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Decoration lattices of colloids adsorbed on stripe-patterned substrates
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The equilibrium structure of decoration lattices composed of colloidal particles adsorbed on periodic stripe-
patterned substrates is calculated as a function of the stripe width and separation and for different interparticle
interactions. Due to a competition of length scales, a wealth of different stable decoration lattices occurs such
as triangular, quadratic, rhombic, kitelike, and sheared honeycomb lattices, triangular slices as well as triangle
superlattices. This is of relevance for constructing templates that enforce crystal growth of unusual solid
structures.
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I. INTRODUCTION

Recent advances in microfabrication have allowed to p
pare chemically or topographically patterned substrates
controlled way by using e.g., lithographic printing or oth
etching techniques@1,2#. There is a profound influence o
such a substrate pattern on wetting@3–10#, on adsorption of
soft matter@11,12# and biological macromolecules@13,14#,
on crystal nucleation@15#, and on bulk phase transitions suc
as freezing@16,17# and fluid-fluid phase separation@18#. Pat-
terned substrates have also been used in so-called micr
idics in order to control chemical reactions on a microsc
or nanoscale@19,20#. For this purpose, one-dimension
channels are considered that carry the reacting mate
These channels can either be attractive stripes or topogra
cal groves.

In this paper we study the adsorption of colloidal partic
on a sticky periodic stripelike pattern. Our motivation to
so is first coming from experiments where decorations w
obtained by adsorbing colloidal spheres on a patterned
strate mask@11,21–29#, or in an external laser field@30#, for
a recent review see Ref.@31#. Such a decorated substrate m
be offered as a template to other mobile colloidal particles
order to nucleate further colloidal crystalline sheets and
grow ‘‘exotic’’ colloidal bulk crystals@16,32,33#. The colloi-
dal particles can both be sterically stabilized@34# or charge
stabilized. In the former case, the pattern can be prepare
a different chemical coating while in the latter the surfa
pattern is dictated by the inhomogeneous surface charge
sity @13,35,36#. Another experimental system to obser
structure formation near interfaces is magnetic bubble ar
with periodic line pinning@37#. While much experience ha
been accumulated in how to prepare the substrate in ord
realize a prescribed mask, a more systematic theoretica
derstanding of possible decoration structures as induce
an underlying sticky periodic pattern is missing. In this pap
we investigate this problem for a periodic stripe patte
within a simple model calculation including both attracti
and repulsive effective interparticle interactions. In equil
rium, we discover a wealth of possible stable decoration
tices. Hence although the substrate pattern is relativ
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simple, the decoration can be fascinatingly complex so th
wide range of decoration structures can be generated
controlled and simple way. Even for a single stripe, perio
decoration structures as buckled alternating superlatt
with a unit cell involving a large triangle of particles an
finite slices of a triangular bulk lattice may become stab
For a periodic stripe pattern, there are even more stable d
ration lattices, involving triangular, quadratic, rhombic, kit
like, and sheared honeycomb lattices.

The paper is organized as follows: We describe the mo
in Sec. II and outline our theory in Sec. III. Results a
presented in Sec. IV, and we conclude in Sec. V.

II. THE MODEL

We consider a periodically stripe-patterned smooth s
face, shown schematically in Fig. 1. The width of the stic
stripes isd, while the distance between neighboring stripes
b, so that the structure is periodic in a direction perpendicu
to the stripes with periodicity lengthb1d. This patterned
surface is exposed to a suspension of spherical colloidal
ticles with hard-core diameters aggregating onto the pat
tern. An aggregated sphere exhibits a point contact with
substrate gaining a potential energy2e,0, provided the
contact point is inside a sticky stripe. We assume stron
attractive substrates, such thate is much larger than the ther

FIG. 1. Model of hard spheres of diameters on an attractive
stripe pattern~dark gray! of width d and interstripe distanceb. The
sphere centers~crosses! are constrained to lie inside the stripes.
©2002 The American Physical Society02-1
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mal energykBT. Aggregation on the interstripe regions
neglected. Aggregation occurs from a dilute bulk solution
colloids. Here, we do not discuss the dynamics of aggre
tion or deposition@38#, but rather focus on the equilibrium
structure present after relaxation of the adsorption proc
Typical pair potentialsV(r ) as a function of separation dis
tancer between colloids have an inner hard core and a sh
ranged tail. By addition of nonadsorbing polymers or s
ions to the bulk solution, both attractive or repulsive tails c
be realized@39#. For simplicity, we use a square-well/squar
shoulder potential,

V~r !5H ` for r ,s,

v0 for s<r ,s~11d!,

0 else,

~1!

with a small positive~reduced! ranged. Depending on the
sign of v0, the tail is either repulsive (v0.0) or attractive
(v0,0). Thermodynamics of this system in bulk has be
studied in detail, see e.g., Refs.@40–43# and references
therein. Here, we expose the model to an inhomogene
surface, and restrict ourselves to zero temperature, i.e., to
classical ground state@44#. Let A be the area of the surface,N
be the number of adsorbed particles,r5N/A denote the
~two-dimensional! number density, andh5prs2/4 the cor-
responding area fraction. The whole system is character
by four reduced parameters, namely, the reduced widthd/s
of the attractive stripe, the reduced interstripe widthb/s, the
range of the potentiald, and the ratiov0 /e of colloid-colloid
to substrate-colloid interaction.

III. THEORY

For zero temperature the energetically most favora
configurations of the adsorbate will be attained. Technica
we need to minimize the total potential energyU per sub-
strate areaA. One may decomposeu[U/A5u11u2, where
u1 stems from substrate-particle attraction, andu2 from
particle-particle interactions. These contributions are

u152er, ~2!

u25A21(
i 51

N

(
j 5 i 11

N

V~ urW ( i )2rW ( j )u!, ~3!

whererW ( i ) denote~two-dimensional! particle positions on the
surface. It will prove useful to rewriteu2 in terms of the
kissing numbers k( i ) ~of particle i ), that equal the number o
touching spheres~i.e., urW ( i )2rW ( j )u5s) for particle i. If we
assume absence of hard-core overlap, and all particle s
rationsr being either at contact (r 5s), or outside the range
of interaction@r .s(11d)#, we can write

u25
v0

2A (
i 51

N

k~ i ![v0rk/2, ~4!

wherek5N21( i 51
N k( i ) is the~over system! averaged kissing

number. Note thatu1 favors optimal packing of spheres
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while u2 couples to the number of sphere contacts. Decis
for phase behavior is the competition between optimizat
of packing and kissing, where the ratiov0 /e is a control
parameter. In practice, we start with different candidate
tices for the colloids, calculateu for each one in order to find
the optimal lattice that minimizesu. The choice of candidate
is motivated by mathematical packing and includes rhomb
square, triangular, kite, and other structures involving sup
lattices. We disregard the disordered fluid phase, as temp
ture is zero. We have not considered nonperiodic structu
as quasicrystals@45#, that are expected to be unfavorable f
a one-component colloidal system, but could become
evant for binary and ternary mixtures. A similar zer
temperature calculation on structured substrates can be fo
in Ref. @44#, for quadratic substrate patterns and Lenna
Jones interparticle interactions. We further remark that si
lar crystalline lattice structures were obtained in Ref.@46# for
a different physical system, namely, flux lattices in layer
superconductors. In contrast to the short-range interact
employed in the present paper, the interaction between
lines is long ranged.

IV. RESULTS

A. Single stripe

For b/s.11d, the spheres adsorbed on neighbori
stripes are decoupled and the problem reduces to that o
sorption onto a single stripe. For simplicity, we letd→0 and
v0<0, so that we deal with sticky hard spheres. Geometr
considerations as well as numerically checking other str
tures makes it possible for us to restrict the actually reali
candidates to twon-layered crystals, namely~i! triangular
lattices (nD), and~ii ! supertrianglestructures (nS), see Fig.
2 for illustrations.nD is a portion of the triangular~bulk!
lattice. ThenS crystal consists of a buckled superlattice
alternating close-packed triangles.

The relevant properties of both candidates are the follo
ing. Forn close-packed layers on a stripe of widthd, we find

rD5
n

ds
, ~5!

rS5
n~n11!

ds@~n21!12 cosa#
, ~6!

whereaP@0,p/3) is the mismatch angle between adjace
supertriangles, see Fig. 2. For close-packed states,a is re-
lated tod via

a~d!5arcsin@d2A3~n21!/2#. ~7!

Note that fora50 ~no mismatch!, nD coincides withnS,
and trivially rD5rS . These configurations define the clos
packed area fractionhcp plotted in Fig. 3~a! as a function of
stripe widthd. For the average kissing number, we obtain v
counting of sphere contacts,

kD562
4

n
, ~8!
2-2
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kS562
8

n11
. ~9!

Although in the limit a→0 the structures themselves b
come identical,kS does not approachkD smoothly, but jumps
at a50. Relevant for the potential energy@Eq. ~4!# is not the
kissing number alone, butrk/2, that is plotted in Fig. 3~b! as
a function of stripe widthd.

In the limit v0→2`, maximal kissingper unit areade-
termines the equilibrium structure, as the dominant contri
tion rk/2 @Eq. ~4!# to the energyu is to be maximized. Quite
surprisingly, in each intervalnA3s/2,d,(n11)A3s/2, a
transition nD→nS exists, that is located atd/s5(n
21)A3/21A12@(22n21)/(322n21)#2, where large k
and low r in nD are outperformed by lowk and highr in
nS. Note that asn→`, the transition persists, and the rel
tive phase transition pointd/s2(n21)A3/2 approaches
A5/350.7454.

Putting things together, we can turn to the full energe
cally driven phase diagram for arbitraryuv0 /eu. Asking first
how additional layersn→n11 jump in, we find the simple

FIG. 2. Crystal structuresnD andnS of hard spheres sticking to
a single stripe of widthd for n51,2,3. The stripe widthd increases
from left to right.aP@0,p/3) is the mismatch angle between adj
cent supertriangles. Spheres building equilateral~super!triangles are
shaded to guide the eye. For largerd the sequence continues in a
analogous way.
04160
-
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answer: A transition nS→(n11)D is located at d
5n(A3/2)s, independentof v0 /e. ThenD→nS transition is
less trivial. We obtain

d5~n21!~A3/2!s1sA12F ~e/v0!221n21

~e/v0!2312n21G 2

.

~10!

In the limiting cases, forv0 /e50, we recover the close
packing structure of discs between lines, and forv0 /e→
2` the structure with maximal number of kisses. Equati
~10! interpolates smoothly between these limits.

The resulting phase diagram is shown in Fig. 4 as a fu
tion of d and exp(v0 /e). We restrict ourselves ton<4; the
succession ofnS andnD continues for largerd. In the limit
of broad stripes (d→`) and infinitely many layers (n→`),
we considerd2(n21)(A3/2)s, that mapsd/s onto the
@0,1# interval and obtain the universal (n-independent! re-
sult,

d2~n21!~A3/2!s→sA 522~e/v0!

@~e/v0!23#2
. ~11!

Narrow stripes with 0,d,(A3/2)s constitute a specia
case, because of dominance of a single phase 1S (1D is

FIG. 3. Relevant densities for close-packed hard spheres o
ameters on a stripe of widthd as a function ofd/s for nD ~sym-
bols! and nS ~lines! structures, as well as for the bulk triangula
lattice ~dashed lines!. ~a! Area packing fractionh. ~b! Kissing num-
ber density per unit area,rs2k/2.
2-3
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squeezed to a vertical line atd50.! The reason for this be
havior is that 1D and 1S possess equal kissing numbe
This is in contrast ton.1, wherekD.kS .

Two remarks are in order: First, the supertriangular pha
nS are the two-dimensional analog of three-dimensio
prism phases@47# found for hard spheres confined betwe
parallel hard plates. A similar cascade of phases has b
found there, although this is interrupted by other additio
phases such as a rhombic structure@48,49#. Second, in con-
trast to the bulk problem@50,51#, we are not aware of a stric
mathematical proof for close-packed configurations, nor
any other numerical investigation of the packing problem
discs between lines. Other confining geometries such as
square@52–54#, triangles @55,56#, and the circle@57–59#
have been treated in a rigorous way.

B. Coupled stripes

For b/s,11d, particles on adjacent stripes interact. W
limit ourselves to the hard sphere case,d50, and hence dea
with a packing problem. To break possible degeneracy
close-packed states, we considerv0 /e→02, favoring sphere
contacts.

1. Triangular lattice

We focus on the close-packed triangular lattice, of wh
is known that there is no denser structure in bulk. If w
succeed to identify patterns that are compatible~all lattice
sites lie on sticky stripes! with the triangular lattice, we have
then proved that there is no denser decoration lattice. T
task is to determine the (b,d) regimes in which the triangula
lattice is geometrically possible. Let the lattice sites of
triangular lattice be

AW ~ j ,k!5 jaW 11kaW 2 , j ,k50,61,62, . . . , ~12!

whereaW 15(s,0),aW 25(s/2,A3s/2) are basis vectors. In th
following, we imagine the lattice to be fixed on the surfa
and attempt to determine those stripe patterns that are c

FIG. 4. Phase diagram for sticky hard spheres adsorbed
single sticky stripe as a function of reduced stripe widthd/s, and
the ~exponentiated! ratio v0 /e of interparticle versus substrate po
tential. Lines are phase boundaries betweennD andnS structures.
The 1D phase is a vertical line atd/s50.
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patible with the particle lattice. For givenb,d the pattern is
determined by the orientation along the stripes. This orien
tion may be expressed asAW ( j ,k)/uAW ( j ,k)u, with suitably cho-
sen values forj ,k. In order to find stripe patterns that fit th
lattice, we calculate the distancej( j ,k) between adjacen
lattice lines~the analog to latticeplanesin three dimensions!,
that are parallel toAW ( j ,k)/uAW ( j ,k)u. To this end, we intro-
duce a vectorBW ( j ,k), that is orthogonal toAW ( j ,k)/uAW ( j ,k)u
as

BW ~ j ,k!52~ j 12k!aW 11~2 j 1k!aW 2 . ~13!

Projection of (21/k)aW 1 ontoBW gives the lattice line distance

j~ j ,k!52
aW 1•BW

kuBW u
5

A3s/2

Aj 21 jk1k2
. ~14!

Upon varyingj andk, the argumentj 21 jk1k2 generates a
~seemingly irregular when sorted! sequence of integer num
bers, namely, 1,3,4,7,9,12,13,16,19,21,25,27,28,31,36
39,43,48,49, . . . . Expression~14! gives the lattice line dis-
tance for an orientation of lattice lines~parallel to the stripes!
defined byj ,k. Assuming thatb1d and the lattice structure
j( j ,k) have the same periodicity, a triangular lattice fi
whenever the stripe widthd ~with the stripe orientation given
by AW ( j ,k)/uAW ( j ,k)u) and the interstripe distanceb have
periodicity j( j ,k), j ,kPZ,

b1d5j~ j ,k!. ~15!

This introduces a linear relationship between stripe widthd
and interstripe distanceb. In the b-d plane, lines joining
(j,0) and (0,j) indicate regions where the triangular lattic
fits the stripe pattern. For smaller values ofj, these lines get
increasingly dense and finally converge into the origin.

The assumption ofb1d periodicity is not mandatory.
Rather, we could let the structure be periodic afterm lattice
spacingsj( j ,k), and afterl stripe spacings (b1d). This re-
lation reads

b1d5
m

l
j~ j ,k!, ~16!

wherem andl must be undivisible integers, in order to avo
redundances. The periodicity brings about a set of inequ
ties to be satisfied, expressing the condition that no sph
may lie outside a stripe,

i j~ j ,k!< j ~b1d!~ i j~ j ,k!> j ~b1d!1b, ~17!

that is to be fulfilled for alli , j . Solving this leads to the
relation

~m21!b<d. ~18!

If we assume equality and use Eq.~16!, we can solve for the
minimal stripe widthdmin and simultaneous maximal inter
stripe distancebmax. These are

a

2-4
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bmax5
1

l
j~ j ,k!, ~19!

dmin5
~m21!

l
j~ j ,k!, ~20!

and fulfill the relation

~m21!bmax5dmin . ~21!

Hence the triangular regimes are lines from (0,j) to
(bmax,dmin). The above case@lines from (0,j) to (j,0)# is
recovered form5 l 51. For each combination ofm and l we
thus get a one-dimensional regime, where the triangular
tice fits. Variation ofj and k, at fixed m and l, then gives
additional lines, shifted on thed axis with their length being
reduced. This is illustrated in Fig. 5~a!, where j and k are
varied with m51 and l 51 fixed ~solid lines! as well asm
54 and l 51 fixed ~dashed lines!. The shift of the lines is
according to Eq.~21!, their upper end points lying on a lin
defined by Eq.~19!, whose slope changes withm. In Fig.
5~b!, the lattice line distancesj( j ,k) are fixed via j 50,k
51 ~solid lines!, j 50,k52 ~dotted lines!; and j 51,k52
~dash-dotted lines!, while m and l are varied. Figure 5~b!
illustrates that (j ,k) for a given combination of (m,l ) deter-
mine the height and position of one line, with other com
nations of (m,l ) producing replicas that are shifted on thed
axis. Figure 5~c! covers the full range~relevant for the scale
of the plot! of valuesj ,k,m,l . Note how the lines get dense
for b→0, and ultimately approach stripe-free bulk packin
Although we cannot prove that the triangular lattice doesnot
fit any other parts in the phase diagram, we find that qu
likely.

The geometrical features of the regimes are visually q
striking and may be unexpected from the outset. It is, ho
ever, known that competition of length scales may indu
fractal structures@60#. One simple tool to analyze these
box counting@61#. In a two-dimensional situation, one cov
ers the structure under consideration with a rectangular m
with mesh widthW, and counts the number of boxes,B, that
touch ~or are completely inside! the structure. This is per
formed successive times on smaller length scalesW. For a
fractal, a scaling lawB}W2g holds, where the dimensiong
is not an integer. We have carried out such an analysis
could confirm quite well power law scaling with a noninteg
exponent. A precise determination ofg, however, turned ou
to be subtle. We have restricted ourselves to a physic
reasonable lower cutoffW.1023s. For m5 l 51, we obtain
a g51.5. Superimposing ‘‘fence’’ patterns by varyingm,l
over a broad range of values changes the dimension tg
51.6. Such an increase seems reasonable, as apparent
structure gets denser. We leave a more thorough investiga
to possible future research.

2. More general cases

We will approach the general case by considering in
acting stripes that are themselves densely packed. Resul
known for b/s.1, periodic arrangement of the stripes wi
04160
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however, give rise to special lattices. Forb/s51, the
spheres from different stripes can touch and the stable p
is determined by the equilibrium structure on the strip
together with the degeneracy breaking conditionv0 /e→02.
We thus getquadratic ordering in the interstripe region. A
pure quadratic lattice is stable only in one point:b/s5d and
d50. For lowerb and d50 it gets distorted to a lattice o
alternating rhombi, as illustrated in Fig. 6~a!. For d
,A3s/2 the situation is sketched in Figs. 6~b!–6~d! for de-
creasing values ofb. Figure 6 ~b! shows 1S structures on
decoupled stripes forming kite-structures in a periodic str
arrangement. The kite structure of Fig. 6~b!, however, is de-
generated with respect to an arbitrary relative shift of t
single stripe patterns. Upon approach and coupling of
stripes a honeycomb~HC! in Fig. 6~c!, and eventually a

FIG. 5. Regions of stability of the triangular lattice~lines!. ~a!
m,l kept constant~as indicated!, and j ,k varied. ~b! i , j kept con-
stant~as indicated!, andm,l varied.~c! Full range ofj ,k,m,l ~rel-
evant for the scale of the plot!.
2-5
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sheared honeycomb, shown in Fig. 6~d!, emerge. For still
smallerb, we expect another alternating rhombic phase,
shown in Fig. 6~a!, but with finited.0, to be stable.

For infinitely thin stripes, the situation for decreasing i
terstripe distancesb is sketched in Fig. 7. A sequence
triangular lattices and centered rectangular lattices ari
Similar structures were observed in recent experime
@29,33#.

For large d.A3s/2, a squeezed honeycomb structu
@Fig. 8~a!# that can also be sheared@Fig. 8~b!# appears. More
complex crystal unit cells involving two supertriangular ho
eycomb structures, both sheared@Fig. 8~c!# and unsheared
@Fig. 8~d!# occur for even largerd.

The resulting phase diagram of possible decoration
tices as a function ofb/s and d/s is depicted in Fig. 9.
While for b/s.1 supertriangles are stable~compare Fig. 4!,
a cascade of sheared honeycomb phases consisting of s
triangles occurs forb/s,1 and increasingd. Along coexist-
ence lines~dashed lines in Fig. 9!, these sheared supertr
angle honeycomb phases degenerate into different sp
cases: square lattice (d/s50,b/s50), unsheared honey
comb, squeezed honeycomb@see Figs. 6~e! and 6~f!#, and
alternating rhombic.

We combine the main results of this investigation with t
regions of stability of the undistorted triangular lattice~Sec.
IV B 1! and display the whole phase diagram of possi

FIG. 6. Crystal structures ford/s,A3/2. ~a! Alternating rhom-
bic for d50 andA3/2,b/s,1; in ~b!–~d! the situation is shown
for 0,d/s,A3/2 for decreasing values of the interstripe wid
b/s; ~b! 1S structures on decoupled stripes giving rise to kite str
tures in a periodic stripe arrangement;~c! honeycomb~1HC!; ~d!
sheared honeycomb~sheared 1HC!; ~e! and ~f!: squeezed 1HC for
b/s51, with d/s,0.5 andd/s.0.5, respectively. Solid lines in
dicate unit cells.
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decoration lattices as a function ofb/s andd/s in Fig. 10.
The states between the lines of stability of the triangu
lattice are unexplored in our study. We leave those to fut
work.

Figures 9 and 10 prove that even though our mode
relatively simple, competition of different length scales lea
to quite different stable decoration lattice structures. On
basis of Figs. 9 and 10 one can tailor the attractive str
pattern in order to produce a given decoration lattice. Thi
of direct importance for further crystal growth on top of th

-

FIG. 7. Crystal structures for infinitely thin stripesd/s50 and
decreasing values ofb/s: ~a! hexagonal lattice (b/s5A3/2); ~b!
centered rectangular (0.5,b/s,A3/2); ~c! hexagonal lattice
(b/s50.5); ~d! centered rectangular (b/s,0.5).

FIG. 8. Crystal structures forA3/2<d/s,A3 andb/s<1: ~a!
2D-square hybrid; ~b! sheared 2D-square hybrid; ~c! two-
honeycomb structure~2HC!; ~d! sheared two-honeycomb~sheared
2HC!. Spheres building equilateral triangles are shaded to guide
eye. Solid lines indicate unit cells.
2-6
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DECORATION LATTICES OF COLLOIDS ADSORBED ON . . . PHYSICAL REVIEW E65 041602
decoration lattice used as a template. One can expect@16#
that quite exotic bulk crystalline structures can be aggrega
on top of such a template@32#. This is of relevance for the
construction of optical band-gap materials such as photo
crystals@62#.

V. CONCLUSION

In conclusion, we have systematically investigated a
predicted decoration lattices composed of colloidal partic
adsorbed on an attractive stripe-patterned substrate. Ou
sults show, that due to a competition of various length sca
a wealth of different decoration lattices can be stable. T
knowledge can be exploited to generate exotic lattice st
tures by a tailored surface pattern that could be of releva
for fabricating photonic crystals grown on such templat
Our work can be extended into several directions: First, ot
periodic patterns such as alternating triangular or chessb
patterns can be studied, where even more complicated d

FIG. 9. Phase diagram of attractive hard spheres in a peri
arrangement of sticky stripes with stripe widthd and interstripe
separationb. Dashed lines indicate two-phase coexistence. Vari
crystals are stable, as displayed in Figs. 6–8.
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ration lattices are expected. Second, the effect of finite te
perature and longer ranged and more realistic parti
particle and particle-wall interaction should be investigat
Still we think that the main possibility of decoration lattice
will be very similar to the results obtained for the more sim
plistic interactions. Also, the nonequilibrium problem of pa
ticle deposition can produce even much richer nonequi
rium fractal and random closed-packing structures@63–66#
that have not been considered in the present equilibr
study. Finally, proving rigorously the different structures
be close packed should be an interesting problem in m
ematical geometry.
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