IV. RESULTS

A. Structural correlations

As an application, we consider the structural correlatio
of hard spheres adsorbed in sphere matrices. We conside
two types of matrices summarized in Sec. II, where the m
trix is either a hard sphere fluid, or a fluid of noninteracti
~hence freely overlapping! spheres.

Madden and Glandt@3# derived a set of replica Ornstein
Zernike~ROZ! equations for one quenched~index 0! and one
annealed~index 1! species, given as

h005c001c00^ r0h00, ~23!
8-4
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DENSITY-FUNCTIONAL THEORY FOR FLUIDS IN . . . PHYSICAL REVIEW E66, 041108 ~2002!
h015c011c01^ r0h001c11^ r1h01, ~24!

h115c111c01^ r0h011c11^ r1h11, ~25!

where^ denotes the spatial convolution,hi j 5gi j 21 are the
total correlation functions,gi j are the partial pair correlation
functions, andci j are the direct correlation functions. Give
and Stell@4# have shown that Eqs.~23!–~25! are approxima-
tions; the exact ROZ equations contain contributions fr
nonvanishing direct correlation functions between differ
replicas.

In liquid integral equation theories, Eqs.~23!–~25! are
supplemented by~approximate! closures, and the resultin
set of equations is solved numerically, see e.g., Ref.@17,18#.
Here we proceed in a different fashion, andderivethe direct
correlation functionsci j from our density functional. Then
we use Eqs.~23!–~25! to obtain thehi j and hence thegi j (r ),
which will be compared to computer simulation data belo
This procedure constitutes a demanding test for the pre
theory, as theci j (r ) are obtained by second functional d
rivatives as

c00~ ur2r 8u!5
d2F0

exc@r0#

dr0~r !dr0~r 8!
U

r05const

, ~26!

c01~ ur2r 8u!5
d2F1

exc@r0 ;r1#

dr0~r !dr1~r 8!
U

r0 ,r15const

, ~27!

c11~ ur2r 8u!5
d2F1

exc@r0 ;r1#

dr1~r !dr1~r 8!
U

r0 ,r15const

. ~28!

Clearly, as the approximation is done on the level ofFt
exc,

any inaccuracies will be enhanced by taking two derivati
to obtain theci j . We find that the approximate ROZ equ
tions, Eqs.~23!–~25!, are sufficient within the present ap
proximations, i.e., the direct correlation functions betwe
species from different replicas vanish identically.

In order to compare the DFT results, we have carried
Monte Carlo ~MC! computer simulations with 1024 pa
ticles, and 23106 MC moves per particles. Averages we
taken over 20 different representations of the matrix, wh
we find to be sufficient to obtain reliable data.

We first turn to the case of hard spheres in a hard sph
matrix. For simplicity, we consider the case of equal sph
sizes s05s1(5s), and equal packing fractionsh05h1
50.15. ~The total packing fraction is henceh01h150.3, a
moderately large value.! To obtain the matrix pair correlation
function g00(r ), we need to solve Eq.~23!, which is com-
pletely decoupled from Eqs.~24! and ~25! containing also
adsorbate distribution functions. Hence as input onlyc00 is
required. We obtain it from Eq.~26!, whereF0

exc is the den-
sity functional obtained from applying the procedure o
lined in Sec. III B 1 to the HS 0d excess free energy for har
spheres,A0, which is given in Eq.~2!. F0

exc derived in this
way is equal to Rosenfeld’s functional@6# in Tarazona’s ten-
sorial formulation@7#. This reproduces the direct correlatio
function for pure hard spheres in the Percus-Yevick appro
04110
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mation@6,7#. Forh050.15 this is known to be very accurat
as can be seen in Fig. 1~a!, where we plotg00(r ) along with
the corresponding result from computer simulation. Bo
curves practically lie on top of each other.

In order to obtain the partial pair correlation function
involving the adsorbate species,g01(r ) andg11(r ), we solve
Eqs.~24! and~25!, where the direct correlation functionsc01

and c11 are obtained through Eqs.~27! and ~28!, with F1
exc

obtained from the prescription in Sec. III B 1 applied to t

FIG. 1. Partial pair distribution functionsgi j (r ) as a function of
the scaled distancer /s for hard spheres of diameters and packing
fraction h150.15 adsorbed in a hard sphere matrix with the sa
diameter s and packing fractionh050.15. Solid lines denote
Monte Carlo results, dashed lines denote DFT results. Differ
cases are shown:~a! g00 matrix-matrix pair correlations;~b! g01

matrix-adsorbate pair correlations;~c! g11 adsorbate-adsorbate pa
correlations.
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0d free energy of hard spheres in a hard sphere matrix,A1,
given in Eq.~5!. We displayg01(r ) andg11(r ) in Figs. 1~b!,
1~c!, respectively. Both functions display considerably stro
ger oscillations thang00. For g01 the agreement with MC
data is very good forr /s*1.1. In the immediate vicinity of
contact,r /s&1.1, and at contact,r→s1, the DFT result
underestimates the simulation result. Inside the core reg
r /s,1, due to the overlap restriction,gi j (r )50 is an exact
condition. Our theory fails to reproduce this and yields no
zero values@the extreme value beingg01(r 50)520.46].
This deficiency is known from other geometry-based den
functionals for fully annealed systems@14,15#, and could be
remedied with a test-particle limit calculation, i.e., minimi
ing the density profiles~see Sec. III B 2! in the presence o
an external potentialVext that describes a particle fixed at th
origin. We expect such results to also improve the beha
for r /s&1.1, albeit at the expense of more numerical wo
Note further that the core condition is fulfilled in the lo
density~virial! expansion, i.e., we recover the correct lim
ing behaviorgi j →exp@2bVij(r)#. Finally, g11(r ), displayed
in Fig. 1~c!, fares again better. The DFT result is very go
even near contact, and the violation of the core condition
smaller@g11(r 50)520.09#.

To exemplify that the good quality of the DFT result
not accidental, we change the matrix properties by switch
off the interactions between matrix particles. Hence the m
trix is constituted by freely overlapping spheres that are
mogeneously distributed. Clearly, such configurations
differently on the adsorbate than in the previous case of
hard sphere matrix. Again we restrict ourselves tos05s1
(5s), and consider slightly higher packing fractionsh0
5h150.2. In order to calculate thegi j (r ), we proceed as in
the previous case, but instead of using Eqs.~2! and ~5! for
the 0d free energiesA0 and A1, we take the appropriate
expressions for the current model, given in Eqs.~7! and~9!,
respectively. DFT and simulation results are displayed in F
2. As the matrix is an ideal gas,g00(r )51 for all distances,
and the DFT trivially fulfills this relation, asF0

exc50. The
core condition is again violated@the extreme cases ar
g01(r 50)520.84,g11(r 50)520.96]. Apart from that, the
accuracy ofg01(r ) and g11(r ) is generally quite good and
comparable to that found in the previous case. We concl
that the DFT correctly describes the structural correlation
bulk fluid states in homogeneously distributed random m
trices.

V. CONCLUSIONS

In summary, we have presented the first DFT, to the b
of our knowledge, for QA systems that treats the quenc
species~which model a porous material! on the level of their
one-body density profiles. This provides an enormous s
plification over a treatment where the matrix particles
described by an external potential~which is a highly non-
trivial three-dimensional field for a single matrix realizatio!
and averaging over matrix realization has to be done exp
itly. We have presented evidence for the potential of o
approach, through the investigation of pair correlation fu
tions of hard spheres adsorbed in two different types of m
04110
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trices, where we find good agreement with computer sim
lation results. Possible future applications may focus
freezing in porous media; note that the bulk~no matrix! HS
transition is described very accurately@7#. Furthermore, the
effects caused by inhomogeneous matrices should be in
esting. Wetting of~macroscopic! surfaces of the porous ma
terial, confinement within slits, pores, or cavities that a
filled with porous material, as well as behavior near rou
walls would be further interesting applications. Results
fluid demixing will be presented elsewhere@19#.
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FIG. 2. Same as Fig. 1, but for a matrix of freely overlappi
spheres of diameters and packing fractionsh05h150.2.
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