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Demixing of colloid-polymer mixtures in poor solvents
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Department of Physics, North Dakota State University, Fargo, North Dakota 58105-5566

~Received 8 March 2002; published 26 June 2002!

The influence of poor solvent quality on fluid demixing of a model mixture of colloids and nonadsorbing
polymers is investigated using density functional theory. The colloidal particles are modeled as hard spheres
and the polymer coils as effective interpenetrating spheres that have hard interactions with the colloids. The
solvent is modeled as a two-component mixture of a primary solvent, regarded as a background theta solvent
for the polymer, and a cosolvent of point particles that are excluded from both colloids and polymers. Cosol-
vent exclusion favors overlap of polymers, mimicking the effect of a poor solvent by inducing an effective
attraction between polymers. For this model, a geometry-based density functional theory is derived and applied
to bulk fluid phase behavior. With increasing cosolvent concentration~worsening solvent quality!, the predicted
colloid-polymer demixing binodal shifts to lower colloid concentrations, promoting demixing. For sufficiently
poor solvent, a reentrant demixing transition is predicted at low colloid concentrations.
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I. INTRODUCTION

Solvents play a crucial role in the thermodynamic beh
ior of macromolecular solutions. Over the past half a centu
effects of solvent quality on the physical properties of po
mer solutions have been extensively studied@1,2#. Polymer-
solvent and solvent-solvent interactions were first incor
rated into the classic Flory-Huggins mean-field theory
polymer solutions@3#. Subsequently, excluded-volume inte
actions between polymer segments were identified as the
determinants of solvent quality. Polymer segments steric
repel one another in a good solvent, attract in a poor solv
and behave as though nearly ideal~noninteracting! in a theta
solvent. Interactions between polymer segments strongly
fluence chain conformations and, in turn, phase separa
and other macroscopic phenomena.

Compared to solvent effects in pure polymer solutio
much less is known about the role of solvent quality
colloid-polymer mixtures. The simplest and most wide
studied theoretical model of colloid-polymer mixtures is t
Asakura-Oosawa~AO! model @4,5#. This treats the colloids
as hard spheres and the polymers as effective spheres th
mutually noninteracting but have hard interactions with
colloids. The thermodynamic phase diagram of the A
model has been mapped out by thermodynamic perturba
theory @6#, free volume theory@7#, density functional~DF!
theory @8#, and Monte Carlo simulation@9#. By assuming
ideal polymers, however, the AO model is implicitly limite
to theta solvents. Recently, by incorporating polym
polymer repulsion into the AO model, the influence of
good solvent on phase behavior has been explored via
turbation theory@10# and DF theory@11#. All of these studies
assume an effective penetrable-sphere model for the poly
coils, which is supported by explicit Monte Carlo simul
tions of interacting segmented-chain polymers@12–14#. An
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alternative, more microscopic, theoretical approach is
PRISM integral-equation theory@15#, which models poly-
mers on the segment level.

The purpose of the present paper is to investigate the
fect of apoor solvent on the bulk phase behavior of colloi
polymer mixtures. To this end, we consider a variation of
AO model that explicitly includes the solvent as a distin
component. Specifically, the solvent is treated as a bin
mixture of a primary solvent, which alone acts as a th
solvent for the polymer, and a cosolvent, which acts a
poor solvent for the polymer. The primary solvent is r
garded as a homogeneous background that freely penet
the polymer, but is excluded by the colloids. The cosolven
modeled simply as an ideal gas of pointlike particles t
penetrate neither colloids nor polymers.

In the absence of colloids, the polymer-cosolvent su
system is the Widom-Rowlinson~WR! model of a binary
mixture @16,17#, in which particles of unlike species intera
with hard cores and particles of like species are noninter
ing. The WR model can be shown to be equivalent to
one-component system of penetrable spheres that interac
a many-body interaction potential, proportional to the cos
vent pressure and the volume covered by the spheres~with
overlapping portions counted only once!. Hence, in the
polymer-cosolvent subsystem, the volume occupied by
polymer spheres costs interaction energy, inducing an ef
tive attraction between polymers reminiscent of that cau
by a poor solvent. By varying cosolvent concentration,
solvent quality can be tuned. Here we investigate whet
and how added hard colloidal spheres mix with such eff
tively interacting polymers.

In Sec. II, we define more explicitly the model colloid
polymer-cosolvent mixture. In Sec. III, we develop a gene
geometry-based DF theory, which may be applied to b
homogeneous and inhomogeneous states of the model
tem. The general theory provides the foundation for an
plication to bulk phase behavior in Sec. IV. Readers who
interested only in bulk properties may wish to skip Sec.
and turn directly to Sec. IV. We finish with concluding re
marks in Sec. V.
©2002 The American Physical Society10-1
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II. THE MODEL

We consider a ternary mixture of colloidal hard sphe
~speciesC) of radiusRC , globular polymers~speciesP! of
radiusRP , and pointlike cosolvent particles~speciesS!, as
illustrated in Fig. 1. The respective number densities
rC(r ), rP(r ), andrS(r ), wherer is the spatial coordinate
The primary solvent is regarded as a homogeneous b
ground for the polymer and is not explicitly included. A
particles experience only pairwise interaction
Vi j (r ), i , j 5C,P,S, wherer is the separation distance b
tween particle centers. Colloids behave as hard sphe
VCC(r )5`, if r ,2RC , and zero otherwise. Colloids an
polymers interact as hard bodies viaVCP(r )5`, if r ,RC
1RP , and zero otherwise, and both exclude cosolvent p
ticles:VCS(r )5`, if r ,RC , VPS(r )5`, if r ,RP , and zero
otherwise. The polymers and cosolvent particles behav
ideal gases:VPP(r )50, VSS(r )50, for all r. In essence, this
is the AO model with additional point particles that cann
penetrate either colloids or polymers.

We denote the sphere diameters bysC52RC and sP

52RP , the bulk packing fractions byhC54pRC
3 rC/3 and

hP54pRP
3rP/3, and define a dimensionless solvent bu

density rS* 5rSsP
3 . The polymer-colloid size ratioq

5sP /sC is regarded as a control parameter.

FIG. 1. Model ternary mixture of colloidal hard spheres of d
ametersC , polymer effective spheres of diametersP , and point-
like solvent particles.
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III. DENSITY FUNCTIONAL THEORY

We develop a geometry-based DF theory for the exc
Helmholtz free energy of the model system, expressed a
integral over an excess free energy density,

Fexc@rC ,rP ,rS#5kBTE d3xF~$nn
i %!, ~1!

wherekB is Boltzmann’s constant,T is absolute temperature
and the~local! reduced excess free energy densityF is a
simple function~not a functional! of weighted densitiesnn

i .
The weighted densities are smoothed averages of the p
bly highly inhomogeneous density profilesr i(r ) expressed
as convolutions,

nn
i ~r !5r i~r !* wn

i ~r !5E dr 8r i~r 8!wn
i ~r2r 8!, ~2!

with respect to weight functionswn
i (r ) wherei 5C,P,S and

n50,1,2,3,v1,v2,m2. The usual weight functions@18,19# are

w2
i ~r !5d~Ri2r !, w3

i ~r !5Q~Ri2r !, ~3!

wv2
i ~r !5w2

i ~r !
r

r
, ŵm2

i ~r !5w2
i ~r !S rr

r 2
2

1̂

3D , ~4!

where r 5ur u, d(r ) is the Dirac distribution,Q(r ) is the
step function, and1̂ is the identity matrix. Further linearly
dependent weight functions arew1

i (r )5w2
i (r )/(4pR),

wv1
i (r )5wv2

i (r )/(4pR), and w0
i (r )5w1

i (r )/R. The weight
functions for n53,2,1,0 represent geometrical measures
the particles in terms of volume, surface area, integral m
curvature, and Euler characteristic, respectively@18#. Note
that the weight functions differ in tensorial rank:w0

i , w1
i ,

w2
i , andw3

i are scalars,wv1
i andwv2

i are vectors, andŵm2
i is

a ~traceless! matrix.
The excess free energy density can be expressed in

general form

F5FC1FCP1FCS1FCPS, ~5!

where the four contributions have forms motivated by co
sideration of the appropriate exact zero-dimensional lim
The colloid contributionFC is the same as that for the pur
hard-sphere~HS! system@18,19#,
FC52n0
C ln~12n3

C!1
n1

Cn2
C2nv1

C
•nv2

C

12n3
C

1F1

3
~n2

C!32n2
C~nv2

C !21
3

2
~nv2

C
•n̂m2

C
•nv2

C 23detn̂m2
C!G Y @8p~12n3

C!2#. ~6!
en
The colloid-polymer interaction contributionFCP is the
same as in the pure AO case@8#,

FCP5(
n

]FC

]nn
C

nn
P , ~7!
while the colloid-solvent interaction contribution@20# is

FCS52n0
S ln~12n3

C!. ~8!

Finally, in order to model the WR-type interaction betwe
0-2
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DEMIXING OF COLLOID-POLYMER MIXTURES IN . . . PHYSICAL REVIEW E65 061410
polymers and cosolvent particles in the presence of the
loidal spheres, we assume

FCPS5
n0

Sn3
P

12n3
C

, ~9!

which takes into account the volume excluded to the polym
and cosolvent by the colloids.

It is instructive to compare the current theory
geometry-based DF theories previously formulated for t
related ternary model systems. One starting point is a tern
AO model that combines a binary HS mixture and one po
mer species@21#. Letting the radius of the smaller HS com
ponent go to zero, one obtains the cosolvent species.
other starting point is a recently introduced model@22# for a
ternary mixture of colloids, polymers, and hard vanishing
thin needles of lengthL, where the needles are ideal among
themselves but cannot penetrate the polymers~hard-core in-
teraction!. In the limit L→0, the needles become identical
the cosolvent particles. We have explicitly checked that
DF theories for both systems reduce to the theory descr
above, demonstrating the internal consistency of
geometry-based approach.

IV. RESULTS AND DISCUSSION

A. Bulk limit

For bulk fluid phases the density profiles are homo
neous:r i(r )5const. In this case, the integrations in Eq.~2!
are trivial, and simple expressions for the weighted densi
can be obtained. Inserting these expressions into the ex
free energy density@Eqs.~6!–~9!# yields the bulk excess fre
energy in analytic form. The HS contribution, which is equ
to the Percus-Yevick compressibility~and scaled-particle! re-
sult, is given as

FC5
3hC@3hC~22hC!22~12hC!2 ln~12hC!#

8pRC
3 ~12hC!2

.

~10!

The colloid-polymer contribution is equal to that predict
by free volume theory@7#, and subsequently rederived b
DFT @8#,

FCP5
hP /~8pRP

3 !

~12hC!3
$3qhC@6~12hC!213q~22hC2hC

2 !

12q2~11hC1hC
2 !#26~12hC!3 ln~12hC!%.

~11!

This contribution is linear in the polymer density and has
form that arises, as in the original free volume theory@7#,
from treating the polymers as an ideal gas occupying the
volume between the colloids. The colloid-cosolvent con
bution is given by

FCS52rS ln~12hC!. ~12!
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This contribution can be similarly interpreted as the free
ergy of an ideal gas in the free volume of the colloids. In th
case, however, the ideal gas consists of pointlike cosolv
particles, considerably simplifying the analytical form of th
free volume. In fact, by lettingq→0 in Eq. ~11!, and iden-
tifying speciesP andS, FCP reduces toFCS. The remain-
ing contribution couples the densities of all three spec
and is given by

FCPS5
rShP

12hC
. ~13!

In the absence of colloids (hC50), this is equivalent to the
mean-field free energy of the WR model. Equation~13! is a
nontrivial generalization thereof to the case of nonvanish
hC . For completeness, the reduced ideal-gas free energ

F id5 (
i 5C,P,S

r i@ ln~r iL i
3!21#, ~14!

where theL i are~irrelevant! thermal wavelengths of specie
i. This puts us in a position to obtain the reduced total f
energy densityF tot5F id1F, of any given fluid state char
acterized by the bulk densities of the three components
the size ratioq.

B. Phase diagrams

The conditions for phase coexistence are equality of
total pressuresptot and of the chemical potentialsm i in the
coexisting phases. For phase equilibrium between phas
and II, ptot

I 5ptot
II andm i

I5m i
II ,i 5C,P,S, yielding four equa-

tions for six unknowns~two state points, each characterize
by three densities!. In our case, a set of analytical expre
sions is obtained from

ptot

kBT
52F tot1 (

i 5C,P,S
r i

]F tot

]r i
~15!

and

m i5kBT
]F tot

]r i
, ~16!

the numerical solution of which is straightforward.
In order to graphically represent the ternary phase d

grams, we choose the system reduced densities,hC ,hP , and
rS* as basic variables. For givenq, these span a three
dimensional~3D! phase space. Each point in this space c
responds to a possible bulk state. Two-phase coexisten
indicated by a pair of points joined by a straight tie line. W
imagine controlling the system directly withhC andhP , but
indirectly via coupling to a cosolvent reservoir, who
chemical potentialmS tunes the solvent quality. Note tha
because the cosolvent is treated as an ideal gas, the r
voir’s density is simply proportional to its activity. Thus, th
reduced densityrS*

r5exp(mS/kBT) may be equivalently
taken as a control parameter, which is equal in coexist
phases. To make contact with Flory-Huggins theory, we
implicitly considering here the case in which the Flory inte
0-3
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FIG. 2. Demixing phase diagram of the model ternary colloid-polymer-solvent mixture forsC5sP andrS*
r50 ~a!, 0.5 ~b!, and 0.648 94

~c!. The latter case is shown also on a finer scale~d!.
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action parameterx falls in the range 0.5,x,1, correspond-
ing to a negative excluded-volume parameter,v}(122x).

We initially consider colloids and polymers of equal si
(sC5sP). For this case, Fig. 2 shows projections
constant-rS*

r surfaces onto the three sides of the coordin
system, namely thehC-rS* , hC-hP , and hP-rS* planes, as
well as a perspective 3D view. For reference, the phase
gram without cosolvent is shown in Fig. 2~a!. This is identi-
cal to the common free volume demixing curve of the A
model @7,8#. For rS*

r50, in which caserS* 50, the hC-rS*
andhP-rS* planes are inaccessible, i.e., all accessible st
lie completely within thehC-hP plane. Upon increasing th
cosolvent reservoir density torS*

r50.5, and thus worsening
the solvent quality, the demixed region grows, as seen in
2~b!. The critical point shifts towards lowerhC and higher
hP , the tie lines become steeper, and the area beneath
colloid-polymer binodal in thehC-hP plane ~a measure of
miscibility! decreases.

As a physical interpretation of the results, one can im
ine the polymer spheres as tending to merge~overlap! to
avoid contact with the solvent. The resulting polym
‘‘dimers,’’ ‘‘trimers,’’ etc., act as larger depleting agents, in
creasing the range of the effective depletion potential
06141
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tween colloids. At the same time, the lower effective conc
tration of depletants reduces the osmotic pressure and
the depth of the potential. Comparing the phase diagrams
different cosolvent reservoir densities, we can conclude
the net effect of merging polymers is to increase the in
grated strength of the depletion potential and thus to prom
demixing.

Eventually, atrS*
r50.648 94, the colloid-polymer critica

point meets thehP-rS* plane~wherehC50), as seen in Figs
2~c! and ~on a larger scale! 2~d!. Polymers and cosolven
here begin to demix already in the absence of colloids~the
critical point of the WR model!. For still higher cosolvent
reservoir densities~beyond the WR critical point!, the critical
point vanishes from the phase diagram and a polym
cosolvent miscibility gap opens up athC50. It is tempting
to interpret this demixing as aggregation of the polym
spheres, although it must be emphasized that the WR m
can only crudely describe polymer aggregation.

Another intriguing prediction is the reentrant colloid
polymer mixing evident in Fig. 2~d!. For sufficiently low
colloid concentrations and high cosolvent reservoir densi
~poor solvent!, colloids and polymers initially demix with
increasing hP . Upon increasinghP further, miscibility
0-4
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DEMIXING OF COLLOID-POLYMER MIXTURES IN . . . PHYSICAL REVIEW E65 061410
returns over a small range before demixing again occur
higher hP . Such a phenomenon could conceivably res
from the complex interplay between range and depth of
depletion potential arising from solvent-induced overlap
polymers.

For smaller polymer-to-colloid size ratios, the above s
nario persists. Figure 3 shows qualitatively similar results
q50.5 and cosolvent reservoir densitiesrS*

r50 @Fig. 3~a!#
and 0.5@Fig. 3~b!#.

FIG. 3. Same as Fig. 2, but forsC52sP and rS*
r50 ~a! and

0.5 ~b!.
ce
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V. CONCLUSIONS

In summary, we have investigated the bulk fluid demixi
behavior of model mixtures of colloids and nonadsorbi
polymers in poor solvents. Our model combines the Asaku
Oosawa model of hard-sphere colloids plus ideal penetra
sphere polymers with a binary solvent model. The solv
comprises a primary theta solvent and a cosolvent of p
particles that are excluded from both colloids and polyme
Cosolvent exclusion energetically favors overlapping co
figurations of polymers. Although somewhat idealized, t
model exhibits the essential feature of solvent-induced ef
tive attraction between polymers, mimicking the effect o
poor solvent.

To study the equilibrium phase behavior of this model,
have derived a geometry-based density functional theory
combines elements of previous theories for the AO a
Widom-Rowlinson models. Applying the theory to bulk flui
phases, we have calculated phase diagrams for coso
densities spanning a range from theta solvent to poor solv
With increasing cosolvent concentration~worsening solvent
quality!, the predicted colloid-polymer binodal shifts t
lower colloid concentrations, destabilizing the mixed pha
Beyond a threshold cosolvent concentration, a reent
colloid-polymer demixing transition is predicted at low co
loid concentrations.

Predictions of the theory could be tested by comparis
with simulations of the model. Qualitative comparison wi
experiment also may be possible, but would require a re
tion between the cosolvent concentration~as a measure o
solvent quality! and the Flory interaction parameter. In prin
ciple, such a relation could be established by calculating
effective second virial coefficient of the polymer in th
polymer-cosolvent subsystem.

Although here we have approximated the polymers
mutually noninteracting, their effective attractions bei
driven only by cosolvent exclusion, future work should i
clude non-ideality between polymers, arising fundamenta
from excluded-volume repulsion between polymer segme
For this purpose, a reasonable model is an effective-sp
description based on a repulsive, penetrable pair interac
~finite at the origin!, e.g., of step function or Gaussian sha
@12#. The competition between such intrinsic repulsion a
the solvent-induced attraction considered in this work
likely to produce rich phase behavior. As a further outloo
our approach also could be applied to effects of solvent q
ity on polymer brushes adsorbed onto surfaces of collo
particles.
.

v.

ns.

ys.
@1# P. J. Flory,Statistical Mechanics of Chain Molecules~Inter-
science Publishers, New York, 1969!.

@2# P.-G. de Gennes,Scaling Concepts in Polymer Physics~Cor-
nell University Press, Ithaca, NY, 1979!.

@3# P. J. Flory,Principles of Polymer Chemistry~Cornell Univer-
sity Press, Ithaca, NY, 1971!.

@4# S. Asakura and F. Oosawa, J. Chem. Phys.22, 1255~1954!.
@5# A. Vrij, Pure Appl. Chem.48, 471 ~1976!.
@6# A. P. Gast, C. K. Hall, and W. B. Russell, J. Colloid Interfa

Sci. 96, 251 ~1983!.
@7# H. N. W. Lekkerkerker, W. C. K. Poon, P. N. Pusey, A
Stroobants, and P. B. Warren, Europhys. Lett.20, 559 ~1992!.
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