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Colloidal rod-sphere mixtures: Fluid-fluid interfaces and the Onsager limit
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Using a geometry-based density functional theory we investigate the free interface between demixed bulk
fluid phases of a colloidal mixture of hard spheres and vanishingly thin needles. Results are presented for the
spatial and orientational density distributions of the particles, as well as for the interface tension. Density
profiles display oscillations on the sphere-rich side of the interface provided the sphere liquid phase is on the
oscillatory side of the Fisher-Widom line in the bulk phase diagram. Needles tend to align parallel~perpen-
dicular! to the interface on the needle-rich~sphere-rich! side displaying biaxial~uniaxial! order. Furthermore,
we generalize the theory to the Onsager limit for interacting rods, and give explicit expressions for the
functional in simple geometries.
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I. INTRODUCTION

Mixtures of spherical and rodlike particles provide so
matter systems that display astonishingly rich phase beha
@1#. When a second component is added as a depletant a
to a suspension of colloidal spheres, the spheres may ex
colloidal vapor, liquid, and crystalline phases. Rodlike d
pletants alone, however, already have rich liquid-crystall
phase behavior. The possible combinations of both type
ordering are vast. Experimental examples of rod-sphere m
tures are dispersions of silica spheres and silica coated b
mite rods@2,3#, silica beads immersed in suspensions of ro
like f d bacteriophage virus@4#, and, in the biological
domain, microtubules inside vesicles modeling the euka
otic cell @5,6#. Experimental work has also been devoted
self-diffusion and sedimentation of spheres in dispersion
rods@7#. Depletion-induced crystallization was found in mi
tures of colloidal silica spheres and colloidal silica rods w
light microscopy and confocal scanning laser microsco
@3#. Fluid-fluid phase separation was observed experim
tally in a mixture of silica spheres and semiflexible po
meric rods@poly~g-benzyl-a,L-glutamate! ~PBLG! with mo-
lecular weight 105 000# @8#. The free interface betwee
demixed fluid phases is one topic that we address in
present work.

As a simple theoretical model of a rod-sphere mixtu
Bolhuis and Frenkel proposed a binary system of h
spheres and vanishingly thin hard needles@9#. Due to the
vanishing needle thickness, and hence the absence of i
actions between needles, this system does not display li
crystalline order, but exhibits~sphere! vapor, liquid, and
solid states, as was found in Ref.@9# with simulation and a
perturbation theory. The theory is similar to the free volum
treatment of the Asakura-Oosawa~AO! model@10,11# of col-
loidal spheres and noninteracting polymer spheres by L
kerkerkeret al. @12#. The depletion potential exerted on
pair of spheres due to the presence of the rods was stu
theoretically@13#, and experimentally using optical tweeze
@4#. Considerable work was done to understand the natur
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the depletion force due to rod-like polymers in the Onsa
limit @14#, and the interactions between flat plates and
tween two large spheres via the Derjaguin approximat
@15#. Theoretical phase behavior of mixtures of spheres
rods with finite diameter were studied in Ref.@2# and com-
pared to experiment@3#, and in a mixture of parallel hard
spherocylinders and hard spheres layered phases were i
tigated@16#.

Density-functional theory~DFT! @17,18# is a powerful
tool to study equilibrium properties of inhomogeneo
many-particle systems. For realistic systems, one usually
to rely on approximations for the central quantity of DFT, t
excess free energy functional. One particularly successful
ample of such an approximation is Rosenfeld’s density fu
tional for hard sphere~HS! fluids @19#, that also describes th
HS solid @20–23#. An early extension of this theory to trea
hard convex bodies was proposed@24#, and used to derive
bulk direct correlation functions for molecular fluids@25#,
two-dimensional anisotropic fluids@26#, and hard sphere
chain fluids@27#. The theory of Ref.@24# suffered from an
incomplete deconvolution of the Mayer bond leading to
incorrect virial expansion, and an extension to remedy t
deficiency was made for the model of hard spheres and h
vanishingly thin needles@28#. Subsequently, this was als
generalized to a hard body amphiphilic mixture@29# and to
mixtures of colloidal spheres, rods and polymer spheres@30#.
Recently, the entropic torque exerted on a single sphero
inder immersed in a hard sphere fluid at a hard wall w
calculated with a similar approach@31#.

In contrast to the case of simple fluids, interfaces in su
complex systems are genuinely characterized by positio
and orientational order. Interfaces between phases with
ferent liquid crystalline ordering, like isotropic-nematic in
terfaces, have attracted considerable interest, see Ref.@32#
for a recent study of the hard-rod fluid. In this work, w
investigate the free interface between demixed~isotropic!
fluid phases in a rod-sphere mixture, an issue that has
been addressed so far. We use the simplest nontrivial m
in the context, namely, Bolhuis and Frenkel’s mixture of ha
©2002 The American Physical Society01-1
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spheres and vanishingly thin needles, and investigate i
means of the geometry-based DFT proposed earlier@28#. As
this theory reproduces the bulk fluid free energy and he
the accurate fluid demixing binodal of perturbation theo
@9#, and was also shown to yield bulk~sphere! pair correla-
tion functions in good agreement with computer simulat
results@28#, we are confident to apply it to inhomogeneo
situations. We find that, driven by packing effects of t
spheres, orientational order of the needles occurs at the
fluid-fluid interface, and that the density profiles are oscil
tory provided the sphere-rich fluid is on the oscillatory si
of the Fisher-Widom line in the bulk phase diagram@33–36#.
The interface tension is found to be of the order of the th
mal energy per molecular area, and we investigate its sca
with needle length and sphere diameter in detail. Furth
more, we extend the DFT to the case of nonvanishing r
rod interactions in the Onsager limit and give explicit expr
sions for the functional in simple geometries.

Similar interface studies using density-functional a
proaches were recently carried out@37,38# for the AO model
@10,11# of colloid-polymer mixtures. Our present mode
however, allows us to go beyond those studies through
investigation of orientational order at the interface. Clea
such ordering is absent in the AO model of spherical bod

The paper is organized as follows. In Sec. II we define
more detail the hard sphere-needle mixture for vanishin
thin needles as well as for needles in the Onsager limit. T
we present our DFT approach in Sec. III, generalize it to
Onsager limit and give explicit expressions for the relev
quantities in simple geometries. In Sec. IV, after revisiti
the bulk fluid phase behavior, we present results for den
and order parameter profiles across the free interface
tween demixed phases, as well as for the interface tens
We finish with concluding remarks in Sec. V.

II. MODEL

We consider a mixture of hard spheres~speciesS) with
radii R and straight hard needles~speciesN) with length L
and diameterD, see Fig. 1 for a sketch. The spheres inter
with a hard core potentialVSS(r ) as a function of their cente
separation distancer, which is given byVSS(r )5` if r
,2R and zero otherwise. Spheres and needles interact w
hard body interaction that depends, due to the part

FIG. 1. Model of hard spheres with diameters52R and
needles with lengthL. In planar geometry, thez direction is perpen-
dicular to the interface between needle-rich (z,0) and sphere-rich
(z.0) phases. The needle orientation is denoted byV, and the
angle betweenV and thez axis isu.
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shapes, on the difference vectorr between sphere and need
center, as well as on the needle orientation given by a
vector V pointing along the needle shape.~Hence the
needles possess an inflection symmetry,V→2V.! The
sphere-needle interaction is given byVSN(r ,V)5` if both
shapes overlap, and zero otherwise. In the following, we c
sider two cases of interactions between needles.

In the first, simpler, case we setD50. Then the needles
are noninteracting andVNN50, for all possible distances an
orientations. Although these ‘‘line’’ particles would nontriv
ally collide in a dynamical description, their excluded vo
ume vanishes due to the vanishing particle volume. Hen
configurations of overlapping needles carry vanishing sta
tical weight. As we are interested in static quantities only,
needles can be regarded as an ideal gas of rotators, solel
to their geometrical properties. As an aside, no such sca
holds in the somewhat similar AO model of hard sphe
colloids and ideal~polymer! spheres. There the interactions
between the particles of the second component are rega
as being ideal from the outset.

In our second case, the needles are treated in the Ons
limit @39#, where for thin rods a residual excluded volum
persists, leading to nontrivial interaction already in the pu
needle system. Again, the pair potential is that of hard bod
and is given, for the difference vectorr between the center
of two needles with orientationsV and V8, as
VNN(r ,V,V8)5` if both rods overlap, and zero otherwis
Note that the Onsager limit is obtained by lettingL/D→`
while keeping the combinationrNDL2 constant, whererN is
the number density of needles. Here we furthermore res
ourselves to size ratios that fulfillLD!R2, hence the sphere
surface is assumed to be large compared to the needle
face. This additional restriction is similar in spirit to the O
sager limit for pure needles and constitutes the simplest s
ing regime of the three lengthsR,L,D. Note that due to the
large aspect ratio, there is no need to specify the pre
shape of the needle ends, whether, e.g., hemispherical o
lindrical.

We denote the number densities of spheres and needle
rS(r ) and rN(r ,V), respectively. As bulk thermodynami
parameters, we use the packing fraction of spheresh
54pR3rS/3 and the scaled needle densityr* 5rNL2s,
wheres52R denotes the sphere diameter. Furthermore,
denote the density in a reservoir of pure needles that is
chemical equilibrium with the system asrN

r and use a scaled
versionr

*
r 5rN

r L2s. The ratio of needle length and sphe
diameter,L/s, and, in our second model, the ratio of need
diameter and length,D/L, are control parameters. As onl
hard core interactions are present, temperatureT is an irrel-
evant variable that only sets the energy scale throughkBT,
wherekB is Boltzmann’s constant.

III. DENSITY FUNCTIONAL THEORY

A. Spheres and vanishingly thin needles

In this section, we review briefly the DFT proposed
Ref. @28#. The starting point is a geometrical representat
of the particles in terms of weight functionswm

i , where i
1-2
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labels the species, andm53,2,1,0 corresponds to the pa
ticles’ volume, surface, integral mean curvature, and Eu
characteristic, respectively@24#. The weight functions are de
termined to give the Mayer bondsf i j 5exp(2bVij)21, where
b51/kBT, by a linear combination of termswg

i (r )* w32g
j (r ),

where the asterisk denotes the spatial convoluti
g(r )* h(r )5*d3xg(x)h(r2x). For needles, following Ref
@24# yields

w1
N~r ,V!5

1

4E2L/2

L/2

dld~r1Vl !, ~1!

w0
N~r ,V!5

1

2
@d~r1VL/2!1d~r2VL/2!#, ~2!

where d(x) is the Dirac distribution. The functionw1
N de-

scribes the linear shape of a needle, whereasw0
N is only

nonvanishing at the needle endpoints.
For spheres the weight functions@19,23# are

w3
S~r !5Q~R2r !, w2

S~r !5d~R2r !, ~3!

wv2
S ~r !5w2

S~r !r /r , ŵm2
S ~r !5w2

S~r !@rr /r 221̂/3#, ~4!

wherer 5ur u, Q(x) is the step function,1̂ is the 333 iden-
tity matrix, andrr is a dyadic product. Further, linearly de
pendent, weights are w1

S(r )5w2
S(r )/(4pR),wv1

S (r )
5wv2

S (r )/(4pR),w0
S(r )5w1

S(r )/R. The weight functions for
spheres have different tensorial rank:w0

S , w1
S , w2

S , w3
S are

scalars;wv1
S , wv2

S are vectors;ŵm2
S is a ~traceless! second-

rank tensor. The Mayer bond between pairs of sphere
obtained through2 f SS/25w3

S* w0
S1w2

S* w1
S2wv2

S * wv1
S @19#.

In order to recover the sphere-needle Mayer bond one
@28#

w2
SN~r ,V!52uwv2

S ~r !•Vu, ~5!

which contains information about both species: it is nonv
ishing on the surface of a sphere with radiusR, but also
posseses~needle! orientation dependence. This function a
lows us to generate the Mayer bond through2 f SN(r ,V)
5w3

S(r )* w0
N(r ,V)1w2

SN(r ,V)* w1
N(r ,V), see Appendix

A 1 for an explicit calculation. All weight functions are use
to obtain weighted densitiesnn

i by smoothing the actual den
sity profiles through spatial convolutions,

nn
N~r ,V!5rN~r ,V!* wn

N~r ,V!, n51,0, ~6!

nn
S~r !5rS~r !* wn

S~r !, n53,2,1,0,v2,v1,m2, ~7!

n2
SN~r ,V!5rS~r !* w2

SN~r ,V!. ~8!

Note thatnn
N andnn

S are ‘‘pure’’ weighted densities, involving
only variables of either species@19,23,24#. The functionn2

SN

is obtained as a convolution of the sphere density with
orientation-dependent weight function; hence it combin
characteristics of both species and couples the orientati
degrees of freedom of the needles to the sphere distribu
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The ~Helmholtz! excess free energy is obtained by int
grating over a free energy density,

Fexc@rS ,rN#5kBTE d3r E d2V

4p
F~$nn

i %!, ~9!

where the reduced free energy densityF is a simple function
~not a functional! of the weighted densitiesnn

i . The variable
r runs over space, and asF depends also on orientation,V
runs over the unit sphere. The functional form ofF is ob-
tained by consideration of the exact zero-dimensional exc
free energy@28#, and is given by

F5FS1FSN, ~10!

FS52n0
Sln~12n3

S!1~n1
S n2

S2nv1
S
•nv2

S !/~12n3
S!

1@~n2
S!3/32n2

S~nv2
S !213~nv2

S n̂m2
S nv2

S

2 3detn̂m2
S !/2#/@8p~12n3

S!2#, ~11!

FSN52n0
Nln~12n3

S!1
n1

Nn2
SN

12n3
S

. ~12!

The contributionFS is equal to the pure HS case@19,23#,
and FSN arises from needle-sphere interactions@28#. The
arguments of the weighted densities are suppressed in
notation in Eqs.~11, 12!; see Eqs.~6–8! for the explicit
dependence. This completes the prescription for the ex
free energy functional for the case of vanishingly th
needles. For completeness, the ideal free energy is

F id@rS ,rN#5E d3rrS~r !$ ln@rS~r !LS
3#21%

1E d3r E d2V

4p
rN~r ,V!

3$ ln@rN~r ,V!LN
3 #21%, ~13!

whereL i is the ~irrelevant! thermal wavelength of specie
i 5S,N.

B. Spheres and rods in the Onsager limit

In order to deal with rod-rod interactions, we first expre
the Mayer bond between rods in the Onsager limit throu
f NN(r ,V,V8)/252w2

NN(r ,V;V8)* w1
N(r ,V8), wherew1

N is
defined in Eq.~1!, and we introduce

w2
NN~r ,V;V8!516DA12~V•V8!2w1

N~r ,V!. ~14!

As a geometrical interpretation, the functionw2
NN describes

the residual rod surface in the limit of large aspect ratio,
Appendix A 2 for details how the Mayer bond is obtaine
We construct an associated weighted density

n2
NN~r ,V8!5E d2V

4p
rN~r ,V!* w2

NN~r ,V;V8!, ~15!
1-3
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where, besides the spatial convolution, an angular conv
tion is required. This turns out to be necessary for the pre
case of interacting anisotropic particles. As an aside, we
immediately reformulate the Onsager excess free ene
functional for a pure system of rods, being precisely a sec
order virial expansion, by settingF5FNN in Eq. ~9!, with

FNN5n1
Nn2

NN, ~16!

where the weighted densityn1
N is given through Eqs.~6! and

~1!.
For the case of the actual sphere-rod mixture, we in

F5FS1FSN1FSNN into Eq.~9!, where the first two terms
are equal to the case of vanishingly thin needles and
given by Eqs.~11! and~12!, respectively. The additional con
tribution due to interactions between rods is found to be

FSNN5
n1

Nn2
NN

12n3
S

, ~17!

where~as before! the arguments of the weighted densities a
suppressed in the notation. This completes the extensio
the needle-sphere DFT to interacting rods.

C. Planar geometry

In order to facilitate the application of the theory to sit
ations like the free interface considered below in Secs. IV
IV C and to planar wall problems, we give explicit expre
sions for the weight functions in situations depending o
single spatial coordinatez and possessing translational i
variance in thex and y directions, wherer5(x,y,z) is a
Cartesian coordinate system. Additionally, we assume inv
ance with respect to rotations around thez axis by an angle
w. The remaining relevant angleu is that between an orien
tationV and thez axis, see Fig. 1. HencerS(r )5rS(z), and
rN(r ,V)5rN(z,u). ConsideringuP@0,p/2# is sufficient,
due to the inflection symmetry of the needles. In thisplanar
geometrythe weighted densities, Eqs.~6!–~8! and ~15!, can
be expressed as

nn
N~z,u!5E dz8rN~z8,u!wn

N~z2z8,u!, ~18!

nn
S~z!5E dz8rS~z8!wn

S~z2z8!, ~19!

n2
SN~z,u!5E dz8rS~z8!w2

SN~z2z8,u!, ~20!

n2
NN~z,u!5E dz8E

0

p

du8rN~z8,u8!w2
NN~z2z8,u8;u!,

~21!

where the effective weight functionswn
N(z,u), wn

S(z),
w2

SN(z,u) are obtained by carrying out the integrations
Eqs.~6!–~8! and~15! over coordinatesx,y, see Appendix B
for the details. Explicitly, for the needles one obtains
03140
u-
nt
n

gy
d

rt

re

e
of

,

a

i-

w1
N~z,u!5~4 cosu!21QS L

2
cosu2uzu D , ~22!

w0
N~z,u!5

1

2
dS L

2
cosu2uzu D . ~23!

For the spheres

w3
S~z!5p~R22z2!Q~R2uzu!, ~24!

w2
S~z!52pRQ~R2uzu!, ~25!

wv2
S ~z!52pzQ~R2uzu!ez , ~26!

ŵm2
S ~z!5pS z2

R
2

R

3 DQ~R2uzu!diag~21,21,2!, ~27!

where ez is the unit vector pointing along thez axis and
diag(•) denotes a 333 diagonal matrix. The linearly depen
dent weight functions arew1

S(z)5Q(R2uzu)/2, w0
S(z)

5Q(R2uzu)/(2R), wv1
S (z)5zQ(R2uzu)ez /(2R). The

mixed weight function is obtained as

w2
SN~z,u!55

8AR2sin2u2z2

18z cosu

3arcsinS z cot~u!

AR22z2D if uzu,R sinu,

4puzucosu if R sinu<uzu<R,

0 otherwise.
~28!

For the case of nonvanishing rod-rod interactions~Sec.
III B !, the additional weight function can be obtained up to
quadrature as

w2
NN~z,u;u8!5

D tanu

p
QS L cosu

2
2uzu D E

0

2p

dw

3A12~sinu8sinu cosw1cosu8cosu!2.

~29!

This fully specifies the DFT in planar geometry. We note th
the tensorial weight function, Eq.~27!, is included for rea-
sons of completeness. Albeit being crucial for a reliable
scription of the solid@23#, it is known to yield a small con-
tribution to the free energy in planar geometry, and may
neglected to a good approximation. Below in Sec. IV we w
adopt this strategy.

D. Spherical geometry

Here we focus on situations that only depend on the d
tance to the origin,r, and that remain invariant under rota
tions around the origin. This is realized, e.g., in the import
test-particle limit that allows us to obtain pair distributio
functions by minimizing the functional in the presence of
test sphere fixed at the origin. In spherical geometry, only
1-4
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angleu between needle orientationV and positionr remains
relevant, andrS(r )5rS(r ), andrN(r ,V)5rN(r ,u). Again,
we can restrict to 0<u<p/2. The pure weighted densitie
Eqs.~6!–~8! can be expressed as

nn
N~r ,u!5E

0

`

dr8rN~r 8,u!wn
N~r ,r 8,u!, ~30!

nn
S~r !5E

0

`

dr8rS~r 8!wn
S~r ,r 8!, ~31!

where the reduced weight functions are

w1
N~r ,r 8,u!5

r 8

4Ar 822r 2sin2u

3(
6

QS L

2
2ur cosu6Ar 822r 2sin2uu D ,

~32!

w0
N~r ,r 8,u!5

1

2 (
6

dS r 82AS r 6
L

2
cosu D 2

1
L2

4
sin2u D ,

~33!
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w3
S~r ,r 8!5

pr 8

r
@R22~r 2r 8!2#Q~R2ur 2r 8u!, ~34!

w2
S~r ,r 8!5

2pRr8

r
@Q~R2ur 2r 8u!2Q~R2r 2r 8!#,

~35!

wv2
S ~r ,r 8!5

R21r 22r 82

2Rr
w2

S~r ,r 8!
r

r
, ~36!

ŵm2
S ~r ,r 8!5

1

2 F S R21r 22r 82

2Rr D 2

2
1

3Gw2
S~r ,r 8!S 3

rr

r 2
21̂D .

~37!

In Eqs. ~36!, ~37! only the dependence on the scalar arg
ment r is important; the dependence onr /r is trivial due to
the structure ofF, Eq. ~11!. The linearly dependent weigh
functions arew1

S(r ,r 8)5r 8/(2r )@Q(R2ur 2r 8u)2Q(R2r
2r 8)#, wv1

S (r ,r 8)5(r 22r 821R2)/(2Rr)w1
S(r ,r 8),

w0
S(r ,r 8)5r 8/(2Rr)@Q(R2ur 2r 8u)2Q(R2r 2r 8)#. The

mixed weight function is
w2
SN~r ,r 8,u!55

8r 8

r FAr 82(12u2)2R2cos2u

1(r 2r 8u)cos(u)

3arcsinS (r 2r 8u)cotu

r 8A12u2 D G
if ur 2r 8uu,r 8A12u2tanu,

4p(r 8/r )ur 2r 8uucosu if ur 2r 8uu>r 8A12u2tanu,
0 if uuu>1,

~38!
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where u5(r 821r 22R2)/(2rr 8). For the remaining needle
weightw2

NN we could not obtain simple analytic expression
a full numerical calculation is required to obtainn2

NN .
We note that for a test-particle limit calculation, where

hard sphere is fixed at the origin, the above expression
be simplified, as the density distributions vanish inside
test particle. This allows us to omit the second step funct
in Eq. ~35! and rewrite the convolution kernels for spheres
a function of the differencer 2r 8 only. The expressions
given above are completely general, hence apply also
cases of nonvanishing densities in the immediate vicinity
the origin.

IV. RESULTS

A. Bulk phase diagram

As a prerequisite for our interface study, we reconsi
the bulk fluid demixing phase diagram of hard spheres
;

an
e
n
s

to
f

r
d

vanishingly thin needles. Within our approach, this is o
tained from the bulk Helmholtz free energy, which in turn
obtained by applying the density functional~outlined in Sec.
III A ! to constant density fields of spheres and needles. T
the weighted densities become proportional to the respec
bulk densities,nn

i 5jn
i r i , where the proportionality constant

are fundamental measures given byjn
i 5*d3xwn

i . For
spheresj3

S54pR3/3,j2
S5j2

SN54pR2,j1
S5R,j0

S51, whereas
for needlesj1

N5L/4,j0
N51. Then the excess Helmholtz fre

energy per volumeV is given byFexc(rS ,rN)/V5fHS(rS)
2rNkBTln a(rS), wherefHS(rS) is the excess free energ
density of pure hard spheres in the scaled-particle~and
Percus-Yevick compressibility! approximation anda5(1
2h)exp@2(3/2)(L/s)h/(12h)#. This expression for the
free energy is identical to the result from the perturbat
theory of Bolhuis and Frenkel@9#. We note that this is also
equivalent to a straightforward application of scaled-parti
theory for nonspherical bodies@40# to the current model.
1-5
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From the free energy all thermodynamic quantities can
calculated, and equating the total pressure and the chem
potentials of both species in both phases yields the coexis
densities. The resulting binodal was found to be in rema
able agreement with simulation results@9#.

Here we consider the case of equal sphere diameter
needle length,s5L, where fluid-fluid phase separation
stable with respect to freezing@9# and display the phase dia
gram in system representation~as a function ofh andr* ) in
Fig. 2. Shown is the binodal for coexisting states, wher
sphere-rich and needle-poor fluid~sphere liquid! coexists
with a sphere-poor and needle-rich fluid~sphere gas!. For
low densities, the density discontinuity vanishes at a criti
point. We also display the Fisher-Widom~FW! line, which
separates regimes in the phase diagram where the ulti
decay of pair correlation functions~and inhomogeneous one
body density profiles! at large separation is either damp
oscillatory or monotonic@33–36#. The FW line was calcu-
lated for the present model in Ref.@28# by considering the
poles of the partial structure factors in the plane of comp
wave vectors@34,35#. Furthermore, we display four tieline
between coexisting fluid states. These belong to reser
densities of needlesr

*
r 516,18,20,22, and indicate the stat

where we will carry out detailed structural studies belo
Tielines are horizontal in the phase diagram in needle re
voir representation~as a function ofh andr

*
r ), see the inset

in Fig. 2. The smallest reservoir density,r
*
r 516, is close to

the critical point ~which is located ath50.15 767, r*
59.3141,r

*
r 514.642). Forr

*
r 516 the liquid density is lo-

cated well on the monotonic side of the FW line, hence
expect one-body interface profiles to decay monotonic
into both bulk phases. The set of the three higher reser
densities (r r 518,20,22) covers the region up to the trip

FIG. 2. Fluid-fluid demixing phase diagram of the mixture
hard spheres and vanishingly thin needles with size ratioL/s51
obtained from DFT. Shown are the binodal~solid line! and the
Fisher-Widom line~dashed! dividing states where the ultimate de
cay of correlation functions is either monotonic or damped osci
tory. Tielines ~short-dashed! between coexisting states are show
for r

*
r 516,18,20,22. The main plot uses system representation

h andr* ; the inset is in reservoir representation withh andr
*
r .
*
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point, which was located with perturbation theory atr
*
r

'24 @9#. For these states we expect damped oscillatory p
files on the sphere-rich side of the interface.

Before turning to the fluid-fluid interface, we summariz
the bulk properties of spheres and rods in the Onsager l
in bulk given in Sec. III B. In an isotropic state, we find th
n2

NN5jn
NNrN , wherejn

NN5pLD equals the leading contri
bution to the surface of a rod in the limitL/D→`. It follows
that the additional contribution to the free energy density d
to rod-rod interactions is (p/4) rN

2 L2D/(12h), which is
identical to the result from scaled-particle theory@40#. We
leave a more detailed investigation of the phase behavio
possible future work.

B. Structure of the fluid-fluid interface

Here and in the following we restrict ourselves to t
simple case of spheres mixed with vanishingly thin need
and aim at an understanding of the free interface betw
demixed fluid states, see Fig. 1 for a schematic sketch of
following situation: Two demixed bulk fluids are in equilib
rium in contact; the coordinate perpendicular to their~planar!
interface is denoted byz, and the sphere-poor~-rich! phase is
present for negative~positive! z values. The coordinate ori
gin ~in z) is set to the position of the Gibbs dividing surfac
hence the z-coordinate fulfills *2`

0 dz@rS(z)2rS(2`)#
1*0

`dz@rS(z)2rS(`)#50. Note that as we deal with iso
tropic states forz→6`, the planar geometry considered
Sec. III C applies.

The numerical minimization of the density functional
Sec. III A is done by an iteration technique, see, e.g.,@41#.
We discretizerS(z) andrN(z,u) in z direction with a reso-
lution of 0.01s, and we find that angular discretization
20–50 steps is sufficient to get reliable results for dens
profiles. For the calculation of interface tensions betwe
demixed fluids~Sec. IV C!, we use 120 steps. Note tha
when, say, 20 needle orientations are considered, we
dealing in effect~due to the additional sphere profile! with a
21 component mixture.

We chose the size ratios/L51 for our interface study.
This is of the same order as realized in the experiments@8#
with silica spheres of 78 nm diameter and polymer ro
~PBLG! with L570 nm. However, we disregard effects ari
ing from rod flexibility and finite rod thickness and henc
consider onlyD50 ~note thatD51.6 nm for the polymer in
@8#!. We first turn to the sphere density profiles,rS(z), dis-
played in Fig. 3 as a function of the scaled distancez/s for
scaled needle reservoir densitiesr

*
r 516,18,20,22. These

statepoints are indicated by tielines in Fig. 2. The asympt
densities forz→6` in Fig. 3 correspond~up to the factor
p/6) to the sphere packing fractions at both ends of
tielines. With increasingr

*
r , and hence increasing distanc

to the critical point, the interface becomes sharper, i.e.
crosses over from one to the other limiting~bulk! value over
a shorter distance. For the highest needle reservoir den
considered,r* 522, clear oscillations emerge on the liqu
side of the interface, see the inset in Fig. 3. The amplitude
the oscillations, however, is considerably smaller than t
typically found at interfaces in the AO model~where the

-

th
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COLLOIDAL ROD-SPHERE MIXTURES: FLUID-FLUID . . . PHYSICAL REVIEW E66, 031401 ~2002!
depletants are ideal spheres rather than needles! @37#. From
the general theory of asymptotic decay of correlation fu
tions @34,35#, we expect that all statepoints where the liqu
density is inside the oscillatory region of the phase diagr
~separated by the FW line! will display similar behavior, and
indeed we find oscillations on the liquid side of the interfa
also for r

*
r 518, 20. The liquid state at densityr

*
r 516 is

inside the monotonic region, and no oscillations eme
upon magnifying the corresponding density profile in Fig.

In the present geometry, the needle density profile
pends on two variables, namely, the perpendicular distanz
from the interface and the angleu of needle orientation and
interface normal. The DFT yieldsrN(z,u) fully dependent
on both variables. In order to demonstrate this, we ch
r
*
r 522 as an example and display in Fig. 4r* (z,u)sinu as

FIG. 3. Scaled sphere density profiless3rS(z) at the free inter-
face between sphere-poor (z,0) and sphere-rich (z.0) phases as
a function of the scaled distancez/s perpendicular to the interfac
for r

*
r 516,18,20,22 corresponding to the tielines in the phase

gram, Fig. 2. The inset shows a magnified view of the~oscillatory!
profile s3r(z) as a function ofz/s at the sphere-rich side forr

*
r

522.

FIG. 4. Scaled needle density multiplied by the spherical v
ume element,r* (z,u)sinu, as a function ofz/s at the interface
between sphere-poor (z,0) and sphere-rich (z.0) fluids for r

*
r

522. Each curve is for fixed angleu to the interface normal; from
bottom to topu increases from 0~direction normal to the interface!
to p/2 ~direction parallel to the interface! in steps ofp/24. The inset
shows the barer* (z,u) without the volume element sinu.
03140
-

e
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-

e

a function ofz/s. The factor sinu is the spherical volume
element, hence the density distribution at a given angleu is
weighted according to the actual probability thatu is at-
tained. This weight is maximal foru5p/2 ~parallel to the
interface! and vanishes foru50 ~perpendicular to the inter
face!. In order to graphically represent the density profile,
display a set of curves parametrized byu; each curve then
depends on the single variablez, see Fig. 4. As expected, th
needles show a clear tendency to aggregate on the sp
poor side of the interface. In order to assess the orientatio
distribution we also plot the barer* (z,u) in the inset of Fig.
4. We observe that for fixedz on the needle-rich side of th
profiles the density increases with increasingu. This means
that large angles are favored, hence the needles tend t
range parallel to the surface, corresponding to biaxial or
On the needle rich side of the interface, however, the op
site trend is manifest. Upon increasingu at fixedz the den-
sity decreases. Hence small angles are more favora
needles arrange perpendicular to the interface display
uniaxial order.

In order to investigate the needle behavior in more det
we obtain two characteristic distributions from the fu
needle density profiler* (z,u). One is the orientation aver
aged needle density profile, defined as

r̄N~z!5E d2V

4p
rN~r ,V!, ~39!

5
1

2E0

p/2

du sin~u!rN~z,u!, ~40!

which measures the density of needle midpoints regard
of their orientation. The other is an orientational order p
rameter profile defined as

^P2~cosu!&5 r̄N~z!21E d2V

4p
rN~r ,V!P2~cosu!, ~41!

5@2r̄N~z!#21E du sin~u!rN~z,u!P2~cosu!,

~42!

where P2(x)5(3x221)/2 is the second Legendre polyno
mial. Negative values of̂P2(cosu)& indicate biaxial order-
ing, the extreme value being21/2 for full parallel alignment
to the interface~needles withu5p/2 lying in a plane!. Posi-
tive values^P2(cosu)& indicate uniaxial ordering, the ex
treme value~unity! is attained for perpendicular alignment
the interface (u50). Finally,^P2(cosu)&50 indicates isotro-
pic states. Note that this order parameter has the same in
tion symmetry as the needles.

In Fig. 5 we showr̄N(z) for the four statepoints consid
ered. A crossover from high values for negativez to low
values for positivez is manifest; hence, as observed befo
the needles are depleted in the space occupied by the
loids. The inset in Fig. 5 shows a magnified view of t
profile for r r 522 on the sphere-rich side of the interfac

-

-

*

1-7



th

r-
c

th

th
tic

d
in-

al

, as
er
io

e,

ity,
e

e

m
th

er.

ns,

BRADER, ESZTERMANN, AND SCHMIDT PHYSICAL REVIEW E66, 031401 ~2002!
Clear oscillations can be observed. These arise from
packing effects of thespheres, and are ‘‘imprinted’’ on the
needle distribution.

We next turn to the order parameter profile^P2(cosu)&,
see Fig. 6. On the needle-rich side (z,0) of the interface we
find that ^P2(cosu)&,0. This indicates needle ordering pa
allel to the interface, and can be understood in terms of pa
ing effect, similar to those of rods near a hard wall. On
sphere-rich side (z.0) we find that^P2(cosu)&.0, hence
the needles are oriented preferentially perpendicular to
interface. We attribute the ordering to needles that s
through the voids in the first sphere layer.

FIG. 5. Orientation averaged needle density profilesr̄* (z) as a
function of the scaled distancez/s for r

*
r 516,18,20,22 corre-

sponding to Fig. 3. The inset showsr̄* (z) as a function ofz/s on
the sphere-rich side (z.0) of the interface forr

*
r 522. Damped

oscillations are visible.

FIG. 6. Orientational order parameter profiles^P2(cosu)& as a
function of the scaled distancez/s for r

*
r 516,18,20,22 across th

interface between sphere-poor (z,0) and sphere-rich (z.0) fluids.
Negative values indicate parallel, positive values indicate nor
alignment of needles relative to the interface. The inset shows
~scaled! integrand of the interface tension,@v(z)1P#bs3 as a
function of z/s for r

*
r 522.
03140
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C. Interface tension

The interface tensiong between demixed fluids is define
as the difference per unit area in grand potentials in the
homogeneous situation and in bulk. It is given by

gA5V̄1PV, ~43!

whereA is the interface area,V̄ is the grand potential in the
inhomogeneous situation, andP is the total pressure. Within
our DFT approch it is obtained from

g5E dz@v~z!1P#, ~44!

v~z!52mSrS~z!2mNr̄N~z!1bE d2V

4p
F~$nn

i ~z,u!%!,

~45!

where F is the excess free energy density@given through
Eqs.~10–12!# dependent on the weighted densitiesnn

i @Eqs.
~18–20!#, and m i is the chemical potential of speciesi
5S,N. From dimensional analysis, it is clear that the typic
scale ofg should be the thermal energy,kBT, divided by an
area that is related to molecular length scales. However
we deal with a binary mixture it is not obvious which pow
b in Lbs22b gives the correct scaling with varying size rat
L/s. We restrict ourselves to the casesL/s51,1.5,2, where
we find thatb51/3 gives an almost complete data collaps
see Fig. 7 for a plot ofbgs5/3L1/3 as a function of the scaled
distance to the critical value of the needle reservoir dens
(r

*
r 2r

* crit
r )/r

* crit
r . For states close to the critical point, w

find mean-field scaling of the surface tension,g}(r
*
r

2r
* crit
r )3/2. For (r

*
r 2r

* crit
r )/r

* ,crit
r .0.4 a linear relation is

found that extends up to the triple point, forL5s this is
from the perturbation theory of Ref.@9# roughly at the right
end of the horizontal axis in Fig. 7.

al
e

FIG. 7. Scaled interface tensionbgs5/3L1/3 as a function of the
scaled distance from the critical point (r

*
r 2r

* crit
r )/r

* crit
r for size

ratiosL/s51,1.5,2. All curves practically collapse onto each oth
The inset shows the scaled interface tensionbgs3L21 as a function
of the difference between liquid and vapor sphere packing fractio
h l2hv , for the same size ratiosL/s51,1.5,2.
1-8
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COLLOIDAL ROD-SPHERE MIXTURES: FLUID-FLUID . . . PHYSICAL REVIEW E66, 031401 ~2002!
The magnitude of the interface tension is mainly govern
by the difference in bulk densities of both phases. Henc
relevant variable is the differenceh l2hv , whereh l (hv) is
the sphere packing fraction in the coexisting liquid~vapor!
phase. In the same spirit as above, we seek a combinatio
length scales to scalebg, in order to obtain data collapse fo
differentL/s. It turns out that this is the case forbgs3L21,
see the inset in Fig. 7. Clearly, the different exponent to
case above arises from the relation betweenh andr* given
through the binodals for differentL/s. Although we only
present results fors<L<2s, we expect the scaling rela
tions to hold beyond that range. However, forL@s there
might well be a crossover to a different scaling regime, a
preliminary results show deviations already forL55s.

As a final issue, we seek to elucidate further the origin
the surface tension. A recent study by Archer and Evans
dressed this issue in a binary mixture of Gaussian core
ticles @42# ~see Figs. 11 and 12 therein!. They consider two
different regimes for their model:~a! where demixing is
driven by nonadditivity and~b! where it is driven by ener-
getics, and constuct two new variables, namely the total d
sity and a local concentration. In order to calculate the s
face tension one must perform the integral Eq.~22! in Ref.
@42# @corresponding to our Eq.~44!#. If the integrand is plot-
ted they find that in regime~a! it closely resembles the loca
concentration and in regime~b! the total density. Their con
clusion is that, in one regime,g is dominated by concentra
tion fluctuations and, in the other, by fluctuations in the to
density.

Applying this analysis to our model, we find that neith
local concentration nor total density resembles the integr
of the surface tension in Eq.~44!. However, the integrand
closely resembles the~negative! of the orientational order
parameter, see the inset in Fig. 6 for a plot of@w(z)
1P#bs3 as a function ofz/s for the largest reservoir den
sity considered,r

*
r 522. As interpretation of the similarity

negative values of̂P2(cosu)& indicate a loss of rotationa
entropy, and hence a positive constribution tog. Positive
values of ^P2(cosu)& indicate a relaxation of the needle
sticking through the first sphere layer and hence lowering
tension. From this analysis, it it tempting to argue that in
present model the surface tension is determined byorienta-
tion fluctuations.

V. CONCLUSIONS

In conclusion, we have considered the free~planar! inter-
face between demixed fluid phases in a model mixture
spherical and needle-shaped colloidal particles. We focu
on the case of vanishingly thin needles, which constitute
minimal model for orientational order at fluid interface
Both sphere and needle density profiles show either mo
tonic or damped oscillatory behavior on the sphere-rich~and
needle-poor! side of the interface, depending on which si
of the Fisher-Widom line in the bulk phase diagram t
sphere liquid state resides. The amplitude of the oscillatio
however, is considerably smaller than in the related A
model of spherical~polymer! depletants, and will be furthe
reduced by capillary fluctuations that are not taken into
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count in the present treatment. It is tempting to interpret
smaller amplitude in the current model by a washing out
oscillations due to the depletants’ rotator degrees of freed
which are absent in the AO case. On the needle-rich~and
sphere-poor! side of the interface both density profiles dec
monotonically towards the respective bulk densities. Need
possess biaxial order on the needle-rich side, i.e., they
preferentially parallel to the interface plane. This can be
derstood in terms of simple packing of needles against
dense hard sphere fluid. On the sphere-rich side uniaxia
der of needles occurs, i.e., needles tend to be oriented no
to the interface. This is somewhat surpising, and we interp
this effect as being caused by the void structure of the h
sphere fluid, into which the needles stick to maximize th
entropy.

We have furthermore shown that the geometry-based D
can be consistently extended to the case of hard sph
mixed with interacting rods in the Onsager limit. The exte
sions of geometry-based DFT in Ref.@28# are the integration
over director space@Eq. ~9!#, and the introduction of double
indexed weight functions@Eq. ~5!# are supplemented in thi
work by the introduction of angular convolutions@Eq. ~15!#
to obtain weighted densities. The consistent treatmen
nontrivial rod-rod interactions provides an important ste
ping stone towards the treatment of more general hard b
systems. We have given explicit expressions for the pres
density functional for the important cases of planar a
spherical symmetries, facilitating future studies.

We emphasize that testing our predictions for the flu
fluid interface constitutes a demanding task for compu
simulations due to the large numbers of needles involve
state points of interest, and due to the difficulty of stabilizi
the free fluid-fluid interface in a finite simulation box. A
alternative to circumvent the first problem could be to stu
an effective one-component system of spheres that inter
by means of the needle-depletion potential@13#, although,
such an approach would prevent study of the orientatio
distribution of the needles.
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APPENDIX A: DECONVOLUTION OF MAYER BONDS

1. The sphere-needle Mayer bond

We take the difference vector between the centers of m
of needle and sphere to lie in the equatorial planer
5(r sinw,r cosw,0). Due to the rotational symmetry, we ca
choose the needle to be aligned parallel to they axis: V
5(0,1,0). Then
1-9
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w3
S~r !* w0

N~r ,V!5
1

2E0

`

dr8E
0

2p

dw8E
0

p

du8r 82sinu8Q~R2r 8!(
6

d~r sinw2r 8sinu8sinw8!

3dS r cosw2r 8sinu8cosw86
L

2D d~2r 8cosu8! ~A1!

5
1

2 (
6

QS R22r 22
L2

4
6Lr cosw D , ~A2!

and

w2
SN~r ,V!* w1

N~r ,V!5
1

2E0

`

dr8E
0

2p

dw8E
0

p

du8r 82sinuUS sinu8sinw8

sinu8cosw8

cosu8
D •S 0

1

0
D Ud~R2r 8!

3E
2L/2

L/2

dld~r sinw2r 8sinu8sinw8!d~r cosw2r 8sinu8cosw81 l !d~2r 8cosu8! ~A3!

5
1

2 (
6

Q~R2ursinwu!QS L

2
2Ur cosw6AR22r 2sin2wU D , ~A4!

where the integrals overu8, r 8, andl in Eqs.~A1!, ~A3! are straightforward. The integral overw is split into two domains: for
0,w,p, sinw is positive, while forp,w,2p it is negative. The sum of Eqs.~A2!, ~A4! represents the~negative! Mayer
bond between sphere and needle, hence2 f SN5w3

S* w0
N1w2

SN* w1
N . This can be seen by considering the cases where the a

expressions are nonvanishing: In Eq.~A2!, the step function counts the number of needle endpoints that lie in the sphe
Eq. ~A4! the first step function is nonzero only if the needle axis intersects the sphere. If it does, the second step
counts how often the needle intersects the surface of the sphere. This covers all cases of sphere-needle overlap.

2. The rod-rod Mayer bond in the Onsager limit

Since only the relative orientation of both rods is relevant, we takeV85(0,0,1), V5(0,sinu,cosu); the difference vector
between both particle positions is (x,y,z). We then perform the spatial convolution of the weight functions given in Eqs.~1!,
~14! as

22w2
NN~r ,V;V8!* w1

N~r ,V8! ~A5!

522DE
2`

`

dz8E
2`

`

dy8E
2`

`

dx8sinuE
2L/2

L/2

dld~x8!d~y81 l sinu!d~z81 l cosu!

3E
2L/2

L/2

dl8d~x2x8!d~y2y8!d~z2z81 l 8! ~A6!

522DE
2`

`

dz8E
2`

`

dy8E
2`

`

dx8tanud~x8!QS L

2
2U y8

sinuU D dS z82
y8

tanu D
3E

2L/2

L/2

dl8d~x2x8!d~y2y8!d~z2z81 l 8! ~A7!

522D d~x!QS L

2
2U y

tanu
1zU DQS L

2
2U y

sinuU D ~A8!

5 f NN~r ,V;V8!. ~A9!
031401-10
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From Eq. ~A6! to ~A7!, we solve the integral overl as an
explanatory case; the other integrals can be done an
gously. In order to recognize that Eq.~A8! is indeed the
rod-rod Mayer bond, we compare with the expressions gi
in Ref. @43#, and observe that the step-functions in Eq.~A8!
correspond to Eqs.~A1!, ~A2! in the Appendix of Ref.@43#.
Since limD→0Q(D2uxu)/(2D)5d(x), the term 2D d(x)
corresponds to Eq.~A3! in Ref. @43# in the limit of small
values ofD, hence Eq.~A9! constitutes a valid equality.

APPENDIX B: WEIGHT FUNCTIONS IN PLANAR
GEOMETRY

The reduced weight functions in planar geometry appe
ing in Eqs.~18!–~20! are obtained as

wn
N~z,u!5E

2`

`

dxE
2`

`

dywn
N~r ,V!, ~B1!
03140
lo-

n

r-

wn
S~z!5E

2`

`

dxE
2`

`

dywn
S~r !, ~B2!

w2
SN~z,u!5E

2`

`

dxE
2`

`

dyw2
SN~r ,V!, ~B3!

wherer5(x,y,z), and in the following we employ cylindri-
cal coordinatesr5(r cosw,r sinw,z). For the scalar and vec
torial sphere weight functions@Eqs. ~3!, ~4!# as well as for
the pure needle weight functions@Eqs. ~1!, ~2!# the integra-
tions in Eqs.~B1!, ~B2! are straightforward and yield th
results given in Eqs.~22!–~26!. The calculations forŵm2

S (z)
and w2

SN(z,u) @defined through Eqs.~4!, ~5!, respectively#
are slightly more involved, and are given explicitly in th
following sections.

1. Tensor sphere weight function

We insert the definition of the tensor weight@Eq. ~4!# into
Eq. ~B2!,
e

ŵm2
S ~z!5E

2`

`

dxE
2`

`

dyd~R2ur u!S rr

r 2
2

1̂

3D ~B4!

5E
0

2p

dwE
0

`

drrd~R2Ar 21z2!F ~r 21z2!21S r 2 sin2w r 2 sinw cosw r sinwz

r 2 sinw cosw r 2cos2w r coswz

r sinwz r coswz z2
D 2

1̂

3G ~B5!

5E
0

`

drrd~R2Ar 21z2!S ~r 21z2!21diag~pr 2,pr 2,2z2!2
2p

3
1̂D ~B6!

5S p

R
diag~R22z2,R22z2,2z2!2

2pR

3
1̂DQ~R22z2!, ~B7!

from which Eq.~27! can be readily obtained. The off-diagonal elements in Eq.~B5! vanish due to thew integration over a
complete wavelength, and to obtain Eq.~B7! we have usedd@ f (x)#5u f 8(x0)u21d(x2x0), wherex0 is the zero off (x), hence
f (x0)50.

2. Mixed sphere-needle weight function

Due to the rotational symmetry around thez axis, we can takeV5(sinu,0,cosu), and due to the inflection symmetry of th
needles, we can restrict to 0<u<p/2. By inserting the definition of the mixed weight function@Eq. ~5!# into Eq. ~B3! we
obtain

w2
SN~z,u!52E dxE dyUd~R2ur u!

1

Ar 21z2 S r cosw

r sinw

z
D •S sinu

0

cosu
D U ~B8!

52E
0

2p

dwE
0

`

drrUd~R2Ar 21z2!
z cosu1rcosw sinu

Ar 21z2 U ~B9!
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5H F8A~R22z2!sin2u2z2cos2u14z cosu sgn~AR22z2sinu!

3arcsinS z cosu

AR22z2sinu
D GQS 12U z cosu

AR22z2sinu
U D 14puz cosuuQS U z cosu

AR22z2sinu
U21D J Q~R2uzu! ~B10!

55 8AR2sin2u2z218z cosu arcsinS z cotu

AR22z2D if uzu,R sinu,

4puzu cosu if R sinu<uzu<R,

0 otherwise.

~B11!
e

:

In Eq. ~B9!, we have used the same representation for thd
function as before. The nontrivial part is the integral overw,
which we discuss in the following. It is of the form

E
0

2p

ua1b coswudw ~B12!

with constants~with respect tow) a,b. Due to the symmetry
of the cosine function, the integration from 0 top gives the
same result as that fromp to 2p. We consider two cases
The argument ofu•u changes its sign once ifua/bu,1, and
we have

E
0

p

ua1b coswudw ~B13!

5sgn~a1b!~@aw1b sinw#0
x1@2aw2b sinw#x

p!
~B14!
ys

.
ng

v.

ett

er

e,

.

03140
5sgn~b!~2b sinx12ax2ap! ~B15!

5sgn~b!S 2b sin arccos
2a

b
12a arccos

2a

b
2ap D

~B16!

52Ab22a212a sgn~b!arcsin
a

b
, ~B17!

wherex5arccos(2a/b). If, on the other hand,ua/bu.1, the
argument does not change its sign. Then,ua1b coswu5(a
1bcosw)sgn(a),

E
0

p

ua1b coswudw5uaup. ~B18!

Note that in Eq. ~B10!, sgn(•)511 holds, since 0<u
<p/2.
ett.

v.

ys.
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@43# H. Löwen, Phys. Rev. E50, 1232~1994!.
1-13


