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Demixing of colloid-polymer mixtures in poor solvents
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The influence of poor solvent quality on fluid demixing of a model mixture of colloids and nonadsorbing
polymers is investigated using density functional theory. The colloidal particles are modeled as hard spheres
and the polymer coils as effective interpenetrating spheres that have hard interactions with the colloids. The
solvent is modeled as a two-component mixture of a primary solvent, regarded as a background theta solvent
for the polymer, and a cosolvent of point particles that are excluded from both colloids and polymers. Cosol-
vent exclusion favors overlap of polymers, mimicking the effect of a poor solvent by inducing an effective
attraction between polymers. For this model, a geometry-based density functional theory is derived and applied
to bulk fluid phase behavior. With increasing cosolvent concentr@tvonsening solvent qualijythe predicted
colloid-polymer demixing binodal shifts to lower colloid concentrations, promoting demixing. For sufficiently
poor solvent, a reentrant demixing transition is predicted at low colloid concentrations.
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[. INTRODUCTION alternative, more microscopic, theoretical approach is the
PRISM integral-equation theor}l5], which models poly-
Solvents play a crucial role in the thermodynamic behavimers on the segment level.
ior of macromolecular solutions. Over the past half a century, The purpose of the present paper is to investigate the ef-
effects of solvent quality on the physical properties of poly-fect of apoor solvent on the bulk phase behavior of colloid-
mer solutions have been extensively studig@®]. Polymer-  polymer mixtures. To this end, we consider a variation of the
solvent and solvent-solvent interactions were first incorpoAO model that explicitly includes the solvent as a distinct
rated into the classic Flory-Huggins mean-field theory ofcomponent. Specifically, the solvent is treated as a binary
polymer solutiong3]. Subsequently, excluded-volume inter- mixture of a primary solvent, which alone acts as a theta
actions between polymer segments were identified as the kegolvent for the polymer, and a cosolvent, which acts as a
determinants of solvent quality. Polymer segments stericallypoor solvent for the polymer. The primary solvent is re-
repel one another in a good solvent, attract in a poor solvengarded as a homogeneous background that freely penetrates
and behave as though nearly idéabninteractingin a theta  the polymer, but is excluded by the colloids. The cosolvent is
solvent. Interactions between polymer segments strongly inmodeled simply as an ideal gas of pointlike particles that
fluence chain conformations and, in turn, phase separatiopenetrate neither colloids nor polymers.
and other macroscopic phenomena. In the absence of colloids, the polymer-cosolvent sub-
Compared to solvent effects in pure polymer solutionssystem is the Widom-RowlinsoWR) model of a binary
much less is known about the role of solvent quality inmixture[16,17], in which particles of unlike species interact
colloid-polymer mixtures. The simplest and most widely with hard cores and particles of like species are noninteract-
studied theoretical model of colloid-polymer mixtures is theing. The WR model can be shown to be equivalent to a
Asakura-Oosaw@AO) model[4,5]. This treats the colloids one-component system of penetrable spheres that interact via
as hard spheres and the polymers as effective spheres that arenany-body interaction potential, proportional to the cosol-
mutually noninteracting but have hard interactions with thevent pressure and the volume covered by the sphevitls
colloids. The thermodynamic phase diagram of the AOoverlapping portions counted only onceHence, in the
model has been mapped out by thermodynamic perturbatiopolymer-cosolvent subsystem, the volume occupied by the
theory [6], free volume theory7], density functionalDF) polymer spheres costs interaction energy, inducing an effec-
theory [8], and Monte Carlo simulatiofi9]. By assuming tive attraction between polymers reminiscent of that caused
ideal polymers, however, the AO model is implicitly limited by a poor solvent. By varying cosolvent concentration, the
to theta solvents. Recently, by incorporating polymer-solvent quality can be tuned. Here we investigate whether
polymer repulsion into the AO model, the influence of aand how added hard colloidal spheres mix with such effec-
good solvent on phase behavior has been explored via peively interacting polymers.
turbation theory10] and DF theory 11]. All of these studies In Sec. I, we define more explicitly the model colloid-
assume an effective penetrable-sphere model for the polymgiolymer-cosolvent mixture. In Sec. Ill, we develop a general
coils, which is supported by explicit Monte Carlo simula- geometry-based DF theory, which may be applied to both
tions of interacting segmented-chain polymgt8—14. An homogeneous and inhomogeneous states of the model sys-
tem. The general theory provides the foundation for an ap-
plication to bulk phase behavior in Sec. IV. Readers who are
*Permanent address: Institut fllheoretische Physik II, Heinrich-  interested only in bulk properties may wish to skip Sec. IlI
Heine-Universita Dusseldorf, Universitsstrale 1, D-40225 By and turn directly to Sec. IV. We finish with concluding re-
seldorf, Germany. marks in Sec. V.

1063-651X/2002/68)/06141@6)/$20.00 65061410-1 ©2002 The American Physical Society



MATTHIAS SCHMIDT AND ALAN R. DENTON PHYSICAL REVIEW E 65 061410

Ill. DENSITY FUNCTIONAL THEORY

We develop a geometry-based DF theory for the excess
Helmholtz free energy of the model system, expressed as an
integral over an excess free energy density,

Fedbopppsl=keT [ dxacinly, @

wherekg is Boltzmann’s constant, is absolute temperature,
and the(local) reduced excess free energy densltyis a
simple function(not a functional of weighted densities', .

The weighted densities are smoothed averages of the possi-
bly highly inhomogeneous density profiles(r) expressed

as convolutions,

FIG. 1. Model ternary mixture of colloidal hard spheres of di- nly(r)=Pi(r)*le(r)=j dr'pi(rHwi(r=r"), (2
ameteroc, polymer effective spheres of diametep, and point- .
like solvent particles. with respect to weight functions' (r) wherei=C,P,S and
v=0,1,2,3,v1,v2,m2. The usual weight functidd8,19 are
Il. THE MODEL i i
Wa(r)=o(Ri—r), wz(r)=0(R—r), ©)

We consider a ternary mixture of colloidal hard spheres
(speciesC) of radiusRc, globular polymergspeciesP) of _ oo N _ o1
radiusRp, and pointlike cosolvent particlespeciesS), as Wyp(F)=Wa(r) =, W'mz(f)ZW'z(f)(—z—g), 4
illustrated in Fig. 1. The respective number densities are r

pc(r), pe(r), andpg(r), wherer is the spatial coordinate. \yherer=|r|, &(r) is the Dirac distribution@®(r) is the

The primary solvent is regarded as a homogeneous back- . P . . . .
ground for the polymer and is not explicitly included. All step function, and is the identity matrix. Further linearly

particles  experience  only  pairwise interactions,d?penden;[ weight funct|0n? arev'li(r)=w'2(r)/(47-r|'?),
Vij(r), i,j=C,P,S, wherer is the separation distance be- Wvl(r_):WVZ(r)/(47TR)' and wo(r)zwl(r)/R'. The weight
tween particle centers. Colloids behave as hard spherefiinctions for»=3,2,1,0 represent geometrical measures of
Vee(r)=o, if r<2Rc, and zero otherwise. Colloids and the particles in terms of volume_, s_urface area, integral mean
polymers interact as hard bodies Wap(r)=c, if r<Rc  Ccurvature, and Euler characteristic, respectiidig]. Note

+Rp, and zero otherwise, and both exclude cosolvent parithat the weight functions differ in tensorial ranky, wi,
ticles:Veg(r) ==, if r<Rc, Vpg(r)==, if r<Rp, and zero W5, andwj are scalarsy,, andw,, are vectors, and,, is
otherwise. The polymers and cosolvent particles behave as(tracelesy matrix.

ideal gasesVpp(r)=0, Vs{r)=0, for allr. In essence, this The excess free energy density can be expressed in the
is the AO model with additional point particles that cannotgeneral form
penetrate either colloids or polymers.

We denote the sphere diameters &y=2R: and op P=Dct Pept Pest Peps, ®)
=2Rp, tf;e bulk packing fractions byjc=4m REpc/3 and  where the four contributions have forms motivated by con-
np=4mRppp/3, and define a dimensionless solvent bulksideration of the appropriate exact zero-dimensional limits.
density p&=psos. The polymer-colloid size ratiog  The colloid contribution® is the same as that for the pure
=oploc is regarded as a control parameter. hard-spherg¢HS) system[18,19,

c.C_.C .C
1Ny —Ny1-Nyo

nyn 1 3 - -
®o=—ngIn(1-ng)+———c—+ §<n§>3—n§<n82>2+5<n82~anC-n&—zdetnmzc)} / [87(1-n$)?]. (6)
]

The colloid-polymer interaction contributiod®cp is the  while the colloid-solvent interaction contributid@0] is
same as in the pure AO cafg],

(DCPZEV

dcs=—n3In(1—n3). (8
Ve e )

—n
an, Finally, in order to model the WR-type interaction between
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polymers and cosolvent particles in the presence of the colFhis contribution can be similarly interpreted as the free en-

loidal spheres, we assume ergy of an ideal gas in the free volume of the colloids. In this
case, however, the ideal gas consists of pointlike cosolvent
ngn:f: particles, considerably simplifying the analytical form of the
Dcps= ol (9)  free volume. In fact, by lettingi—0 in Eq. (11), and iden-
1-ng tifying specie? andS, ®p reduces teb-s. The remain-

_ ) ing contribution couples the densities of all three species,
which takes into account the volume excluded to the polymepn is given by

and cosolvent by the colloids.

It is instructive to compare the current theory to PSP
geometry-based DF theories previously formulated for two ¢CPS:1——%'
related ternary model systems. One starting point is a ternary
AO model that combines a binary HS mixture and one poly-n the absence of colloidsy=0), this is equivalent to the
mer specie$21]. Letting the radius of the smaller HS com- mean-field free energy of the WR model. Equatias) is a
ponent go to zero, one obtains the cosolvent species. Theontrivial generalization thereof to the case of nonvanishing
other starting point is a recently introduced mof®g] fora .. For completeness, the reduced ideal-gas free energy is
ternary mixture of colloids, polymers, and hard vanishingly
thin needles of length, where the needles are ideal amongst -~ 3
themselves but cannot penetrate the polynileasd-core in- q)‘d_izczlpys pilin(piA7) = 1],
teraction. In the limit L— 0, the needles become identical to
the cosolvent particles. We have explicitly checked that thevhere theA; are(irrelevan) thermal wavelengths of species
DF theories for both systems reduce to the theory describeid This puts us in a position to obtain the reduced total free
above, demonstrating the internal consistency of thenergy densityb,,=® 4+ P, of any given fluid state char-
geometry-based approach. acterized by the bulk densities of the three components and

the size ratiag.

(13

(14)

IV. RESULTS AND DISCUSSION
B. Phase diagrams
A. Bulk limit N _ _
i ) , The conditions for phase coexistence are equality of the
For bulk fluid phases the density profiles are homogeigig) pressure,,, and of the chemical potentiajs; in the

neous:pi(r)=const. In this case, the integrations in BBl yexisting phases. For phase equilibrium between phases |
are trivial, and simple expressions for the weighted densitiegq || p{ = p{'tandﬂ!:,u-” i=C,P,S, yielding four equa-
! (0] (0} I [ ’ 1~

can be obtained.' Inserting thesg expressions into the EXC€RSns for six unknownsgtwo state points, each characterized
free energy densitjEqgs.(6)~(9)] yields the bulk excess free 1, o0 densitigs In our case, a set of analytical expres-
energy in analytic form. The HS contribution, which is equalsions is obtained from

to the Percus-Yevick compressibilitgnd scaled-particjee-

sult, is given as p ET0)
ﬁ == (Dt0t+i—;p JPi &ptlm (15

:37lc[377c(2_ﬂc)_z(l_ﬂc)zm(l_ﬁc)] B T '

© 87RY(1— nc)? ' and
(10)
aq)tot
. Lo . mi=kgT , (16)
The colloid-polymer contribution is equal to that predicted ap;

by free volume theonyf7], and subsequently rederived by _ _ o )
DFT [8], the numerical solution of which is straightforward.

In order to graphically represent the ternary phase dia-

/(87R3) grams, we choose the system reduced densitigsyp, and
cp= 7P P {3q7c[6(1— 7c)?+3q(2— c— 7,%) p& as basic variables. For giveg, these span a three-
(1= 7c)® dimensional(3D) phase space. Each point in this space cor-
2 2.1 _ 3 _ responds to a possible bulk state. Two-phase coexistence is
+29%(1+ 7c+ 1) 1= 6(1= )" In(1=7¢)}. indicated by a pair of points joined by a straight tie line. We

(11) imagine controlling the system directly with. and »p, but
indirectly via coupling to a cosolvent reservoir, whose
This contribution is linear in the polymer density and has achemical potentialug tunes the solvent quality. Note that,
form that arises, as in the original free volume thefry, because the cosolvent is treated as an ideal gas, the reser-
from treating the polymers as an ideal gas occupying the fregoir’s density is simply proportional to its activity. Thus, the
volume between the colloids. The colloid-cosolvent contri-reduced densityp'=exp(us/ksT) may be equivalently

bution is given by taken as a control parameter, which is equal in coexisting
phases. To make contact with Flory-Huggins theory, we are
Des=—psin(l—7ne). (12  implicitly considering here the case in which the Flory inter-
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FIG. 2. Demixing phase diagram of the model ternary colloid-polymer-solvent mixturegfsrop andp%'=0 (a), 0.5(b), and 0.648 94
(c). The latter case is shown also on a finer scdje

action parametey falls in the range 0.5 y<1, correspond- tween colloids. At the same time, the lower effective concen-
ing to a negative excluded-volume parameter(1—2y). tration of depletants reduces the osmotic pressure and thus

We initially consider colloids and polymers of equal size the depth of the potential. Comparing the phase diagrams for
(oc=o0p). For this case, Fig. 2 shows projections of different cosolvent reservoir densities, we can conclude that
constanteg’ surfaces onto the three sides of the coordinatehe net effect of merging polymers is to increase the inte-
system, namely theyc-p%, nc-7p, and np-ps planes, as grated strength of the depletion potential and thus to promote
well as a perspective 3D view. For reference, the phase diademixing.
gram without cosolvent is shown in Fig(&. This is identi- Eventually, atp’"=0.648 94, the colloid-polymer critical
cal to the common free volume demixing curve of the AO pojint meets thezp-p% plane(wherec=0), as seen in Figs.
model[7,8]. For p§'=0, in which casep§=0, the nc-pS  2(c) and (on a larger scale2(d). Polymers and cosolvent
and 77p-p3 planes are inaccessible, i.e., all accessible stateisere begin to demix already in the absence of colldtte
lie completely within thenc-7p plane. Upon increasing the critical point of the WR model For still higher cosolvent
cosolvent reservoir density tg&"=0.5, and thus worsening reservoir densitie¢beyond the WR critical pointthe critical
the solvent quality, the demixed region grows, as seen in Figpoint vanishes from the phase diagram and a polymer-
2(b). The critical point shifts towards lowen: and higher cosolvent miscibility gap opens up g=0. It is tempting
7p, the tie lines become steeper, and the area beneath the interpret this demixing as aggregation of the polymer
colloid-polymer binodal in thepc-7p plane (a measure of spheres, although it must be emphasized that the WR model
miscibility) decreases. can only crudely describe polymer aggregation.

As a physical interpretation of the results, one can imag- Another intriguing prediction is the reentrant colloid-
ine the polymer spheres as tending to me(geerlap to  polymer mixing evident in Fig. @). For sufficiently low
avoid contact with the solvent. The resulting polymercolloid concentrations and high cosolvent reservoir densities
“dimers,” “trimers,” etc., act as larger depleting agents, in- (poor solvent, colloids and polymers initially demix with
creasing the range of the effective depletion potential beincreasing »p. Upon increasingznp further, miscibility
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FIG. 3. Same as Fig. 2, but ferc=20p and p%'=0 (a) and
0.5 (b).
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V. CONCLUSIONS

In summary, we have investigated the bulk fluid demixing
behavior of model mixtures of colloids and nonadsorbing
polymers in poor solvents. Our model combines the Asakura-
Oosawa model of hard-sphere colloids plus ideal penetrable-
sphere polymers with a binary solvent model. The solvent
comprises a primary theta solvent and a cosolvent of point
particles that are excluded from both colloids and polymers.
Cosolvent exclusion energetically favors overlapping con-
figurations of polymers. Although somewhat idealized, the
model exhibits the essential feature of solvent-induced effec-
tive attraction between polymers, mimicking the effect of a
poor solvent.

To study the equilibrium phase behavior of this model, we
have derived a geometry-based density functional theory that
combines elements of previous theories for the AO and
Widom-Rowlinson models. Applying the theory to bulk fluid
phases, we have calculated phase diagrams for cosolvent
densities spanning a range from theta solvent to poor solvent.
With increasing cosolvent concentratiGworsening solvent
quality), the predicted colloid-polymer binodal shifts to
lower colloid concentrations, destabilizing the mixed phase.
Beyond a threshold cosolvent concentration, a reentrant
colloid-polymer demixing transition is predicted at low col-
loid concentrations.

Predictions of the theory could be tested by comparison
with simulations of the model. Qualitative comparison with
experiment also may be possible, but would require a rela-
tion between the cosolvent concentrati@s a measure of
solvent quality and the Flory interaction parameter. In prin-
ciple, such a relation could be established by calculating the
effective second virial coefficient of the polymer in the
polymer-cosolvent subsystem.

Although here we have approximated the polymers as
mutually noninteracting, their effective attractions being
driven only by cosolvent exclusion, future work should in-
clude non-ideality between polymers, arising fundamentally
from excluded-volume repulsion between polymer segments.

returns over a small range before demixing again occurs gtq; this purpose, a reasonable model is an effective-sphere
higher 77p. Such a phenomenon could conceivably resuligescription based on a repulsive, penetrable pair interaction
from the complex interplay between range and depth of thgfinjte at the origin, e.g., of step function or Gaussian shape
depletion potential arising from solvent-induced overlap of[12]. The competition between such intrinsic repulsion and

polymers.

the solvent-induced attraction considered in this work is

For smaller polymer-to-colloid size ratios, the above sceikely to produce rich phase behavior. As a further outlook,
nario persists. Figure 3 shows qualitatively similar results forour approach also could be applied to effects of solvent qual-

q=0.5 and cosolvent reservoir densitig§'=0 [Fig. 3a)]
and 0.5[Fig. 3b)].

ity on polymer brushes adsorbed onto surfaces of colloidal
particles.
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