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In order to study the effects of penetrability in mixtures of dissimilar particles we consider hard
(colloidal) spheres and penetrable spheres. The latter may be taken to represent ideal, noninteracting
polymer coils. Polymers and colloids interact by means of a repulsive step-function pair potential,
which allows for insertion of colloids into the polymer coil. The potential strength is obtained from
scaling arguments for the cross virial coefficient of true colloid—polymer systems. For this model we
construct a geometry-based density functional and apply it to bulk fluid demixing. We find that
taking into account penetrability leads to a significant stabilization of the mixed phase for large
polymer-to-colloid size ratio. €002 American Institute of Physic§DOI: 10.1063/1.1503303

I. INTRODUCTION colloids to penetrate the polymer spheres. On the segment
level (disregarded within our modglthis leads to a restric-
Different levels of description have been used to studytion of allowed polymer configurations, hence a free energy
the emergence of structure and phase behavior in colloidpenalty emerges. We calculate its strength from the cross
polymer mixtures. Such systems are experimentally wellirial coefficient and use this as an input for the effective
characterized and the phase behavior typically displegs  sphere model, by setting the free energy penalty equal to an
loid) gas, liquid and crystalline phases. A coarse-grainednternal energy contribution to the Hamiltonian, both for a
level of description relies on effective spheres to modekheta solvent and for a good solvent. As an approximation,
globular nonadsorbing polymers and goes back to Asakur@e disregard polymer-polymer interactions, as would be jus-
and OosawgAO) (Ref. 1) and Vrij> Perturbation theory, tified for dilute polymers and at the theta temperature. We
free volume theor§};”> and simulation® have been success- derive a DFT for the model and apply it to bulk fluid demix-
fully employed to study the bulk properties of this model. ing. For small polymer-to-colloid size ratios the demixing
A deeper, more microscopic level of description is thebinodal approaches the free volume result for impenetrable
basis for theories that operate on the Blab segmerf™  polymer® In the opposite regime of large polymer-to-colloid
level of the polymers. It has also been the basis for computesize ratios, our theory predicts a significant stabilization of
simulations of colloidal spheres and lattice polym&s?  the mixed fluid phase, the effect being stronger in the case of
While these approaches consider translatiamalconforma-  a good solvent.
tional (interna) contributions to the entropy, a reduction of We specify the model of hard colloids and penetrable
the degrees of freedom to the center-of-mass translations @blymer in Sec. Il, and develop the theory in Sec. IlI. Bulk
both species would among other advantages for examplguid—fluid demixing is calculated in Sec. IV and we finish
greatly speed up computer simulations of these complewith concluding remarks in Sec. V.
mixtures. This aim has recently been pursued using soft
sphere approaches to polymér® and also motivates our
study. Il. THE MODEL

Density functional theoryDFT) (Ref. 17 is more pow-

erful than the above bulk theories, as it is capable of dealin%nd effective polymer spherespeciesP) interacting b
with inhomogeneousituations. In the context of effective means of pair Eot)éntiahs!-?(r) wrﬁ)erei |=C,P, see F%g {
1] 1 )T, .

sphere models previous hard sph_ere theg’rﬂé?scould be for a sketch of the model. The interactions between particles
extended to a range of models, including the AO model

: . . . of the same species are
without?®?* and with polymer—polymer interactiod$Inter- P

We consider a mixture of colloidal particléspeciesC)

esting inhomogeneous situations are realized in interfaces © if r<2Rc
between demixed fluid states and near walls, where wetting Vcc(r)%o else 1)
and layering phenomena were foufid. '

In this work we use effective polymer spheres and do  Vpp(r)=0. (2

one step towards a more realistic description by allowingrhe interaction between colloids and polymers is

dpermanent address: Physik Department, Technische Univevkitechen, Vep(r)= 3)
D-85747 Garching, Germany. 0 else.
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colloids, these states carry vanishing statistical weight.
Hence we obtain the OD grand partition sum,

E=exp(zp) +Zc exp(zpexp(— Becp)), (4)

where the firstsecond term corresponds to caséiii) above,
and z; is the fugacity of species=C,P. From the grand
partition sum=, Eq. (4), the (canonical Helmholtz free en-
ergy can be obtained by(double Legendre transform from
the fugacitiesz; to the mean numbers of particles;
=z;0In Eldz . Hence the exceggver ideal gasfree energy
Fop is obtained fromBF op+ 7p[ In(7p) — 1]+ 5l IN(7c) — 1]
=—E+7pIn(zp)+ 7cIn(Z0). The straightforward calculation
gives

FIG. 1. Sketch of the model with hard colloidal spheres of diameter
=2Rc and effective polymer spheres with diameter=2R. . Penetration

of colloids into polymers is accompanied by an energy egst. BFop=(1—7c)In(1—7¢)

+7c—npIn(1—7nc[1—exp— Becp)]). 5
In essence, this is the AO model where the the colloid—; s instructive to consider the limit of weak colloid—
polymer interaction is assumeq to be penetrable rather th%lymer interactions@ecp— 0. By Taylor expanding Eq5)
hard. Hence we refer to this model as the penetrablg o optains
Asakura—Ooasaw@AO) model. The PAO model reduces in o L o
the limit Becp— to the classic AO modét? where B BFop=(1—nc)IN(1—nc)+ nc— Becpnpnc
=1/kgT, kg is the Boltzmann constant, and is absolute +O(3252 ) ®)
temperature. Anothefalbeit trivial) limit is obtained for cP
Becp—0 (and finite radiiRp, Rc), where the mixture de- The sum of the first two terms in E¢6) equals the 0D free
couples into a hard sphere colloid fluid and an ideal gas oénergy of hard spheré8?’ The next term is bilinear in the
polymers; these subsystems do not interact with each otheflensities involved—a typical mean-field contribution. This
As bulk thermodynamic parameters we use the packingnight be expected on physical grounds. We stress, however,
fractions nc=4mR3pc/3, 7p=47R3pp/3, wherepc, pp  that Eq.(6) is anexactexpansion. We further note that in the
are the number densities of colloids and polymers, respedimit of hard colloid—polymer interactiondecp—, the 0D
tively. The system volume is denoted My The size ratio free energy is8Fop=(1—77¢c— 7p)IN(1—77c) +77c, equal to
g=Rp/Rc and the(reduced strengthBecp act as control  the result for the AO modéf?!
parameters.

B. Density functional theory

lll. THEORY The total Helmholtz free energy of an inhomogeneous

A. Zero-dimensional limit system may be written aF=F4+Fq. Where Fy

In order to work out a density functional theory for the =Ei:C,pf(_irpi(r)[ln(pi(r)A?)_— 1] i_s the ideal-gas fr_ee en-
PAO model we follow the lines suggested in Refs. 18 and 169y functional(for two speciek W'Fh A being _the(lrrel-
for hard spheres and in Refs. 20-22, 24, and 25 for a broadglyam thermal wavelength of speciés andFey is the ex-

class of models and determine the excess Helmholtz fre&€SS contribution arising from interactions between particles.

: H ; ,20,21,26,27
energy from dimensional crossover starting with the zero—FOHOWIng previous work on mixturet; WE express

dimensional (0D) limit. The OD limit corresponds to the the Helmholtz exc_ess_free energy as a_functional of colloid
problem of packing particles into cavities such that all par—and polymer density fields as a spatial integral

ticles overlap. This is an idealized situation and allows for an 3 c b

exact solution of the many-body problem. To obtain the 0D Fexipc(r)-PP(r)]:kBTJ d™®({n; (x)},{n, ()}),

grand partition sumz, we count the possible states charac- (7
terized by the particle numbers of colloids and polymers : o
(which can be regarded as occupancy numbers of the Oghere the weighted densities

cavity). As we deal with a thermal system, whefecp is a o 3 i o L

control parameter, we need to consider the appropriate sta- mX)= | drpi(Nw,(x=r), 1=C,P 8)
tistical weight, given by the Boltzmann factor, in the grand

gtnastggn\?vli(taﬁ irl:rgrmbil?rg;upnltjrr]r?bgroiilblci f;ztrisblﬂivilfﬁgﬁltl Col_actual density profiles, and=0,1,2,3,v1,v2,m2 denotes the
y poly type of weight function.

loids. This includes the empty ;tate with van_|s'h|ng particle The weight functionsv', are independent of the density
numbers, and essentially constitutes the partition sum of aBrofiIes and are given b v
ideal gas of polymers. Furthermore, we need to condider _ y_

a single colloidal particle and an arbitrary number of poly-  w5(r)=0(R—r), wh(r)=58R;—r), 9
mers. All remaining states are characterized by at least two : : N i , -
colloidal particles. Due to the hard core potential between — Wya(F)=Wo(1)r/r,  Wio(r)=wy(r)[rr/re=1/3], (10)

are defined as convolutions of weight functiond, with the
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wherer=|r|, ©(r) is the step functiong(r) is the Dirac  the polymer coil is manifest in the decreasesF . for
distribution, andl is the 3x 3 identity matrix, and matrices large q where the open polymer structure becomes impor-
are denoted by a hat. Further, linearly dependent, weights atant. Using the potential given in E(B), the virial expansion
wi(r)=whH(r)/(4mR), Wy (1) =wy,(r)/(4mR;), wy(r) is in the limit of small interactionsBecp given by
=wjy(r)/R;. The weight functions are quantities with dimen- BOF ool (Vo) — 2mR3ppBecp. Requiring this to agree
sion (length§~". They differ in their tensorial rankwy, W}, with Eg. (16) in the limit of large polymers, we find for the
W,, Wy are scalarsw), , w,, are vectorsy,,, is a(traceless  theta solvent,

matrix.

The free energy densitp is composed of three patfs-® Becp(q) = E (17)
that arise from consideration of one, two and three cavfles, q
P=,+ Dyt Dy (11 ~ andin a good solvent

440724 4.40724

Becp(Q)=—Z3=—7 =
cP q3 1/ q

_ i ,.C P
®,= ECP Nowi(Nz,N3), (12 wherev=0.588.

They are defined as

1.29932’ (18)

There is a crossover between both functional forms for

b= nnb—n i )e:(nS.nP). 13 ecp_(q). For smaller_(largelj valges tharg=3.615, the inter-
2 i,szC,P (MN2~ My M) ¢ (N 13) 19 aétion strengthecp is weaker in the case of a thetgood
solvent.
<I)3=i (3 nbnbn¥—nbnl, - nk
87Ti,j,k:C,P 3 112112012 202" T2
+ 3 [nl2fl Nl — tr( Aol 1 @i (S 03, IV. RESULTS
(14) A Thermodynamics
where tr denotes the trace, amih order derivatives of the To obtain the thermodynamics of homogeneous fluid
0D excess free enerd§q. (5)] are states, we apply the density functional described in Sec. Il B
" to constant density fieldsyc(r)=const, pp(r)=const. In
= —\_ = = this case the scalar weighted densities »=3,2,1,0 be-
y =TF y . 15 . L N 1
i 77, 7p) Imit Iy ool 77c 7p) 139 come proportional to the bulk densities,= ¢, p; , where the

proportionality co_nstantgiV are so-called fundamental mea-
sures obtained a8, = [d3rw' (r) [see Eq(8)]. Explicitly the
C. Penetrable colloid—polymer interactions fundamental measures are given @%:477&3/3, &
The theory we have presented so far is applicable t&47R;, &1=R;, &=1, corresponding to the volume, sur-
arbitrary(constank colloid—polymer interaction strengip face, integral mean curvature, and Euler characteristic of the
and polymer-to-colloid size ratias As our aim is a study of SPheres of specieis The vectorial and tensorial weighted
the effects of particle—coil penetration in real colloid— densities,n;, nyy, i, vanish for constant density fields,
polymer mixtures, we seek to find a relation betweenp due to the symmetry of the corresponding weight functions
andq to match our effective sphere system with the behaviofEd- (10)]. Inserting the obtained expressions for tieinto
of true polymers. In the following this is carried out for the Eds.(12)—(14), and carrying out the derivatives in EG.5)
case of low density of polymer and a single sphere, where wii€lds the excess free energy densiy{Eq. (11)]. As @ is
consider the excess chemical potential or insertion free er@lsO constant in space, the integration in Ef. becomes
ergy. In lowest order, it is determined by the cross virialtrivial, and the bulk excess Helmholtz free energy density is
coefficient between colloid and polymer. We consider twoobtained as
cases, namely a theta solvent and a poor solvent, in (_)rder to BF ox/ V=B duspc)— pp IN apac(pe), (19
also learn about the effect of excluded volume swelling of
the coil structure. The excess insertion free energies for addvhereus(pc) is the excess free energy per unit volume of
ing Vpc independent spheres to a dilute solution of poly-Pure HS in the scaled-particleand Percus—Yevick com-
mers, or to a solution of noninteracting polymers at arbitraryPressibility approximation, given as

This completes the prescription for the functional.

ey, e K o G porte oo a1, Lo n0 219 )
’ HS! C 87TR%(1_ nc)z '
BOFexc!(Vec) (20)
AmppR3lq for v=3 (theta solvent and
— _ o _ _ 2 3
18.46pR3qY" "9 for »=0.588 (good solvent, apaolpc) = (1—nc)exp(—Ay—By —Cy?), (21)

where y=n&/(1- 7¢), ne=[1—exp(~Bece)nc. and the
(16) . : ¢ .
coefficients depend only on the size ratio and are given as
whered=3 is the space dimension. Particle insertion intoA=q°+3q?+ 3¢, B=3g3+99?%/2, andC=3¢q°.
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- —— In order to assess how well owr compares to the free
08 N present theory volume fraction in real colloid—polymer mixtures, we con-
NS Py PRISH 1 sider the microscopic m-PY PRISM approach of Refs. 8—10.
06 L \3 ] This theory was used to derivefrom a description of poly-
= \ mers on the segment leviEgs. (5) and(6) in Ref. 10. We
04t find that the free volume fractions from both approaches are
similar, with a,,_ py being slightly larger. The deviations can
0.2} Ry 1
el be traced back to the fact that for largeand small z¢
0 , ) D different expansions hold, namelypao=1—37c/g* and
0 0.02 0.04 0.06 0.08 a_py=1—2.427 05 /q>.

Mo B. Fluid demixing phase behavior

FIG. 2. Comparison of the free volume fractianas a function of colloid Th diti f h ilibri i fth
packing fractionnc and for size ratiog=3 for different models and ap- e conditions for phase equilibrium are equality of the

proximations: Free volume theory for the AO modsblid line), present ~ chemical potentials of both species and of the total pressure

theory for the penetrable AO modédotted ling, m-PY PRISM approach  in both phases. This is equivalent to performing a double

(long-dashed ling tangent construction on the semigrand free energy where the
polymer chemical potential is kept constant, see, e.g., Ref. 4
for further details.

As pointed out in Sec. Il, the PAO model reduces to the  We calculated binodals for the PAO model for size ratios
AO case forBecp—. In this limit, »c=7c, and @ppo  9=0.5,1,3,10 and display results in Fig. 3. For comparison
=apo - As our DFT reduces to the corresponding functionalwe also show the binodals obtained from free volume theory
for the AO model%?, we recover the same,, which was  for the AO model. Note that this predicts stable liquid—gas
strikingly shown to be equal to the expression for the free-coexistence in the AO model fay>0.32; for smaller values
volume fraction from the approach of Lekkerkerketral®*  of g this transition becomes metastable with respect to the
Hence ourapso generalizes the common free volume frac- fluid—solid transitiorf:® Within our model both size ratio and
tion to the case of penetrable colloid—polymer interactions. colloid—polymer interaction strength are intimately coupled,

Quantitatively,apsgo significantly deviates from the free hence by varyingy, the interaction strength i8ecp varies.
volume result, provided the size ratipis large enough. We For the above sequence df values, the colloid—polymer
plot both quantities in Fig. 2 as a function @t for q=3, interaction strength in a theta solvegiven in Eq. (17)]
using the relation between size ratio and interaction strengttakes on the valuegecp=6,3,1,0.3, and the corresponding
in a theta solventBecp=23/q. Except for the limiting value Boltzmann factor varies over a considerable range, namely
at »c=0, significant deviations exist over the whole densityexp(— Becp)=0.00248,0.0498,0.368,0.741.
range. These differences suggest significant deviations in the For g=0.5[Fig. 3(@] our binodals for both cases, theta
predicted phase behavior of both approaches—an issue thstlvent and good solvent, practically coincitin the scale
we will turn to in the next section. of the ploy with those for the AO model. This is due to the

impenetrable polymer
theta solvent
good solvent -

impenetrable polymer
theta solvent -
0.8 good solvent = o

06
FIG. 3. Fluid—fluid demixing phase
0.4 diagrams as a function of packing
\‘ fractions 5 and np of colloids and
0.2t polymers, respectively. Shown is the
. free volume result for the AO model
0 : : : 0 ‘ - - with impenetrable polymer, along with
0 0.1 0.2 0.3 0.4 0 0.02 0.04 0.06 0.08 0.1 the result of the present theory app“ed
U Nc to the penetrable AO model for the
cases of a theta solvent and a good sol-

Me
/
&

impenarabie polymer 8 P ——— vent; the colloid—polymer interaction
impenetrable polymer . . .
theta solvent -~ 7r theta solvent - strengthBecp is prescribed by using
good solvent == 6l good solvent Eq. (17) in the case of the theta sol-
vent and by using Eq18) in the case
5 of the good solvent. Dots represent the
é 4 e 1 critical point. Different polymer-to-
(b) 3 S (d) J colloid size ratiosq are shown:q
o =0.5 (a), 1(b), 3 (c), 10 (d).
1 L
0 - e 0 : :
0 0.1 0.2 0.3 0.4 0 0.002 0.004 0.006 0.008
U Ne
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fact that the Boltzmann factor for the cross interaction be-model’s prediction that, for large polymers, particle penetra-
tween colloids and polymers is tiny, hence penetrability istion into the polymer coils becomes important compared to
negligible. We conclude that both model and theory reducehe classical AO picture should prove robust and agrees with
to the correct limits. Fog= 1 [Fig. 3b)] deviations begin to more microscopic approactés$ where excluded volume is
emerge. The binodal in the PAO cases is shifted upward ttaken into account on the segment level. Our model also
higher (polymep fraction, leading to a stabilization of the captures changes in miscibility resulting from excluded vol-
mixed phase. Physically this is reasonable because the twame swelling of the polymer coils when varying the solvent
different species repel each other weaker than in the AO casguality, as has been seen experimentllgjbeit for some-

as the colloidal particles can now penetrate into the noncomwhat different parameters.

pact polymer coils. Stabilization of the mixed phase grows

stronger upon increasing size rafisee Figs. &) and 3d)  ACKNOWLEDGMENTS
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