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Penetrability in model colloid–polymer mixtures
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In order to study the effects of penetrability in mixtures of dissimilar particles we consider hard
~colloidal! spheres and penetrable spheres. The latter may be taken to represent ideal, noninteracting
polymer coils. Polymers and colloids interact by means of a repulsive step-function pair potential,
which allows for insertion of colloids into the polymer coil. The potential strength is obtained from
scaling arguments for the cross virial coefficient of true colloid–polymer systems. For this model we
construct a geometry-based density functional and apply it to bulk fluid demixing. We find that
taking into account penetrability leads to a significant stabilization of the mixed phase for large
polymer-to-colloid size ratio. ©2002 American Institute of Physics.@DOI: 10.1063/1.1503303#
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I. INTRODUCTION

Different levels of description have been used to stu
the emergence of structure and phase behavior in collo
polymer mixtures. Such systems are experimentally w
characterized and the phase behavior typically displays~col-
loid! gas, liquid and crystalline phases. A coarse-grain
level of description relies on effective spheres to mo
globular nonadsorbing polymers and goes back to Asak
and Oosawa~AO! ~Ref. 1! and Vrij.2 Perturbation theory,3

free volume theory,4,5 and simulations5,6 have been success
fully employed to study the bulk properties of this model

A deeper, more microscopic level of description is t
basis for theories that operate on the blob7 or segment8–11

level of the polymers. It has also been the basis for comp
simulations of colloidal spheres and lattice polymers.12–14

While these approaches consider translationalandconforma-
tional ~internal! contributions to the entropy, a reduction
the degrees of freedom to the center-of-mass translation
both species would among other advantages for exam
greatly speed up computer simulations of these comp
mixtures. This aim has recently been pursued using
sphere approaches to polymers15,16 and also motivates ou
study.

Density functional theory~DFT! ~Ref. 17! is more pow-
erful than the above bulk theories, as it is capable of dea
with inhomogeneoussituations. In the context of effectiv
sphere models previous hard sphere theories18,19 could be
extended to a range of models, including the AO mo
without20,21 and with polymer–polymer interactions.22 Inter-
esting inhomogeneous situations are realized in interfa
between demixed fluid states and near walls, where wet
and layering phenomena were found.23

In this work we use effective polymer spheres and
one step towards a more realistic description by allow

a!Permanent address: Physik Department, Technische Universita¨t München,
D-85747 Garching, Germany.
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colloids to penetrate the polymer spheres. On the segm
level ~disregarded within our model!, this leads to a restric-
tion of allowed polymer configurations, hence a free ene
penalty emerges. We calculate its strength from the cr
virial coefficient and use this as an input for the effecti
sphere model, by setting the free energy penalty equal to
internal energy contribution to the Hamiltonian, both for
theta solvent and for a good solvent. As an approximati
we disregard polymer-polymer interactions, as would be j
tified for dilute polymers and at the theta temperature.
derive a DFT for the model and apply it to bulk fluid demi
ing. For small polymer-to-colloid size ratios the demixin
binodal approaches the free volume result for impenetra
polymer.4 In the opposite regime of large polymer-to-collo
size ratios, our theory predicts a significant stabilization
the mixed fluid phase, the effect being stronger in the cas
a good solvent.

We specify the model of hard colloids and penetra
polymer in Sec. II, and develop the theory in Sec. III. Bu
fluid–fluid demixing is calculated in Sec. IV and we finis
with concluding remarks in Sec. V.

II. THE MODEL

We consider a mixture of colloidal particles~speciesC)
and effective polymer spheres~speciesP) interacting by
means of pair potentialsVi j (r ), wherei , j 5C,P, see Fig. 1
for a sketch of the model. The interactions between partic
of the same species are

VCC~r !5H ` if r ,2RC

0 else,
~1!

VPP~r !50. ~2!

The interaction between colloids and polymers is

VCP~r !5H eCP if r ,RC1RP

0 else.
~3!
8 © 2002 American Institute of Physics
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In essence, this is the AO model where the the collo
polymer interaction is assumed to be penetrable rather
hard. Hence we refer to this model as the penetra
Asakura–Ooasawa~PAO! model. The PAO model reduces i
the limit beCP→` to the classic AO model,1,2 where b
51/kBT, kB is the Boltzmann constant, andT is absolute
temperature. Another~albeit trivial! limit is obtained for
beCP→0 ~and finite radiiRP , RC), where the mixture de-
couples into a hard sphere colloid fluid and an ideal gas
polymers; these subsystems do not interact with each ot

As bulk thermodynamic parameters we use the pack
fractions hC54pRC

3 rC/3, hP54pRP
3rP/3, whererC , rP

are the number densities of colloids and polymers, resp
tively. The system volume is denoted byV. The size ratio
q5RP /RC and the~reduced! strengthbeCP act as control
parameters.

III. THEORY

A. Zero-dimensional limit

In order to work out a density functional theory for th
PAO model we follow the lines suggested in Refs. 18 and
for hard spheres and in Refs. 20–22, 24, and 25 for a bro
class of models and determine the excess Helmholtz
energy from dimensional crossover starting with the ze
dimensional~0D! limit. The 0D limit corresponds to the
problem of packing particles into cavities such that all p
ticles overlap. This is an idealized situation and allows for
exact solution of the many-body problem. To obtain the
grand partition sum,J, we count the possible states chara
terized by the particle numbers of colloids and polym
~which can be regarded as occupancy numbers of the
cavity!. As we deal with a thermal system, wherebeCP is a
control parameter, we need to consider the appropriate
tistical weight, given by the Boltzmann factor, in the gra
ensemble. Summing-up the possible states, we have~i! all
states with an arbitrary number of polymers but without c
loids. This includes the empty state with vanishing parti
numbers, and essentially constitutes the partition sum o
ideal gas of polymers. Furthermore, we need to consider~ii !
a single colloidal particle and an arbitrary number of po
mers. All remaining states are characterized by at least
colloidal particles. Due to the hard core potential betwe

FIG. 1. Sketch of the model with hard colloidal spheres of diametersC

52RC and effective polymer spheres with diametersP52RC . Penetration
of colloids into polymers is accompanied by an energy costeCP .
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colloids, these states carry vanishing statistical weig
Hence we obtain the 0D grand partition sum,

J5exp ~zP!1zC exp ~zP exp ~2beCP!!, ~4!

where the first~second! term corresponds to case i~ii ! above,
and zi is the fugacity of speciesi 5C,P. From the grand
partition sumJ, Eq. ~4!, the ~canonical! Helmholtz free en-
ergy can be obtained by a~double! Legendre transform from
the fugacities zi to the mean numbers of particlesh̄ i

5zi] ln J/]zi . Hence the excess~over ideal gas! free energy
F0D is obtained frombF0D1h̄P@ ln(h̄P)21#1h̄C@ln(h̄C)21#
52J1h̄P ln(zP)1h̄C ln(zC). The straightforward calculation
gives

bF0D5~12h̄C!ln~12h̄C!

1h̄C2h̄P ln~12h̄C@12exp~2beCP!# !. ~5!

It is instructive to consider the limit of weak colloid–
polymer interactions,beCP→0. By Taylor expanding Eq.~5!
one obtains

bF0D5~12h̄C!ln~12h̄C!1h̄C2beCPh̄Ph̄C

1O~b2eCP
2 !. ~6!

The sum of the first two terms in Eq.~6! equals the 0D free
energy of hard spheres.26,27 The next term is bilinear in the
densities involved—a typical mean-field contribution. Th
might be expected on physical grounds. We stress, howe
that Eq.~6! is anexactexpansion. We further note that in th
limit of hard colloid–polymer interaction,beCP→`, the 0D
free energy isbF0D5(12h̄C2h̄P)ln(12h̄C)1h̄C , equal to
the result for the AO model.20,21

B. Density functional theory

The total Helmholtz free energy of an inhomogeneo
system may be written asF5F id1Fexc, where F id

5( i 5C,P*drr i(r )@ ln(ri(r )L i
3)21# is the ideal-gas free en

ergy functional~for two species!, with L i being the~irrel-
evant! thermal wavelength of speciesi , andFexc is the ex-
cess contribution arising from interactions between partic
Following previous work on mixtures,18,20,21,26,27we express
the Helmholtz excess free energy as a functional of coll
and polymer density fields as a spatial integral

Fexc@rC~r !,rP~r !#5kBTE d3xF~$nn
C~x!%,$ng

P~x!%!,

~7!

where the weighted densities

nn
i ~x!5E d3rr i~r !wn

i ~x2r !, i 5C,P ~8!

are defined as convolutions of weight functions,wn
i , with the

actual density profiles, andn50,1,2,3,v1,v2,m2 denotes th
type of weight function.

The weight functionswn
i are independent of the densit

profiles and are given by

w3
i ~r !5Q~Ri2r !, w2

i ~r !5d~Ri2r !, ~9!

wv2
i ~r !5w2

i ~r !r /r , ŵm2
i ~r !5w2

i ~r !@rr /r 221̂/3#, ~10!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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where r 5ur u, Q(r ) is the step function,d(r ) is the Dirac
distribution, and1̂ is the 333 identity matrix, and matrices
are denoted by a hat. Further, linearly dependent, weights
w1

i (r )5w2
i (r )/(4pRi), wv1

i (r )5wv2
i (r )/(4pRi), w0

i (r )
5w1

i (r )/Ri . The weight functions are quantities with dime
sion (length)32n. They differ in their tensorial rank:w0

i , w1
i ,

w2
i , w3

i are scalars;wv1
i , wv2

i are vectors;ŵm2
i is a ~traceless!

matrix.
The free energy densityF is composed of three parts18,19

that arise from consideration of one, two and three cavitie28

F5F11F21F3 . ~11!

They are defined as

F15 (
i 5C,P

n0
i w i~n3

C ,n3
P!, ~12!

F25 (
i , j 5C,P

~n1
i n2

j 2nv1
i
•nv2

j !w i j ~n3
C ,n3

P!, ~13!

F35
1

8p (
i , j ,k5C,P

~ 1
3 n2

i n2
j n2

k2n2
i nv2

j
•nv2

k

1 3
2 @nv2

i n̂m2
j nv2

k 2tr~ n̂m2
i n̂m2

j n̂m2
k !# !w i jk~n3

C ,n3
P!,

~14!

where tr denotes the trace, andmth order derivatives of the
0D excess free energy@Eq. ~5!# are

w i¯k~ h̄C ,h̄P![
]m

]h̄ i¯]h̄k
F0D~ h̄C ,h̄P!. ~15!

This completes the prescription for the functional.

C. Penetrable colloid–polymer interactions

The theory we have presented so far is applicable
arbitrary~constant! colloid–polymer interaction strengtheCP

and polymer-to-colloid size ratiosq. As our aim is a study of
the effects of particle–coil penetration in real colloid
polymer mixtures, we seek to find a relation betweeneCP

andq to match our effective sphere system with the behav
of true polymers. In the following this is carried out for th
case of low density of polymer and a single sphere, where
consider the excess chemical potential or insertion free
ergy. In lowest order, it is determined by the cross vir
coefficient between colloid and polymer. We consider t
cases, namely a theta solvent and a poor solvent, in ord
also learn about the effect of excluded volume swelling
the coil structure. The excess insertion free energies for a
ing VrC independent spheres to a dilute solution of po
mers, or to a solution of noninteracting polymers at arbitr
density, are known from field-theoretic considerations a
satisfy scaling limits for largeq,29,30

bdFexc/~V%C!

→H 4prPRP
3 /q for n5 1

2 ~ theta solvent!

18.461rPRP
3q1/n2d for n50.588 ~good solvent!,

~16!

where d53 is the space dimension. Particle insertion in
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the polymer coil is manifest in the decrease ofbdFexc for
large q where the open polymer structure becomes imp
tant. Using the potential given in Eq.~3!, the virial expansion
is in the limit of small interactionsbeCP given by
bdFexc/(V%C)→ 4

3pRP
3rPbeCP . Requiring this to agree

with Eq. ~16! in the limit of large polymers, we find for the
theta solvent,

beCP~q!5
3

q
, ~17!

and in a good solvent

beCP~q!5
4.40724

q321/n 5
4.40724

q1.29932, ~18!

wheren50.588.
There is a crossover between both functional forms

eCP(q). For smaller~larger! values thanq53.615, the inter-
action strengtheCP is weaker in the case of a theta~good!
solvent.

IV. RESULTS

A. Thermodynamics

To obtain the thermodynamics of homogeneous fl
states, we apply the density functional described in Sec. I
to constant density fields,rC(r )5const, rP(r )5const. In
this case the scalar weighted densitiesnn

i , n53,2,1,0 be-
come proportional to the bulk densities,nn

i 5jn
i r i , where the

proportionality constantsjn
i are so-called fundamental mea

sures obtained asjn
i 5*d3rwn

i (r ) @see Eq.~8!#. Explicitly the
fundamental measures are given asj3

i 54pRi
3/3, j2

i

54pRi
2 , j1

i 5Ri , j0
i 51, corresponding to the volume, su

face, integral mean curvature, and Euler characteristic of
spheres of speciesi . The vectorial and tensorial weighte
densities,nv2

i , nv1
i , n̂m2

i vanish for constant density fields
due to the symmetry of the corresponding weight functio
@Eq. ~10!#. Inserting the obtained expressions for thenn

i into
Eqs. ~12!–~14!, and carrying out the derivatives in Eq.~15!
yields the excess free energy densityF @Eq. ~11!#. As F is
also constant in space, the integration in Eq.~7! becomes
trivial, and the bulk excess Helmholtz free energy density
obtained as

bFexc/V5bfHS~rC!2rP ln aPAO~rC!, ~19!

wherefHS(rC) is the excess free energy per unit volume
pure HS in the scaled-particle~and Percus–Yevick com
pressibility! approximation, given as

bfHS~rC!5
3hC@3hC~22hC!22~12hC!2 ln~12hC!#

8pRC
3 ~12hC!2 ,

~20!

and

aPAO~rC!5~12hC8 !exp~2Ag2Bg22Cg3!, ~21!

where g5hC8 /(12hC8 ), hC8 5@12exp(2beCP)#hC , and the
coefficients depend only on the size ratio and are given
A5q313q213q, B53q319q2/2, andC53q3.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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As pointed out in Sec. II, the PAO model reduces to
AO case forbeCP→`. In this limit, hC8 5hC , and aPAO

5aAO . As our DFT reduces to the corresponding function
for the AO model,20,21, we recover the sameaAO , which was
strikingly shown to be equal to the expression for the fr
volume fraction from the approach of Lekkerkerkeret al.4

Hence ouraPAO generalizes the common free volume fra
tion to the case of penetrable colloid–polymer interaction

Quantitatively,aPAO significantly deviates from the fre
volume result, provided the size ratioq is large enough. We
plot both quantities in Fig. 2 as a function ofhC for q53,
using the relation between size ratio and interaction stren
in a theta solvent,beCP53/q. Except for the limiting value
at hC50, significant deviations exist over the whole dens
range. These differences suggest significant deviations in
predicted phase behavior of both approaches—an issue
we will turn to in the next section.

FIG. 2. Comparison of the free volume fractiona as a function of colloid
packing fractionhC and for size ratioq53 for different models and ap-
proximations: Free volume theory for the AO model~solid line!, present
theory for the penetrable AO model~dotted line!, m-PY PRISM approach
~long-dashed line!.
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In order to assess how well oura compares to the free
volume fraction in real colloid–polymer mixtures, we co
sider the microscopic m-PY PRISM approach of Refs. 8–
This theory was used to derivea from a description of poly-
mers on the segment level@Eqs.~5! and ~6! in Ref. 10#. We
find that the free volume fractions from both approaches
similar, with am2PY being slightly larger. The deviations ca
be traced back to the fact that for largeq and smallhC

different expansions hold, namelyaPAO5123hC /q2 and
am2PY5122.427 05hC /q2.

B. Fluid demixing phase behavior

The conditions for phase equilibrium are equality of t
chemical potentials of both species and of the total press
in both phases. This is equivalent to performing a dou
tangent construction on the semigrand free energy where
polymer chemical potential is kept constant, see, e.g., Re
for further details.

We calculated binodals for the PAO model for size rat
q50.5,1,3,10 and display results in Fig. 3. For comparis
we also show the binodals obtained from free volume the
for the AO model. Note that this predicts stable liquid–g
coexistence in the AO model forq.0.32; for smaller values
of q this transition becomes metastable with respect to
fluid–solid transition.4,5 Within our model both size ratio and
colloid–polymer interaction strength are intimately couple
hence by varyingq, the interaction strength isbeCP varies.
For the above sequence ofq values, the colloid–polymer
interaction strength in a theta solvent@given in Eq. ~17!#
takes on the valuesbeCP56,3,1,0.3, and the correspondin
Boltzmann factor varies over a considerable range, nam
exp(2beCP)50.00248,0.0498,0.368,0.741.

For q50.5 @Fig. 3~a!# our binodals for both cases, the
solvent and good solvent, practically coincide~on the scale
of the plot! with those for the AO model. This is due to th
e
l

d

ol-

-

e

FIG. 3. Fluid–fluid demixing phase
diagrams as a function of packing
fractions hC and hP of colloids and
polymers, respectively. Shown is th
free volume result for the AO mode
with impenetrable polymer, along with
the result of the present theory applie
to the penetrable AO model for the
cases of a theta solvent and a good s
vent; the colloid–polymer interaction
strengthbeCP is prescribed by using
Eq. ~17! in the case of the theta sol
vent and by using Eq.~18! in the case
of the good solvent. Dots represent th
critical point. Different polymer-to-
colloid size ratiosq are shown:q
50.5 (a), 1~b!, 3 ~c!, 10 ~d!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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fact that the Boltzmann factor for the cross interaction
tween colloids and polymers is tiny, hence penetrability
negligible. We conclude that both model and theory red
to the correct limits. Forq51 @Fig. 3~b!# deviations begin to
emerge. The binodal in the PAO cases is shifted upwar
higher ~polymer! fraction, leading to a stabilization of th
mixed phase. Physically this is reasonable because the
different species repel each other weaker than in the AO c
as the colloidal particles can now penetrate into the nonc
pact polymer coils. Stabilization of the mixed phase gro
stronger upon increasing size ratio@see Figs. 3~c! and 3~d!
for q53,10#. For q510 significant enhancement of th
mixed phase is predicted. In the limitq→` for a theta sol-
vent, we find that the critical point is athC51/(3q2)
21/(2q3), hP5q/321/2 similarly as in Sear’s recent blob
scaling extension of the free volume approximation of
AO model.7

V. CONCLUSIONS

Previous models of colloid–polymer mixtures employ
interactions between polymer and colloid with a hard co
prohibiting overlap between colloids and polymers. This i
deficiency of these models, because in real systems, col
may penetrate polymer coils, especially if the polymer rad
of gyration is larger than the colloid size. In this work, w
remedied this drawback by introducing a penetrable~finite
for all distances! pair interaction between colloid and poly
mer. As a model, this was chosen to be a step-function
we have derived a geometry-based DFT and applied i
bulk fluid demixing. The free energy density is derived fro
the DFT by applying the functional to constant density p
files. The resulting analytical expression has a similar str
ture as the well-known free volume result.4 However, due to
the penetrability, in the expression for the polymer free v
ume the bare colloid packing fractionhC is replaced by a
scaled packing fractionhC8 5@12exp(2beCP)#hC @see Eq.
~21!#, wherebeCP is the strength of colloid–polymer repu
sion. We determine the latter via virial coefficient argume
for the cases of a theta and a good solvent. When the
ratio q.1, i.e., for long polymersbeCP&1, and hencehC8
differs markedly fromhC . As a consequence the free vo
ume fraction is considerably larger than the classic result
impenetrable polymer4 and agrees reasonably well with th
result from the microscopic m-PY PRISM approach.8–10 Our
model is still effective in the sense that details on the s
ment level of the polymers are ignoreda priori, and thus its
phase boundaries become less reliable for large polyme
colloid size ratios where they shift deep into the semidil
polymer concentration range. Here, presumably our neg
of polymer–polymer interactions is not reliable anymo
when applied to experimental systems. Nevertheless
Downloaded 26 Sep 2002 to 134.99.64.157. Redistribution subject to A
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model’s prediction that, for large polymers, particle penet
tion into the polymer coils becomes important compared
the classical AO picture should prove robust and agrees w
more microscopic approaches8,11 where excluded volume is
taken into account on the segment level. Our model a
captures changes in miscibility resulting from excluded v
ume swelling of the polymer coils when varying the solve
quality, as has been seen experimentally,10 albeit for some-
what different parameters.
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