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Colloids, polymers, and needles: Demixing phase behavior

Matthias Schmidt* and Alan R. Denton
Department of Physics, North Dakota State University, Fargo, North Dakota 58105-5566

~Received 3 October 2001; published 23 January 2002!

We consider a ternary mixture of hard colloidal spheres, ideal polymer spheres, and rigid vanishingly thin
needles, which model stretched polymers or colloidal rods. For this model, we develop a geometry-based
density functional theory, apply it to bulk fluid phases, and predict demixing phase behavior. In the case of no
polymer-needle interactions, two-phase coexistence between colloid-rich and colloid-poor phases is found. For
hard needle-polymer interactions, we predict rich phase diagrams, exhibiting three-phase coexistence, and
reentrant demixing behavior.
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I. INTRODUCTION

The richness of phase behavior of systems with pur
repulsive interactions depends crucially on the number
components. For a one-component system like colloidal h
spheres, there occurs a freezing transition from a single fl
phase to a dense crystal. Adding a second component,
as nonadsorbing globular polymer coils@1# or rodlike par-
ticles @2,3# generates an effective depletion-induced attr
tion between colloidal spheres, leading to the possibility
demixing. This transition is an analog of the vapor-liqu
transition in simple fluids: The phase that is concentrated
one of the components corresponds to a liquid, while
dilute phase corresponds to a vapor, and one frequently
fers to such phases as colloidal liquid and colloidal vap
although the ‘‘vapor’’ is concentrated in the added comp
nent.

Generic theoretical models for such systems are those
troduced by Asakura and Oosawa~AO! and independently
by Vrij @1,4#, Bolhuis and Frenkel~BF! @5#, and Widom and
Rowlinson~WR! @6#. The AO model comprises hard collo
dal spheres mixed with polymer spheres that are id
amongst themselves but cannot penetrate the colloids.
BF model adds stiff vanishingly thin needles to a hard sph
system. Because of their vanishing thickness, the needle
not interact with one another. Clearly, both models are si
lar in spirit, as a noninteracting component is added to h
spheres. In the WR model this is different; two species
spheres interact symmetrically, such that hard core repul
occurs only between particles of unlike species. Hence a p
system of either component is an ideal gas. All of the
model binary mixtures exhibit liquid-vapor phase separati
well established by computer simulations and theor
@7–12#. The WR model@6,13–15# has been studied with
range of approaches, including mean-field theory~MFT!
@15#, Percus-Yevick ~PY! integral equation theory
@14,16,17#, scaled-particle theory~SPT! @18#, as well as com-
puter simulations@16,19,20#. The precise location of the
liquid-vapor critical point was located by simulations abo

*Permanent address: Institut fu¨r Theoretische Physik II,
Heinrich-Heine-Universita¨t Düsseldorf, Universita¨tsstraße 1,
D-40225 Düsseldorf, Germany.
1063-651X/2002/65~2!/021508~8!/$20.00 65 0215
ly
f

rd
id
ch

-
f

in
e
e-
r,
-

n-

al
he
re
do
i-
rd
f

on
re
e
,
s

t

50% higher than previously thought@16,19#, still a challenge
for theories~for a recent integral-equation closure, see R
@17#!.

In the AO and BF cases a reservoir description has pro
to be useful. The reservoir density of either polymers
needles rules the strength of effective attraction and he
plays a role similar to~inverse! temperature in simple sub
stances. Although the WR model features an intrinsic sy
metry that seems to preclude such a description, an effec
model can also be formulated@15#. In the present paper we
consider the phase behavior of a mixture of spheres, p
mers, and needles, a natural combination of the above bi
cases. We note that our ternary model may provide ins
into certain real systems, such as paints, which contain
loidal latex and pigment particles, polymer thickeners a
dispersants, as well as many other components@21#.

Density functional theory~DFT! @22# is a powerful ap-
proach to equilibrium statistical systems, possibly under
fluence of an external potential. Building on Rosenfield
work @23#, a geometry-based approach was recently p
posed that also predicts bulk properties, without the need
any input, allowing the AO@24#, BF @25#, and WR @26#
models to be treated. Here we combine these tools to de
a DFT for ternary systems.

In Sec. II we define the model ternary mixtures
spheres, polymers, and needles. In Sec. III the DFT is de
oped. Application to bulk phases in Sec. IV yields the pha
behavior. We finish with concluding remarks in Sec. V.

II. THE MODEL

We consider a mixture of colloidal hard spheres~species
C! of radius RC , globular polymers~speciesP! of radius
RP , and vanishingly thin needles~speciesN! of length L,
with respective number densitiesrC(r ), rP(r ), and
rN(r ,V), wherer is the spatial coordinate andV is a unit
vector pointing along the needle axis~see Fig. 1!. The pair
interaction between colloids isVCC5` if the separationr
between sphere centers is less than 2RC , and zero otherwise
The pair interactions between like particles of both oth
components vanish for all distances:VPP5VNN50. For
polymers this is an assumption strictly valid only at the th
point; for needles it becomes exact in the present limit
large aspect ratio, where overlapping needles contribu
©2002 The American Physical Society08-1
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negligible fraction of configurations. The colloidal spher
interact with both other components via excluded volum
The pair interaction between colloids and polymers isVCP
5` if r ,RC1RP , and zero otherwise; the interaction b
tween colloids and needles isVCN5`, if both overlap, and
zero otherwise. What remains to be prescribed is the inte
tion between needles and polymers. We consider two ca
~i! ideal interactions such thatVPN50 for all distances, and
~ii ! excluded volume interactions such thatVPN5` if needle
and polymer overlap, and zero otherwise. We denote
sphere diameters bysC52RC , sP52RP , the sphere pack
ing fractions byhC54pRC

3 rC/3, hP54pRP
3rP/3, and use a

dimensionless needle densityrN* 5rNL3.

III. DENSITY FUNCTIONAL THEORY

A. Weight functions

We start with a geometrical representation of the partic
in terms of weight functionswm

i , wherem53,2,1,0 corre-
sponds to the particles’ volume, surface, integral mean
vature, and Euler characteristic, respectively@27#, and i
5C,P,N labels the species. We will useS as a unifying
symbol for the spherical speciesC and P, and denote the
radius asR, where R5RC , RP for S5C,P, respectively.
The weight functions are determined to give the hard c
Mayer bondsf i j 5exp(Vij)21 by a linear combination o

termswg
i (r )* w32g

j (r ), where the asterisk denotes the co
volution, g(r )* h(r )5*d3xg(x)h(r2x).

For spheres, the usual weight functions@23,28# are

w3
S~r !5u~R2r !, w2

S~r !5d~R2r !, ~1!

wv2
S ~r !5w2

S~r !r /t, ŵm2
S ~r !5w2

S~r !@rr /r 221̂/3#, ~2!

wherer 5ur u, d(r ) is the Dirac distribution,u(r ) is the step
function, and1̂ is the identity matrix. Further linearly depen
dent weights are w1

S(r )5w2
S(r )/(4pR), wv1

S (r )
5wv2

S (r )/(4pR), w0
S(r )5w1

S(r )/R. Note that these weight
have different tensorial rank:w0

S , w1
S , w2

S , w3
S are scalars;

FIG. 1. Sketch of the ternary mixture of colloidal hard sphe
with diametersC , ideal polymer spheres of diametersP and van-
ishingly thin needles of lengthL. Different cases for interaction
between polymers and needles are depicted:~a! no interactions;~b!
excluded volume interactions.
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S , wv2

S are vectors;ŵm2
S is a ~traceless! matrix. These

functions give the Mayer bond between pairs of spheres@23#
through 2 f SS/25w3

S
* w0

S1w2
S
* w1

S2wv2
S

* wv1
S . However,

they are not sufficient to recover the sphere-needle Ma
bond @27#. This is achieved through

w2
SN~r ,V!52uwv2

S ~r !•Vu, ~3!

which contains information aboutbothspecies: it is nonvan-
ishing on the surface of a sphere with radiusR, but this

surface is ‘‘decorated’’ with anV̂ dependence. Furthermore
for needles, we follow Ref.@27# to obtain

w1
N~r ,V!5 1

4 E
2L/2

L/2

dld~r1V̂l !, ~4!

w0
N~r ,V!5 1

2 @d~r1V̂L/2!1d~r2V̂L/2!#, ~5!

andr is the needle center of mass. The functionw1
N describes

the linear extent of a needle, whereasw0
N is characteristic of

its endpoints. For vanishingly thin needles, both surface
volume vanish, and so do the corresponding weights,w2

N

5w3
N50. Technically, the Mayer bond is generated throu

2 f SN(r ,V) 5 w3
S(r )* w0

N(r ,V) 1 w2
SN(r ,V) * w1

N(r ,V),
wherer is the difference vector between sphere and nee
position.

B. Weighted densities

The weight functions are used to smooth the possi
highly inhomogeneous density profiles by convolutions,

nn
C~r !5rC~r !* wn

C~r !, ~6!

nn
P~r !5rP~r !* wn

P~r !, ~7!

n2
CN~r ,V!5rC~r !* w2

CN~r ,V!, ~8!

n2
PN~r ,V!5rP~r !* w2

PN~r ,V!, ~9!

nt
N~r ,V!5rN~r ,V!* wt

N~r ,V!, ~10!

wheren50, 1, 2, 3,v1, v2, m2, andt50, 1; rC(r ), rP(r ),
and rN(r ,V) are the one-body density distributions
spheres, polymers, and needles, respectively. Note thatnn

C ,
nn

P , nn
N are ‘‘pure’’ weighted densities, involving only vari

ables of either species@23,27#. In contrast,n2
CN andn2

PN are
a convolution of the sphere densities with orientatio
dependent weight function, combining characteristics of b
species@25#.

C. Free energy density

The Helmholtz excess free energy is obtained by integ
ing over a free energy density,

Fexc@rC ,rP ,rN#5kBTE d3xE d2V

4p
F~$ng

i %!, ~11!

s
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COLLOIDS, POLYMERS, AND NEEDLES: DEMIXING . . . PHYSICAL REVIEW E65 021508
wherekB is Boltzmann’s constant,T is temperature, and th
~local! reduced excess free energy densityF is a simple
function~not a functional! of the weighted densitiesng

i . This
leads to a dependence ofF on orientation and position. Th
variable x runs over space@23,27#, and V over the unit
sphere@25#.

The functional form ofF is obtained by consideration o
the exact zero-dimensional excess free energy. We obta

F5FCC1FCP1FCN1lFPN , ~12!

where in the case of ideal polymer-needle interactionl50,
and for hard polymer-needle interactionl51. In the follow-
ing, the arguments of the weighted densities are suppre
in the notation; see Eqs.~6!–~10! for the explicit dependence
on r andV. The hard sphere contribution, being equal to
pure HS case@23,28#, is

FCC52n0
C ln~12n3

C!1~n1
Cn2

C2nv1
C
•nv2

C !/~12n3
C!

1@~n2
C!3/32n2

C~nv2
C !213~nv2

C
•n̂m2

C
•nv2

C

23 detn̂m2
C !/2#/@8p~12n3

C!2#. ~13!

The contribution due to interactions between colloids a
polymers is the same as in the pure AO case@24# and is
given by

FCP5(
n

]FCC

]nn
C nn

P . ~14!

The contribution due to interactions between colloids a
needles@25# is

FCN52n0
N ln~12n3

C!1
n1

Nn2
CN

12n3
C . ~15!

Note that the simultaneous presence ofFCP andFCN in F
does not generate artificial interactions betweenP andN. For
vanishingPN pair potential one can derive these terms fro
consideration of multicavity distributions like in the bina
CP @24,12# and CN cases@25#. In order to model the WR-
type interaction between polymers and needles in the p
ence of the colloidal spheres we use

FPN5
n0

Nn3
P1n1

Nn2
PN

12n3
C . ~16!

This can be derived as follows. The starting point is a fu
tional for binary hard spheres with added needles. Linear
tion in one of the sphere densities~which becomes the poly
mer species! is performed in the same way as linearization
binary hard spheres leads to the CP functional@12#. In the
absence of colloids, we obtainF5FPN5n0

Nn3
P1n1

Nn2
PN .

Then the density functional can be rewritte
as Fexc52*d3r *d3r 8*d2VrP(r ) f PN(r ;r 8,V)rN(r ,V)/
(4p). This is precisely~a generalization to needles of! the
mean-field DFT for the WR model@15#. Although this does
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not feature the exact zero-dimensional~0d! limit, as the
geometry-based DFT@26# for WR spheresdoes, we expect
differences to be small.

IV. RESULTS

A. Bulk fluid phases

For homogeneous density profiles,r i5const, the integra-
tions in Eqs.~6!–~10! can be carried out explicitly. The har
sphere contribution is equal to the Percus-Yevick compre
ibility ~and scaled-particle! result, which is

FCC5
3hC@3hC~22hC!22~12hC!2ln~12hC!#

8pRC
3 ~12hC!2 .

~17!

The colloid-polymer contribution is equal to that predict
by free volume theory@8#, and rederived by DFT@24# as

FCP5
hP /~8pRP

3 !

~12hC!3 $3qhC@6~12hC!213q~22hC2hC
2 !

12q2~11hC1hC
2 !#26~12hC!3 ln~12hC!%,

~18!

where q5sP /sC . The colloid-needle contribution equa
the perturbative~around a pure hard sphere fluid! treatment
of Ref. @5#, which can be shown to equal the result fro
application of scaled-particle theory@29#, and DFT@25#, and
is given by

FCN5rNF2 ln~12hC!1
3L

4RC

hC

12hC
G . ~19!

The WR-type polymer-needle contribution is

FPN5S 11
3L

4RP
D rNhP

12hC
. ~20!

For completeness, the ideal free energy contribution is

f id5 (
i 5C,P,N

r i@ ln~r iL i
3!21#, ~21!

where theL i are~irrelevant! thermal wavelengths of specie
i. This puts us into a position to obtain the reduced total f
energy per volumeF tot5Fid1F of any given fluid state
characterized by the bulk densities and relative sizes of
three components.

B. Phase diagram

The general conditions for phase coexistence are equ
of the total pressuresptot , and of the chemical potentialsm i
in the coexisting phases. Equality of temperature is trivia
hard-body systems. For phase equilibrium between phas
and II,

ptot
I 5ptot

II , ~22!
8-3
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FIG. 2. Demixing phase diagram of a ternary colloid-polymer-needle mixture with ideal polymer-needle interactions forsC5sP5L, and
hP

r 50 ~a!, 0.5 ~b!, 0.638 31~c!, 0.8 ~d!. Shown are binodals~lines!, tielines between coexisting phases~thin lines!, and critical points~dots!.
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I5m i

II , i 5C,P,N. ~23!

These are four equations for six unknowns~two statepoints
each characterized by three densities!. Hence two-phase co
existence regions depend parametrically on two free par
eters. For three-phase equilibrium between phases I, II,
III,

ptot
I 5ptot

II 5ptot
III , ~24!

m i
I5m i

II5m i
III , i 5C,P,N. ~25!

Eight equations for nine variables leave one free parame
In our caseptot /kB T52Ftot1(i5C,P,N ri]Ftot /]ri , andm i

5kBT]F tot /]ri yield analytical expressions. We solve th
resulting sets of equations numerically, which is straightf
ward.

1. Ideal polymer-needle interaction

Let us first explain our representation of the ternary ph
diagrams. We take the system densitieshC ,hP ,rN* as basic
variables. For given particle sizes, these span a th
dimensional~3D! phase space. Each point in this space c
responds to a possible bulk state, at some pressureptot . Two-
phase coexistence is indicated by a pair of points that
02150
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joined by a straight tie line. Accordingly, three-phase coe
istence is a triplet of points, defining a triangle. In order
graphically represent the phase diagram, we show surfa
defined by one thermodynamic parameter being const
Such surfaces are conveniently taken such that coexist
lines ~and triangles! lie completely within the surface
Clearly, this can be accommodated by imposing a cons
value of ptot or any of mC , mP , andmN . Here we choose
mP5const, and hence imagine controlling the syste
directly with hC and rN* , but indirectly via coupling to a
polymer reservoir of packing fraction hP

r 5(4p/
3)(RP /LP)3 exp(mP /kBT). A constant-hP

r surface is nontrivi-
ally embedded in the 3D phase diagram. To depict it grap
cally, we show projections onto the three sides of the co
dinate system, namely, thehC2rN* , hC2hP , andhP2rN*
planes, as well as a perspective 3D view. Furthermore,
indicate the accessible regions that are compatible with
constraint of fixedhP

r . Their boundaries are implicitly
defined through hP

r (hC50,hP ,rN* )5const and
hP

r (hC ,hP ,rN* 50)5const. Note that tielines are allowed t
cross inaccessible regions.

For simplicity, and to establish a reference case, we
tially ignore polymer-needle interactions and consider eq
particle sizes,sC5sP5L. In the absence of polymer (hP

r

8-4
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COLLOIDS, POLYMERS, AND NEEDLES: DEMIXING . . . PHYSICAL REVIEW E65 021508
50), colloids and needles demix, as shown in Fig. 2~a!. In-
creasing the packing fraction of polymers in the reserv
causes the demixed region to grow and to shift to smallerhC

and rN* @see Fig. 2~b! for hP50.5#. This behavior can be
understood if addition of a second depleting species sim
enhances the depletion-induced attraction between collo
IncreasinghP

r further causes the critical point to hit therN*
50 axis. This is precisely the demixing critical point of th

FIG. 3. Demixing phase diagram of a ternary colloid-polym
needle mixture with hard polymer-needle interactions forsC5sP

5L, andhP
r 50.8 ~a!, 1.087 31~b!, 1.2 ~c!.
02150
ir
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binary CP~AO! model, which is located athP
r 50.638 31

@see Fig. 2~c!#. Computer simulations are currently being ca
ried out to test the accuracy of this value@30#. For still larger
hP

r , the mixed states become disconnected, hence there
path between colloid-rich and colloid-poor phases that d
not pass through a first-order phase transition@see Fig. 2~d!
for hP

r 50.8#.

2. Hard polymer-needle interaction

Turning on the excluded-volume interaction betwe
polymers and needles allows the possibility of demixing b
tween these components. In the absence of colloids, the
mixture is of WR type: Interactions between particles of li
species vanish, while unlike particles interact with a ha
core repulsion. Our case is a generalization to nonsphe
particle shapes. In the mean-field treatment this does no
fect the phase diagram, as only the net excluded volu
enters into the theory. This robustness is also present in
approach.

We first consider equal particle sizes,sC5sP5L. It
turns out that interesting behavior is observed only for sm
rN* ,0.2. The colloid-needle demixing curve lies well abo
this region, and is only weakly affected byhP

r .0. In the
absence of needles (rN* 50) and for large enough polyme
density, colloids and polymers demix, indicated by a mis
bility gap along therN* 50 axis @see Fig. 3~a! for hP

r 50.8#.
Increasing needle densityrN* .0 causes the gap to shrink an
eventually to disappear in a critical point. Quite surprising
and in contrast to the former case of absentPN interactions,
the addition of needlesfavors mixing. This behavior may
reflect a competition between the depleting effects of int
acting polymers and needles. By analogy with theCP sub-
system it is clear that at sufficiently high polymer density
PN miscibility gap will open forhC50. However, this hap-
pens not by growing a small bump as in theCP case. Instead
theCP demixing curve bends over to smallerhC and touches
~with its critical point! the hC50 axis ~see Fig. 3~b! for
hP

r 51.087 31!. For largerhP
r , the critical point disappears

@see Fig. 3~c! for hP
r 51.2#.

-

FIG. 4. Demixing phase diagrams in the binary subsystems w
hard polymer-needle interactions forsC52sP5L/2.
8-5



MATTHIAS SCHMIDT AND ALAN R. DENTON PHYSICAL REVIEW E 65 021508
FIG. 5. Same as Fig. 3, but forsC52sP5L/2, andhP
r 50 ~a!, 0.4 ~b!, 0.408 107~c!, 0.5 ~d!, 0.526 26~e!, 0.54 ~f!.
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In order to bringCP andCN demixing closer together, we
consider a reduced polymer sizesP5sC/2, generating a
weaker depletion attraction between colloids~at the same
number density of polymers!, and longer needles,L52sC
generating stronger depletion between colloids, and he
lower rN* at the critical point in the binaryCN case. Figure 4
shows the binodals in the~three! binary subsystems. For th
ternary mixture, we follow a path of increasinghP

r , starting
with hP

r 50, for which the phase diagram is displayed in F
5~a!. There is no polymer present in the system, and ph
02150
ce

.
se

separation into colloid-rich and needle-rich phases occur
high enough densities of these components. BothhP-rN* and
hC-hP planes are inaccessible ashP50. Increasing polymer
density@hP

r 50.4 in Fig. 5~b!# shifts theCN critical point to
lower hC , distorting the formerly rounded shape of the bi
odal. For hC50, polymers and needles demix, ashP

r is
above the critical value for the Widom-Rowlinson type d
mixing of these species. The presence of colloids (hC.0)
disturbs thePN transition; the miscibility gap narrows, even
tually disappearing in a critical point, with subsequent m
8-6
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COLLOIDS, POLYMERS, AND NEEDLES: DEMIXING . . . PHYSICAL REVIEW E65 021508
cibility. At hP
r 50.408 107@Fig. 5~c!# theCN andPN critical

points merge into a single one, and a needle-rich phase~N!
becomes isolated. This coexists with a phase that con
~primarily! of colloids and polymers at varying compositio
For growinghP

r , the ‘‘double’’ critical point broadens into a
line and results in a thin neck joining both transitions.

With increasinghP
r the coexistence region broadens fu

ther @see Fig. 5~d! for hP
r 50.5#. Colloids and polymers also

demix. ForrN* 50, the system is above the critical point fo
the pure AO model, and hence coexistence between coll
rich and polymer-rich phases occurs. Again, the presenc
the third component, in this caseN, causes the density gap t
shrink and eventually disappear with a critical point. As
binary subsystems are by now demixed, it is evident that
system will ultimately display coexistence between th
phases, each one enriched by one of the components,
represented by a triangle in system representation. Each
ner of the triangle corresponds to one of the three coexis
phases. The Gibbs phase rule dictates that one degre
freedom remains, which isptot or, equivalently,hP

r ~note that
for hard-body systems, temperature is trivially related
pressure!. It is striking, however, how this triangle develop
One might expect this to occur by the joining of existin
binary coexistence regions. This is not the case. The ter
region instead grows solely out of theN-rich-poor coexist-
ence, wherebyCP coexistence is only a spectator, separa
by mixed states. The initial three-phase triangle is extrem
elongated~being a line as a boundary case!. One corner cor-
responds to a needle-rich phase; both others differ o
slightly in densities, one phase favoring colloids, the ot
polymers. Moving away from this CP edge of the triang
~by reducingrN* ! leads to binary coexistence betweenC and
P. This phase separation is reminiscent of the behavior of
pure AO model. However this reentrant coexistence is t
gered by the presence of the needles, and it is separate~by
mixed states! from the pure AO transition~and its region of
stability in the presence of needles!. In Fig. 5~e! we show
results forhP

r 50.526 26, where the critical points of both C
transitions have already merged, and again a neck is rem
ys
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cent of the formerly distinct transitions. For still largerhP
r ,

the three-phase triangle grows further@see Fig. 5~f! for hP
r

50.54#. Ultimately, at sufficient concentration the colloid
must freeze, but we disregard the solid phase in the pre
work. We finally note that the whole scenario is covered o
a relatively small density intervalhP

r 50.420.54, and that
the packing fractions of colloids and polymers are only mo
erate. However, needle densities can be quite high.

V. DISCUSSION

In conclusion, we have considered a simple hard-bo
model for a mixture of spherical colloidal particles, globul
polymer coils, and needle-shaped objects, which may re
sent either colloidal needles, stretched polymers or polye
trolytes. We have extended a recent DFT approach to
model and applied it to bulk fluid phases. The resulting ph
behavior is very rich, ensuing from competition of demixin
in the binary subsystems.

The present paper has interesting implications for
techniques of integrating out degrees of freedom~see e.g.,
@31,32#!. Note that by integrating out, e.g., the needles,
fective interactions between pairs of colloids, pairs of po
mers, as well as colloids and polymers arise. Hence one
rives at a binary mixture with~soft! depletion interactions.
To what extent the ultimate mapping onto a one-compon
~colloid! system, by further integrating out the polymers, c
be achieved is an interesting question. As a further outlo
the inclusion of freezing of colloids, disregarded in th
present work, would further enrich the phase behavior. Co
puter simulations are desirable to test the theoretical ph
diagrams. Furthermore it is interesting to elucidate the str
tural correlations present in the various fluid phases. In
mogeneous situations, such as induced by walls or prese
interfaces between demixed states, constitute further exc
directions of research.
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@24# M. Schmidt, H. Löwen, J. M. Brader, and R. Evans, Phys. Re

Lett. 85, 1934~2000!.
@25# M. Schmidt, Phys. Rev. E63, R05201~2001!.
02150
.

@26# M. Schmidt, Phys. Rev. E63, R01101~2001!.
@27# Y. Rosenfeld, Phys. Rev. E50, R3318~1994!.
@28# P. Tarazona, Phys. Rev. Lett.84, 694 ~2000!.
@29# J. A. Barker and D. Henderson, Rev. Mod. Phys.48, 587

~1976!.
@30# M. Dijkstra ~unpublished!.
@31# J. M. Brader and R. Evans, Europhys. Lett.49, 678 ~2000!.
@32# J. M. Brader, M. Dijkstra, and R. Evans, Phys. Rev. E63,

041405~2001!.
8-8


