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Colloids, polymers, and needles: Demixing phase behavior
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We consider a ternary mixture of hard colloidal spheres, ideal polymer spheres, and rigid vanishingly thin
needles, which model stretched polymers or colloidal rods. For this model, we develop a geometry-based
density functional theory, apply it to bulk fluid phases, and predict demixing phase behavior. In the case of no
polymer-needle interactions, two-phase coexistence between colloid-rich and colloid-poor phases is found. For
hard needle-polymer interactions, we predict rich phase diagrams, exhibiting three-phase coexistence, and
reentrant demixing behavior.
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[. INTRODUCTION 50% higher than previously thougHit6,19, still a challenge
for theories(for a recent integral-equation closure, see Ref.
The richness of phase behavior of systems with purely17]).
repulsive interactions depends crucially on the number of Inthe AO and BF cases a reservoir description has proven
components. For a one-component system like colloidal harép be useful. The reservoir density of either polymers or
spheres, there occurs a freezing transition from a single fluideedles rules the strength of effective attraction and hence
phase to a dense crystal. Adding a second component, sulgys a role similar tdinverse temperature in simple sub-
as nonadsorbing globular polymer cojts] or rodlike par- ~ stances. Although the WR model features an intrinsic sym-
ticles [2,3] generates an effective depletion-induced attracimetry that seems to preclude such a description, an effective
tion between colloidal spheres, leading to the possibility ofmodel can also be formulatdd5]. In the present paper we
demixing. This transition is an analog of the vapor-liquid consider the phase behavior of a mixture of spheres, poly-
transition in simple fluids: The phase that is concentrated ifners, and needles, a natural combination of the above binary
one of the components corresponds to a liquid, while theases. We note that our ternary model may provide insight
dilute phase corresponds to a vapor, and one frequently rénto certain real systems, such as paints, which contain col-
fers to such phases as colloidal liquid and colloidal vaporloidal latex and pigment particles, polymer thickeners and
although the “vapor” is concentrated in the added compo-dispersants, as well as many other componf2its
nent. Density functional theoryDFT) [22] is a powerful ap-
Generic theoretical models for such systems are those if2roach to equilibrium statistical systems, possibly under in-
troduced by Asakura and OosawaO) and independenﬂy fluence of an external potential. BU|Id|ng on Rosenfield’s
by Vrij [1,4], Bolhuis and Frenke(BF) [5], and Widom and  Work [23], a geometry-based approach was recently pro-
Rowlinson(WR) [6]. The AO model comprises hard colloi- Posed that also predicts bulk properties, without the need of
dal spheres mixed with polymer spheres that are ideakny input, allowing the AO[24], BF [25], and WR[26]
amongst themselves but cannot penetrate the colloids. THE0dels to be treated. Here we combine these tools to derive
BF model adds stiff vanishingly thin needles to a hard spher@ DFT for ternary systems.
system. Because of their vanishing thickness, the needles do In Sec. Il we define the model ternary mixtures of
not interact with one another. Clearly, both models are simispheres, polymers, and needles. In Sec. Ill the DFT is devel-
lar in spirit, as a noninteracting component is added to har@ped. Application to bulk phases in Sec. IV yields the phase
spheres. In the WR model this is different; two species ofoehavior. We finish with concluding remarks in Sec. V.
spheres interact symmetrically, such that hard core repulsion
occurs only b_etween particles c_>f unlik_e species. Hence a pure Il. THE MODEL
system of either component is an ideal gas. All of these
model binary mixtures exhibit liquid-vapor phase separation, We consider a mixture of colloidal hard sphefspecies
well established by computer simulations and theorie€C) of radius Rc, globular polymers(speciesP) of radius
[7-12. The WR model6,13—19 has been studied with a Rp, and vanishingly thin needlespeciesN) of length L,
range of approaches, including mean-field the®FT)  with respective number densitiepc(r), pp(r), and
[15], Percus-Yevick (PY) integral equation theory pn(r,€2), wherer is the spatial coordinate arid is a unit
[14,16,17, scaled-particle theor§SPT) [18], as well as com-  vector pointing along the needle axisee Fig. 1 The pair
puter simulations[16,19,2Q0. The precise location of the interaction between colloids ¥cc= if the separatiorr
liquid-vapor critical point was located by simulations aboutbetween sphere centers is less th& 2and zero otherwise.
The pair interactions between like particles of both other
components vanish for all distance¥pp=Vy\n=0. For

*Permanent address: Institut rfuTheoretische Physik 1I, polymers this is an assumption strictly valid only at the theta
Heinrich-Heine-Universita Dusseldorf, Universitsstrae 1, point; for needles it becomes exact in the present limit of
D-40225 Disseldorf, Germany. large aspect ratio, where overlapping needles contribute a
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w3, W, are vectors,w,, is a (traceless matrix. These

functions give the Mayer bond between pairs of sphg28%
through —fgd2=w3*w5+wy*wi—wS,*w>; . However,
they are not sufficient to recover the sphere-needle Mayer
bond[27]. This is achieved through

Wi, Q) =2|wS,(r)- Q) @)

which contains information abolioth species: it is nonvan-
ishing on the surface of a sphere with radis but this

surface is “decorated” with a2 dependence. Furthermore,
for needles, we follow Ref.27] to obtain

FIG. 1. Sketch of the ternary mixture of colloidal hard spheres
with diametero ¢, ideal polymer spheres of diametep and van- WN(r Q)= ;f
ishingly thin needles of length. Different cases for interactions EARN 4
between polymers and needles are depidtadno interactions(b)
excluded volume interactions.

L2 -
/dl5(r+ﬂ|), (4
L

wh(r,Q)=1[8(r+QL/2)+ 8(r—QL/2)], (5)

negligible fraction of configurations. The colloidal spheres . . .
interact with both other components via excluded vqume.andr is the needle center of mass. The funcwﬁ‘\descnbes

The pair interaction between colloids and polymers/is, f[he Iinear. extent of a ljee_dle, Where/a% is characteristic of
= if r<Rec+Rp, and zero otherwise; the interaction be- its endpomt;. For vanishingly thin needles, t_)oth su_rface and
tween colloids and needles ¥&.y=2, if both overlap, and Volume vanish, and so do the corresponding weights,
zero otherwise. What remains to be prescribed is the interac= W3 =0. Technically, the Mayer bond is generated through
tion between needles and polymers. We consider two cases: fsn(r,€2) = w5(r)*wy(r, ) + w3(r,Q)* wi(r,Q),

(i) ideal interactions such thats\=0 for all distances, and Wwherer is the difference vector between sphere and needle
(i) excluded volume interactions such thgty= if needle  position.

and polymer overlap, and zero otherwise. We denote the

sphere diameters by.=2R:, op=2Rp, the sphere pack- B. Weighted densities

ing fractions byzyc=4mR3pc/3, 7p=4mR3pp/3, and use a

di onl dle densi L3 The weight functions are used to smooth the possibly
imensionless needle densjifj = pyL°.

highly inhomogeneous density profiles by convolutions,

C _ C
IIl. DENSITY FUNCTIONAL THEORY n;(r)=pc(r)*wy(r), (6)
A. Weight functions ns(r):pp(r)*ws(r), 7
We start with a geometrical representation of the particles
in terms of weight functionsv,,, where x=3,2,1,0 corre- nsN(r,Q)=pc(r)*wsN(r,Q), (8
sponds to the particles’ volume, surface, integral mean cur-
vature, and Euler characteristic, respectivé®7], and i noN(r, Q)= pp(r)*whN(r,Q), 9)
=C,P,N labels the species. We will usg as a unifying
symbol for the spherical speci€s and P, and denote the nN(r,Q)=pn(r,Q)*wN(r,Q), (10)

radius asR, whereR=R., Rp for S=C,P, respectively.

The weight functions are determined to give the hard corgvherer=0, 1, 2, 3,v1,v2, m2, andr=0, 1; pc(r), pp(r),

Mayer bondsfjj=exp(Vj)—1 by a linear combination of and py(r,€2) are the one-body density distributions of

termsw'y(r)*wg_y(r), where the asterisk denotes the con-spheres, polymers, and needles, respectively. Notenf,hat

volution, g(r)*h(r)=fd3xg(x)h(r —x). nf, n';‘ are “pure” weighted densities, involving only vari-
For spheres, the usual weight functidi28,2g are ables of either specig&3,27. In contrastns™ andnb™ are

a convolution of the sphere densities with orientation-

dependent weight function, combining characteristics of both

specieq 25].

wi(r)=6(R—r), w5(r)=6R-r), )

Wo,(N)=W3(r)r/7, Wi(r)=w5(r)[rr/r2=13], (2)
C. Free energy density
wherer =|r], A5(r) Is the Dirac distributionp(r) is the step The Helmholtz excess free energy is obtained by integrat-
function, andl is the identity matrix. Further linearly depen- jng over a free energy density,
dent weights are wj(r)=w5(r)/(4mR), W>(r)
=w3>,(r)/(4mR), wi(r)=w3(r)/R. Note that these weights
have different tensorial rankws, w3, w5, w3 are scalars;

5 [ 470 i
Fex([PCaPPaPN]:kBTf d Xf 2 Pamh, 1D
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wherekg is Boltzmann’s constanf is temperature, and the not feature the exact zero-dimension@d) limit, as the

(local reduced excess free energy densityis a simple geometry-based DF[26] for WR spheresdoes, we expect

function (not a functiongl of the weighted densitierﬁy. This  differences to be small.

leads to a dependence @fon orientation and position. The

variable x runs over spac¢23,27, and Q over the unit IV. RESULTS

spherg 25]. _

The functional form ofd is obtained by consideration of A. Bulk fluid phases

the exact zero-dimensional excess free energy. We obtain ~ For homogeneous density profilgs= const, the integra-

tions in Eqgs.(6)—(10) can be carried out explicitly. The hard
O=Pct+Pept Doyt ADPpy, (12 sphere contribution is equal to the Percus-Yevick compress-

ibility (and scaled-particjeresult, which is

where in the case of ideal polymer-needle interachenO,

and for hard polymer-needle interactian- 1. In the follow- ~ 3nc[37c(2— 1) = 2(1= 1¢)*In(1- nc)]

ing, the arguments of the weighted densities are suppressed ~ ¢¢ 87-rR(3:(1— 7c)? '

in the notation; see Eq#6)—(10) for the explicit dependence (17)
onr andQ. The hard sphere contribution, being equal to the

pure HS cas¢23,28, is The colloid-polymer contribution is equal to that predicted

by free volume theory8], and rederived by DFT24] as
®cc=—nSIn(1-n$)+(nfnS—n% -n%)/(1—nf)

7p(87RE) , )
+[(n$)33—nS(n%,)2+3(nS,-AS,-nS, q’cpz(l_—%)r{&l 7cl6(1—7¢)°+3a(2— nc— 7c)
—3 detfi,)/2]/[8m(1-n3)?]. (13 +20%(1+ ne+ 72)1-6(1— 5¢)3 In(1- 70)},
The contribution due to interactions between colloids and (18)
pi?llgnmebrs is the same as in the pure AO c§84] and is where g=op/oc. The colloid-needle contribution equals
g y the perturbativéaround a pure hard sphere fluigleatment
IP of Ref. [5], which can be shown to equal the result from
Dep= >, —e=nP. (14)  application of scaled-particle theof9], and DFT[25], and
vooon, 7 is given by
The contribution due to interactions between colloids and 3L ¢
needleq25] is Den=pn| —IN(1=7nc) + AR 1-pa|’ (19
N,,CN . . .
The WR-type polymer-needle contribution is
Dey=—niIn(1-nS)+ ¢ (15) ype POl
3
3L
_ _ q>pN:<1 o= | Pne (20)
Note that the simultaneous presencedgfp and ®cy in & 4Rp/1-17c

does not generate artificial interactions betwBeandN. For ) S
vanishingPN pair potential one can derive these terms fromFor completeness, the ideal free energy contribution is
consideration of multicavity distributions like in the binary

CP [24,12 and CN caseg25]. In order to model the WR- b= > pilin(piAd)—1], (22)
type interaction between polymers and needles in the pres- i=C,P,N

ence of the colloidal spheres we use
where theA; are(irrelevan) thermal wavelengths of species

nhng +nin5N i. This puts us into a position to obtain the reduced total free
PN 1 C (16)  energy per volumeb,=®;4+® of any given fluid state
3 characterized by the bulk densities and relative sizes of the

. . . i three components.
This can be derived as follows. The starting point is a func- P

tional for binary hard spheres with added needles. Lineariza-
tion in one of the sphere densitiéshich becomes the poly-
mer speciesis performed in the same way as linearization of  The general conditions for phase coexistence are equality
binary hard spheres leads to the CP functidda]. In the  of the total pressureg,,, and of the chemical potentia}s;
absence of colloids, we obtai®=®py=nyn5+nn5N.  in the coexisting phases. Equality of temperature is trivial in
Then the density functional can be rewritten hard-body systems. For phase equilibrium between phases |
as  Fee=— A3 A3 [d2Qpp(r)fpn(rir’, Q) pn(r,Q)/  and Il

(4). This is precisely(a generalization to needles)dhe | 0

mean-field DFT for the WR modégIL5]. Although this does Piot= Pot (22)

B. Phase diagram
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FIG. 2. Demixing phase diagram of a ternary colloid-polymer-needle mixture with ideal polymer-needle interactiggs tes=L, and
7p=0 (a), 0.5(b), 0.638 31(c), 0.8(d). Shown are binodaldines), tielines between coexisting phagésin lines, and critical pointgdots.

M::Mi“ , i=C,P,N. (23)  joined by a straight tie line. Accordingly, three-phase coex-
istence is a triplet of points, defining a triangle. In order to
These are four equations for six unknowiwo statepoints graphically represent the phase diagram, we show surfaces
each characterized by three densjtiégence two-phase co- defined by one thermodynamic parameter being constant.
existence regions depend parametrically on two free paranBuch surfaces are conveniently taken such that coexistence
eters. For three-phase equilibrium between phases |, Il, anghes (and triangles lie completely within the surface.
I, Clearly, this can be accommodated by imposing a constant
Lo (24) value of pi,; or any of uc, up, and uy. Here we choose
Pror™ Pror™ Pror: mup=const, and hence imagine controlling the system
M:ZM:'=M:”, i—C.P.N. (25) directly with 7¢ ahd px ., but ind_irectly via_ coup:ling to a
polymer reservoir of packing fraction np=(4w/
Eight equations for nine variables leave one free parameteB)(Rp/A p)3 exp(up/ksT). A constantsp, surface is nontrivi-

In our casepi/kg T=—Pyoi+Zi—c pn pidPiot/dpi, and w; ally embedded in the 3D phase diagram. To depict it graphi-
=kgTod/dp; yield analytical expressions. We solve the cally, we show projections onto the three sides of the coor-
resulting sets of equations numerically, which is straightfor-dinate system, namely, thec—p{, 7c—7p, and 7p—pn
ward. planes, as well as a perspective 3D view. Furthermore, we

indicate the accessible regions that are compatible with the
1. Ideal polymer-needie interaction constraint of fixed 5. Their boundaries are implicitly

Let us first explain our representation of the ternary phaselefined through  7p(7c=0,7p ,py) = const and
diagrams. We take the system densitigs, 7p ,py, as basic  7p(7c, 7p,p5=0)=const. Note that tielines are allowed to
variables. For given particle sizes, these span a threesross inaccessible regions.
dimensional(3D) phase space. Each point in this space cor- For simplicity, and to establish a reference case, we ini-
responds to a possible bulk state, at some presggyrefwo-  tially ignore polymer-needle interactions and consider equal
phase coexistence is indicated by a pair of points that arparticle sizesgc=0cp=L. In the absence of polymersf
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FIG. 4. Demixing phase diagrams in the binary subsystems with
hard polymer-needle interactions fog=20p=L/2.

binary CP(AO) model, which is located ai,=0.638 31

[see Fig. 2c)]. Computer simulations are currently being car-
ried out to test the accuracy of this valig9]. For still larger

7p, the mixed states become disconnected, hence there is no
path between colloid-rich and colloid-poor phases that does
not pass through a first-order phase transifieee Fig. 2d)

for »p=0.8].

2. Hard polymer-needle interaction

Turning on the excluded-volume interaction between
polymers and needles allows the possibility of demixing be-
tween these components. In the absence of colloids, the PN
mixture is of WR type: Interactions between particles of like
species vanish, while unlike particles interact with a hard
core repulsion. Our case is a generalization to nonspherical
particle shapes. In the mean-field treatment this does not af-
fect the phase diagram, as only the net excluded volume
enters into the theory. This robustness is also present in our
approach.

We first consider equal particle sizegc=op=L. It
turns out that interesting behavior is observed only for small
pn<0.2. The colloid-needle demixing curve lies well above
this region, and is only weakly affected by,>0. In the
absence of needlep{=0) and for large enough polymer
. . density, colloids and polymers demix, indicated by a misci-

o bility gap along thepy, =0 axis[see Fig. 8a) for 75=0.8].
Increasing needle densipf, >0 causes the gap to shrink and

FIG. 3. Demixing phase diagram of a ternary colloid-polymer- eyentually to disappear in a critical point. Quite surprisingly,
needle mixture with hard polymer-needle interactions dgr= op and in contrast to the former case of abseNtinteractions,
=L, and7p=0.8(a), 1.087 31(b), 1.2(0). the addition of needlegavors mixing. This behavior may

reflect a competition between the depleting effects of inter-
=0), colloids and needles demix, as shown in Fi@2In-  acting polymers and needles. By analogy with €@ sub-
creasing the packing fraction of polymers in the reservoirsystem it is clear that at sufficiently high polymer density, a
causes the demixed region to grow and to shift to smajfer PN miscibility gap will open forzc=0. However, this hap-
and p}, [see Fig. ?) for np=0.5]. This behavior can be pens not by growing a small bump as in @@ case. Instead
understood if addition of a second depleting species simplyhe CP demixing curve bends over to smallgg and touches
enhances the depletion-induced attraction between colloid$éwith its critical poin) the =0 axis (see Fig. 8o) for
Increasingzp further causes the critical point to hit thg,  7p=1.087 3). For larger 7, the critical point disappears
=0 axis. This is precisely the demixing critical point of the [see Fig. &) for 7p=1.2].
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FIG. 5. Same as Fig. 3, but ferc=20p=L/2, and7p=0 (a), 0.4 (b), 0.408 107(c), 0.5 (d), 0.526 26(e), 0.54(f).

In order to bringCP andCN demixing closer together, we separation into colloid-rich and needle-rich phases occurs at
consider a reduced polymer sizer=o¢/2, generating a high enough densities of these components. Bgtipy, and
weaker depletion attraction between colloit the same 7.- 7, planes are inaccessible gs=0. Increasing polymer
number density of polymeysand longer needles,=20¢c  density[ 75=0.4 in Fig. 3b)] shifts theCN critical point to
generating stronger depletion between colloids, and henggwer 7, distorting the formerly rounded shape of the bin-
lower py, at the critical point in the binar€N case. Figure 4 odal. For nc=0, polymers and needles demix, ag is
shows the binodals in thihreg binary subsystems. For the above the critical value for the Widom-Rowlinson type de-
ternary mixture, we follow a path of increasing, starting mixing of these species. The presence of colloigg ¥ 0)
with 7= 0, for which the phase diagram is displayed in Fig. disturbs thePN transition; the miscibility gap narrows, even-
5(a). There is no polymer present in the system, and phastially disappearing in a critical point, with subsequent mis-
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cibility. At 75=0.408 107[Fig. 5(c)] the CN andPN critical cent of the formerly distinct transitions. For still largef,

points merge into a single one, and a needle-rich pkisse the three-phase triangle grows furtieee Fig. &) for 7p

becomes isolated. This coexists with a phase that consists0.54]. Ultimately, at sufficient concentration the colloids

(primarily) of colloids and polymers at varying composition. must freeze, but we disregard the solid phase in the present

For growing 77';31 the “double” critical point broadens into a work. We f|na”y note that the whole scenario is covered over

line and results in a thin neck joining both transitions. a relatively small density intervahp=0.4-0.54, and that
With increasingz} the coexistence region broadens fur- the packing fractions of colloids and polymers are only mod-

ther[see Fig. &) for »p=0.5]. Colloids and polymers also erate. However, needle densities can be quite high.

demix. Forpy =0, the system is above the critical point for

the pure AO model, and hence coexistence between colloid- V. DISCUSSION

rich and polymer-rich phases occurs. Again, the presence of

the third component, in this cadé causes the density gap to

shrink and eventually disappear with a critical point. As all

In conclusion, we have considered a simple hard-body
model for a mixture of spherical colloidal particles, globular

bi b b demixed. it i ” hat th olymer coils, and needle-shaped objects, which may repre-
Inary subsystems are by now demixed, it is evident that thgg ¢ either colloidal needles, stretched polymers or polyelec-

system will ultimately_display coexistence between threetr lytes. We have extended a recent DFT approach fo this
phases, each one enriched by one of the components, a del and applied it to bulk fluid phases. The resulting phase

represented. by a triangle in system representation. Eac_h “Yehavior is very rich, ensuing from competition of demixing
ner of the triangle corresponds to one of the three coexisting " binary subsystems

phases. The Gibbs phase rule dictates that one degree OfThe present paper has interesting implications for the

freedom remains, which is,; or, equivalently7 (note that techniques of integrating out degrees of freed@®e e.g.,

for hard—body systems, temperature is t(ivially related to[31,32)_ Note that by integrating out, e.g., the needles, ef-
pressurg Itis striking, however, how this triangle develops. fective interactions between pairs of colloids, pairs of poly-
One might expect this to occur by the joining of existing mers, as well as colloids and polymers arise. Hence one ar-
binary coexistence regions. This is not the case. The ternamyes at a binary mixture witisofy) depletion interactions.
region instead grows solely out of thérich-poor coexist- 14 what extent the ultimate mapping onto a one-component
ence, wherebyCP coexistence is only a spectator, separateqco||oid) system, by further integrating out the polymers, can
by mixed states. The initial three-phase triangle is extremely,e 4chieved is an interesting question. As a further outlook,
elongatedbeing a line as a boundary cas®ne corner cor-  he inclusion of freezing of colloids, disregarded in the
responds to a needle-rich phase; both others differ onlyresent work, would further enrich the phase behavior. Com-

slightly in densities, one phase favoring colloids, the othe, ier simulations are desirable to test the theoretical phase

polymers. Mol/ing away from this CP edge of the triangle jiagrams. Furthermore it is interesting to elucidate the struc-
(by reducingpy) leads to binary coexistence betwe@rnd  yra| correlations present in the various fluid phases. Inho-
P. This phase separation is reminiscent of the behavior of thﬁnogeneous situations, such as induced by walls or present at

pure AO model. However this reentrant coexistence is triginterfaces between demixed states, constitute further exciting
gered by the presence of the needles, and it is sepaifayed directions of research.

mixed statesfrom the pure AO transitioriand its region of
stability in the presence of needle$n Fig. 5e) we show
results foryh=0.526 26, where the critical points of both CP
transitions have already merged, and again a neck is reminis- We acknowledge useful discussions with Stuart G. Croll.
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