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Colloidal rod-sphere mixtures: Fluid-fluid interfaces and the Onsager limit
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Using a geometry-based density functional theory we investigate the free interface between demixed bulk
fluid phases of a colloidal mixture of hard spheres and vanishingly thin needles. Results are presented for the
spatial and orientational density distributions of the particles, as well as for the interface tension. Density
profiles display oscillations on the sphere-rich side of the interface provided the sphere liquid phase is on the
oscillatory side of the Fisher-Widom line in the bulk phase diagram. Needles tend to align pguadfen-
diculan to the interface on the needle-ri¢bphere-rich side displaying biaxia(uniaxia) order. Furthermore,
we generalize the theory to the Onsager limit for interacting rods, and give explicit expressions for the
functional in simple geometries.
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[. INTRODUCTION the depletion force due to rod-like polymers in the Onsager
limit [14], and the interactions between flat plates and be-
Mixtures of spherical and rodlike particles provide softtween two large spheres via the Derjaguin approximation
matter systems that display astonishingly rich phase behavi¢d5]. Theoretical phase behavior of mixtures of spheres and
[1]. When a second component is added as a depletant agewts with finite diameter were studied in Rg2] and com-
to a suspension of colloidal spheres, the spheres may exhilpared to experimeni3], and in a mixture of parallel hard
colloidal vapor, liquid, and crystalline phases. Rodlike de-spherocylinders and hard spheres layered phases were inves-
pletants alone, however, already have rich liquid-crystallingigated[16].
phase behavior. The possible combinations of both types of Density-functional theory(DFT) [17,1§ is a powerful
ordering are vast. Experimental examples of rod-sphere mixool to study equilibrium properties of inhomogeneous
tures are dispersions of silica spheres and silica coated boherany-particle systems. For realistic systems, one usually has
mite rods[2,3], silica beads immersed in suspensions of rod-+o rely on approximations for the central quantity of DFT, the
like fd bacteriophage virug4], and, in the biological excess free energy functional. One particularly successful ex-
domain, microtubules inside vesicles modeling the eukaryample of such an approximation is Rosenfeld’s density func-
otic cell [5,6]. Experimental work has also been devoted totional for hard spheréHS) fluids[19], that also describes the
self-diffusion and sedimentation of spheres in dispersions ofiS solid[20—23. An early extension of this theory to treat
rods[7]. Depletion-induced crystallization was found in mix- hard convex bodies was proposg#l], and used to derive
tures of colloidal silica spheres and colloidal silica rods withbulk direct correlation functions for molecular fluidg5],
light microscopy and confocal scanning laser microscopytwo-dimensional anisotropic fluidg26], and hard sphere
[3]. Fluid-fluid phase separation was observed experimenehain fluids[27]. The theory of Ref[24] suffered from an
tally in a mixture of silica spheres and semiflexible poly-incomplete deconvolution of the Mayer bond leading to an
meric rodspoly(y-benzylw,L-glutamate (PBLG) with mo-  incorrect virial expansion, and an extension to remedy this
lecular weight 105000 [8]. The free interface between deficiency was made for the model of hard spheres and hard,
demixed fluid phases is one topic that we address in thganishingly thin needle$28]. Subsequently, this was also
present work. generalized to a hard body amphiphilic mixtd29] and to
As a simple theoretical model of a rod-sphere mixturemixtures of colloidal spheres, rods and polymer sphg36k
Bolhuis and Frenkel proposed a binary system of hardRecently, the entropic torque exerted on a single spherocyl-
spheres and vanishingly thin hard needl@§ Due to the inder immersed in a hard sphere fluid at a hard wall was
vanishing needle thickness, and hence the absence of intaralculated with a similar approa¢B1].
actions between needles, this system does not display liquid In contrast to the case of simple fluids, interfaces in such
crystalline order, but exhibit§sphere vapor, liquid, and complex systems are genuinely characterized by positional
solid states, as was found in R¢®] with simulation and a and orientational order. Interfaces between phases with dif-
perturbation theory. The theory is similar to the free volumeferent liquid crystalline ordering, like isotropic-nematic in-
treatment of the Asakura-Oosaws0) model[10,11] of col-  terfaces, have attracted considerable interest, see[8&f.
loidal spheres and noninteracting polymer spheres by Lekfor a recent study of the hard-rod fluid. In this work, we
kerkerkeret al. [12]. The depletion potential exerted on a investigate the free interface between demix@btropio
pair of spheres due to the presence of the rods was studidldiid phases in a rod-sphere mixture, an issue that has not
theoretically[13], and experimentally using optical tweezers been addressed so far. We use the simplest nontrivial model
[4]. Considerable work was done to understand the nature ah the context, namely, Bolhuis and Frenkel's mixture of hard
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— O shapes, on the difference vectobetween sphere and needle
> O center, as well as on the needle orientation given by a unit
/<> vector  pointing along the needle shapédence the
O O Q needles possess an inflection symmet};——QQ.) The
\ Q sphere-needle interaction is given By\(r,Q)=c if both
SK,//‘Q O O Q shapes overlap, and zero otherwise. In the following, we con-
L /<9 Q Nolf sider two cases of interactions between needles.
y e z In the first, simpler, case we sBt=0. Then the needles
are noninteracting andyy= 0, for all possible distances and
FIG. 1. Model of hard spheres with diameter=2R and  grientations. Although these “line” particles would nontrivi-
needles with length. In planar geometry, thedirection is perpen-  ally collide in a dynamical description, their excluded vol-
dicular to the interface betweer_l neec_ile-r_ida:@) and sphere-rich me vanishes due to the vanishing particle volume. Hence,
(z>0) phases. The needle orientation is denoted(hyand the  configurations of overlapping needles carry vanishing statis-
angle betweer2 and thez axis is 6. tical weight. As we are interested in static quantities only, the
needles can be regarded as an ideal gas of rotators, solely due
spheres and vanishingly thin needles, and investigate it by their geometrical properties. As an aside, no such scaling
means of the geometry-based DFT proposed ed@@f As  holds in the somewhat similar AO model of hard sphere
this theory reproduces the bulk fluid free energy and hencgolloids and idealpolyme spheres There the interactions
the accurate fluid demixing binodal of perturbation theorypetween the particles of the second component are regarded
[9], and was also shown to yield bulkpherg pair correla-  as being ideal from the outset.
tion functions in good agreement with computer simulation |n our second case, the needles are treated in the Onsager
results[28], we are confident to apply it to inhomogeneous imit [39], where for thin rods a residual excluded volume
situations. We find that, driven by packing effects of thepersists, leading to nontrivial interaction already in the pure
spheres, orientational order of the needles occurs at the frefeedle system. Again, the pair potential is that of hard bodies
fluid-fluid interface, and that the density profiles are OSCi”a-and is given, for the difference vectobetween the centers
tory provided the sphere-rich fluid is on the oscillatory sidegf two needles with orientationsQ and Q’, as
of the Fisher-Widom line in the bulk phase diagré88—36. v/, (r,©2,0Q')=c if both rods overlap, and zero otherwise.
The interface tension is found to be of the order of the therngte that the Onsager limit is obtained by lettihgD — o
mal energy per molecular area, and we investigate its scalingjle keeping the combinatiopyDL?2 constant, whergy, is
with needle length and sphere diameter in detail. Furtherthe number density of needles. Here we furthermore restrict
more, we extend the DFT to the case of nonvanishing rodgyrselves to size ratios that fulfilD <R?, hence the sphere
rod interactions in the Onsager limit and give explicit expres-syrface is assumed to be large compared to the needle sur-
sions for the functional in simple geometries. face. This additional restriction is similar in spirit to the On-
Similar interface studies using density-functional ap-sager limit for pure needles and constitutes the simplest scal-
proaches were recently carried 87,3g for the AO model  ing regime of the three lengtt®,L,D. Note that due to the
[10,11 of colloid-polymer mixtures. Our present model, |arge aspect ratio, there is no need to specify the precise
however, allows us to go beyond those studies through thgnape of the needle ends, whether, e.g., hemispherical or cy-
investigation of orientational order at the interface. Clearly,jjngrical.
such ordering is absent in the AO model of spherical bodies. e denote the number densities of spheres and needles by
The paper is organized as follows. In Sec. |l we define inps(r) and py(r,Q), respectively. As bulk thermodynamic
more detail the hard sphere-needle mixture for Va”iShi”g%arameters, we use the packing fraction of spheres
thin needles as well as for needles in the Onsager limit. Then. 47R%pg3 and the scaled needle densipy = pyL2a,
we present our DFT approach in Sec. Ill, generalize it 10 th§here 7= 2R denotes the sphere diameter. Furthermore, we
Onsager limit and give explicit expressions for the relevanijenote the density in a reservoir of pure needles that is in
quantities i.n simple geom(_atries. In Sec. IV, after reViSitin.gchemical equilibrium with the system a§ and use a scaled
the bulk fluid phase behavllor, we present result§ for dens't\/lersionp; — o' L2 The ratio of needle length and sphere
and order parameter profiles across the free interface be'iameterL/a and. in our second model. the ratio of needle
tween demixed phases, as well as for the interface tensiog. ' d | ' L I ' A |
We finish with concluding remarks in Sec. V. lameter an engtH;) , are contro paramet.ers. 'S only
hard core interactions are present, temperafuig an irrel-
evant variable that only sets the energy scale thrdugh
Il. MODEL wherekg is Boltzmann’s constant.

We consider a mixture of hard spherepeciesS) with
radii R and straight hard needléspeciesN) with length L Ill. DENSITY FUNCTIONAL THEORY
and diameteD, see Fig. 1 for a sketch. The spheres interact
with a hard core potentidls{r) as a function of their center
separation distance, which is given byVgdr)=« if r In this section, we review briefly the DFT proposed in
<2R and zero otherwise. Spheres and needles interact withRef. [28]. The starting point is a geometrical representation
hard body interaction that depends, due to the particl®f the particles in terms of weight function/s'ﬂ, wherei

A. Spheres and vanishingly thin needles
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labels the species, and=3,2,1,0 corresponds to the par-
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The (Helmholt? excess free energy is obtained by inte-

ticles’ volume, surface, integral mean curvature, and Eulegrating over a free energy density,

characteristic, respective[24]. The weight functions are de-

termined to give the Mayer bondg = exp(— ,G’VIJ) 1, where
B=1/kgT, by a linear combination of termsg! (r)*w L),
where the asterisk denotes the spatlal
g(r)*h(r)=fd3xg(x)h(r—x). For needles, following Ref.
[24] yields

L/2

w?(r,ﬂ):ﬂ dis(r+Ql), 1)

—L/2

wh(r, Q)= %[5(r+QL/2)+ sr—0L)], 2

where 8(x) is the Dirac distribution. The functiow}' de-
scribes the linear shape of a needle, whenegsis only
nonvanishing at the needle endpoints.
For spheres the weight function9,23 are
w5(r)=0(R-r),

wi(r)=8(R—r), 3

ma(N)=wW5(r)[rr/r2=1/3], (4)

Wo,(r)=w3(r)r/r,

wherer =|r|, ©(x) is the step function] is the 3x 3 iden-

tity matrix, andrr is a dyadic product. Further, Iinearly de-

pendent, weights are wl(r) WZ(I’)/(47TR) w 1(r)

=w,(r)/(47R),w5(r)=w3(r)/R. The Welght functlons for
spheres have different tensorial ramig, w3, w5, w3 are
scalars;wg;, WS, are vectorsyS, is a (traceless second-

obtained through- fg42=w3* w5+ w3* w3 —wJ,* wo; [19].

In order to recover the sphere-needle Mayer bond one uses

[28]

wiN(r, Q) =2[wg,(r)- Q| (5)

which contains information about both species: it is nonvan-

ishing on the surface of a sphere with radisbut also

possesegneedle orientation dependence. This function al-

lows us to generate the Mayer bond throughig\(r,Q)
=w3(r)*wy(r,Q)+wsNr,Q)*wi(r,Q), see Appendix

A1 for an explicit calculation. All weight functions are used
to obtain weighted densities, by smoothing the actual den-

sity profiles through spatial convolutions,

nN(r,Q)=pn(r,Q)*wN(r,), »=1,0, (6)
nS(r)=pg(r)*wi(r), »=32,1,0v2vim2, (7)
SN Q) =pg(N*wiNr,Q). ®

Note than} andn® are “pure” weighted densities, involving
only variables of elther speci¢$9,23,24. The funct|onn

Fedpsonl=keT [ & f oy, ©

convolut|on,

where the reduced free energy denditys a simple function
(not a functional of the weighted densities,, . The variable

r runs over space, and ds depends also on orientatiof®,

runs over the unit sphere. The functional form®fis ob-
tained by consideration of the exact zero-dimensional excess
free energyf 28], and is given by

O=bst+Dgy, (10
dg=—n3In(1—n3)+(nn5—nJ; -n5,)/(1—n3)
+[(n3)33—n3(nS,)%+3(n5,n5,n3,
— 3den};,)/2)/[8m(1—n3)?], (11)
N,.SN
®SN=—n3‘In(1—n§)+ll_ ;S' (12

3

The contributiondg is equal to the pure HS ca$&9,23,

and &gy arises from needle-sphere interactid@8]. The
arguments of the weighted densities are suppressed in the
notation in Egs.(11, 12; see Egs.(6—8 for the explicit
dependence. This completes the prescription for the excess
free energy functional for the case of vanishingly thin

rank tensor. The Mayer bond between pairs of spheres igeedles. For completeness, the ideal free energy is

Fulps.onl= | @rpdn)inlpdr)AZ -1}

5 [dPQ
+f d I’fﬂpN(l’,Q)

x{In[pn(r, @)AR] -1}, (13)

where A; is the (irrelevany thermal wavelength of species
i=S,N.

B. Spheres and rods in the Onsager limit

In order to deal with rod-rod interactions, we first express
the Mayer bond between rods in the Onsager limit through
fan(r,Q,Q7) 2= —wiNr,Q; Q") *wi(r,Q'), wherew! is
defined in Eq(1), and we introduce

whN(r,Q;Q')=16D /1— (Q-Q')2wW)(r, Q).

As a geometrical interpretation, the functiw’i‘N describes
the residual rod surface in the limit of large aspect ratio, see
Appendix A 2 for details how the Mayer bond is obtained.

(14

is obtained as a convolution of the sphere density W|th arfve construct an associated weighted density
orientation-dependent weight function; hence it combines
characteristics of both species and couples the orientational

NN O/
degrees of freedom of the needles to the sphere distribution. W (1 ),

d2Q
0= [ o0 s

031401-3



BRADER, ESZTERMANN, AND SCHMIDT

where, besides the spatial convolution, an angular convolu-
tion is required. This turns out to be necessary for the present
case of interacting anisotropic particles. As an aside, we can
immediately reformulate the Onsager excess free energy
functional for a pure system of rods, being precisely a second

PHYSICAL REVIEW E66, 031401 (2002

order virial expansion, by settingg=®y in Eq. (9), with

N, NN

Oyn=nny -, (16

where the weighted densit)}f is given through Eqs6) and
.

For the case of the actual sphere-rod mixture, we insert

O =P+ Do+ DPgyyinto Eq.(9), where the first two terms

are equal to the case of vanishingly thin needles and are

given by Egs(11) and(12), respectively. The additional con-
tribution due to interactions between rods is found to be
n?n?“

7

where(as beforgthe arguments of the weighted densities are= © (R—|z|)/(2R),

w)(z,0)=(4 cos) 1@)( cosf— |z|) (22)
N L
Wy (z,6)= 55(50039— |z|>. (23
For the spheres
w3(z)=m(R?~2)O(R—|2)), (24)
w5(z)=27RO(R—|z]), (25)
W5,(2)=2720(R-|2|)e,, (26)

. ZZ R

wﬁz(z)=w<§—§)®(R—|z|)diag(—1,—1,2), (27)
where g, is the unit vector pointing along the axis and
diag(-) denotes a &3 diagonal matrix. The linearly depen-
dent weight functions arew((z)=0(R—|z|)/2, wg(2)
w5, (2)=20(R—|z|)e,/(2R). The

suppressed in the notation. This completes the extension afixed weight function is obtained as

the needle-sphere DFT to interacting rods.

C. Planar geometry

In order to facilitate the application of the theory to situ-

ations like the free interface considered below in Secs. IV B, w2 Nz, 0)={

IV C and to planar wall problems, we give explicit expres-

sions for the weight functions in situations depending on a

single spatial coordinate and possessing translational in-
variance in thex andy directions, wherer=(x,y,z) is a

Cartesian coordinate system. Additionally, we assume invari-

ance with respect to rotations around thaxis by an angle
¢. The remaining relevant angkis that between an orien-
tation  and thez axis, see Fig. 1. Henges(r) = pg(2), and
on(r,Q2)=pn(z,60). Considering 6<[0,7/2] is sufficient,
due to the inflection symmetry of the needles. In thlisnar
geometrythe weighted densities, Eq&)—(8) and (15), can
be expressed as

n';'(z,a)=J dz' pn(Z', 0w (z—2',6), (18
n%2)- [ a2 pszwitz-2) (19
nsNz,0)= fdz ps(ZHWsNz—27',0), (20)

?N(z,0)=f dz’J'Wdele(Z’yal)WyN(z_Z,.0,;a)a
0
(21

Where the effective weight functionsv’(z,6), w3(2),

(z 0) are obtained by carrying out the integrations in
Eqs (6)—(8) and(15) over coordinates,y, see Appendix B
for the details. Explicitly, for the needles one obtains

( 8JRZsir?9— 22
+ 8z cosd
zcof( 6
Xarcsir(ﬁ) if |z|<Rsin0,
R2_22

41|z|cos6 if Rsind<|z|<R,

0 otherwise.

' 29)

For the case of nonvanishing rod-rod interactioi@ec.
Il B), the additional weight function can be obtained up to a

quadrature as
Dtan# (L cosé 27
o 12 f do
w 0

NN 0 =
2 (21010) 2

X \J1—(sin @’ sin 6 cose + cosh’ cosh)?.
(29

This fully specifies the DFT in planar geometry. We note that
the tensorial weight function, Eq27), is included for rea-
sons of completeness. Albeit being crucial for a reliable de-
scription of the solid 23], it is known to yield a small con-
tribution to the free energy in planar geometry, and may be
neglected to a good approximation. Below in Sec. IV we will
adopt this strategy.

D. Spherical geometry

Here we focus on situations that only depend on the dis-
tance to the originr, and that remain invariant under rota-
tions around the origin. This is realized, e.g., in the important
test-particle limit that allows us to obtain pair distribution
functions by minimizing the functional in the presence of a
test sphere fixed at the origin. In spherical geometry, only the

031401-4



COLLOIDAL ROD-SPHERE MIXTURES: FLUID-FLUID . .. PHYSICAL REVIEW E66, 031401 (2002

angled between needle orientatidd and positiorr remains S ar’ ) o ,
relevant, andpg(r) =ps(r), and pp(r, Q) =pn(r, 6). Again, w(r.r )_T[R —(r=r)FOR=[r=r")), (34
we can restrict to & < m/2. The pure weighted densities,

Egs.(6)—(8) can be expressed as

s 2mRr’
Wz(r.r’)=T[(@(R—Ir—r’l)—®(R—r—r’)],

N _ * ’ ’ N ’
ny(raa) fo dr pN(r ve)Wy(r!r 10)1 (30) (35)
S % , , S , R2+r2_rr2 r
n>(r)=| dr rw(r,r’), 31 S " Sie 1y
0= aros i) @1 W)= WSt s, (30
where the reduced weight functions are
W) 1[ R2+r2—r’2)2 1} S )(3” i
r' Wro(rr") =5l —55—| —5|wa(r,r')| 3 —1]J.
wi(r,r’, )= ———-— m? 2 2Rr 377 r?
4\r'“—r-sine (37)
L
XZ ®(§—|r cosf+ \/r’z—rzsinzt‘)l), In Egs. (36), (37) only the dependence on the scalar argu-

mentr is important; the dependence ofr is trivial due to
(320 the structure ofb, Eq.(11). The linearly dependent weight
functions arew3(r,r’')=r'/(2r)[@(R—|r—r'|)—O(R—r
2 L2 e S Y= (r2= 12+ RA/(2ROWS(r '
Ry )], o (r,r') = (r2=r 24+ R3)/(2RNWE(r 1),
4 ’ wg(r,r)=r'I2RN[O(R—|r—r'|)—O(R-r—r')]. The
(33 mixed weight function is

1 L
W’a‘(r,r’,a)=§ Z 5<r’— \/(riicosa

( r !

e Jr'2(1—u?) —R%cosd
+(r—r’u)cos(h)

r—r’u)cotd
wiNr,r’,6)={ xarcsir(¥)

r'yi-u?
if |r—r’uj<r’y1—u?tane,
A47(r'Ir)|r—r'ulcosd if |r—r'u|=r'\1—u’tans,
(0 if |ul=1,

(38

whereu=(r'?+r2—R?)/(2rr"). For the remaining needle vanishingly thin needles. Within our approach, this is ob-
weightwg”\' we could not obtain simple analytic expressions;tained from the bulk Helmholtz free energy, which in turn is
a full numerical calculation is required to obta’mﬁ"\'. obtained by applying the density functiorfalutlined in Sec.

We note that for a test-particle limit calculation, where alll A) to constant density fields of spheres and needles. Then,
hard sphere is fixed at the origin, the above expression cathe weighted densities become proportional to the respective
be simplified, as the density distributions vanish inside thebulk densitiesn' = & p;, where the proportionality constants
test particle. This allows us to omit the second step functiomre fundamental measures given @zfd?’xwiv. For
in Eq. (35) and rewrite the convolution kernels for spheres asspherestS=47R%3,65= £5N=47R% =R, £5=1, whereas

a function of the difference —r’ only. The expressions fq, needIeng=L/4,§8‘:1. Then the excess Helmholtz free

given above are completely general, hence apply also t@nergy per volumd/ is given by Fo,d ps,pn)/V = dus(ps)

fﬁ:%srigifnﬁonvamshmg densities in the immediate vicinity Of—kaBTIn a(pd, where dus(ps) is the excess free energy

density of pure hard spheres in the scaled-partieed
Percus-Yevick compressibilityapproximation anda=(1
IV. RESULTS —n)exd —(3/2)(L/o) »/(1— 7n)]. This expression for the
free energy is identical to the result from the perturbation
theory of Bolhuis and FrenkéB]. We note that this is also
As a prerequisite for our interface study, we reconsiderquivalent to a straightforward application of scaled-particle
the bulk fluid demixing phase diagram of hard spheres antheory for nonspherical bodiggl0] to the current model.

A. Bulk phase diagram

031401-5
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25 — T T 1T T point, which was located with perturbation theory g
# /1 ~24[9]. For these states we expect damped oscillatory pro-
| S—— 7 files on the sphere-rich side of the interface.
20 P e 72 ol Before turning to the fluid-fluid interface, we summarize
Ps 1of s 11 the bulk properties of spheres and rods in the Onsager limit
5k o o monatane_ /‘ iy in bulk given in Sec. Il B. In an isotropic state, we find that
Y PR ] nyN=&eNNp\ . where &\N=7LD equals the leading contri-
P. t . . ] bution to the surface of a rod in the limit D — . It follows
10F e ' . that the additional contribution to the free energy density due
to rod-rod interactions is #/4) pﬁLZD/(l— 7), which is
monotonic identical to the result from scaled-particle theddp]. We
N Sy leave a more detailed investigation of the phase behavior to
» -~ oscillatory ) possible future work.
N 1 L 1 L 1 L 1
% 0.1 0.2 03 0.4 B. Structure of the fluid-fluid interface

N Here and in the following we restrict ourselves to the
FIG. 2. Fluid-fluid demixing phase diagram of the mixture of Simple case of spheres mixed with vanishingly thin needles,
hard spheres and vanishingly thin needles with size fatio=1 and aim at an understanding of the free interface between
obtained from DFT. Shown are the binodalolid line and the  demixed fluid states, see Fig. 1 for a schematic sketch of the
Fisher-Widom line(dashed dividing states where the ultimate de- following situation: Two demixed bulk fluids are in equilib-
cay of correlation functions is either monotonic or damped oscilla-rium in contact; the coordinate perpendicular to tfipianay
tory. Tielines (short-dashedbetween coexisting states are shown interface is denoted by and the sphere-podirich) phase is
for p}, =16,18,20,22. The main plot uses system representation withresent for negativépositive z values. The coordinate ori-
7 andp, ; the inset is in reservoir representation wighandp, . gin (in z) is set to the position of the Gibbs dividing surface,
hence the z-coordinate fulfills [°_dZ ps(z) — ps(— )]
From the free energy all thermodynamic quantities can ber [7dZ pg(z) — ps(«)]=0. Note that as we deal with iso-
calculated, and equating the total pressure and the chemicgbpic states foz— + =, the planar geometry considered in
potentials of both species in both phases yields the coexistingec. 11l C applies.
densities. The resulting binodal was found to be in remark- The numerical minimization of the density functional of
able agreement with simulation resultd. Sec. Il Ais done by an iteration technique, see, d4l].
Here we consider the case of equal sphere diameter angle discretizeps(z) and py(z,6) in z direction with a reso-
needle lengtho=L, where fluid-fluid phase separation is |ution of 0.01r, and we find that angular discretization in
stable with respect to freezirj§] and display the phase dia- 20-50 steps is sufficient to get reliable results for density
gram in system representati¢as a function ofy andp,) in - profiles. For the calculation of interface tensions between
Fig. 2. Shown is the binodal for coexisting states, where &jemixed fluids(Sec. IV Q, we use 120 steps. Note that
sphere-rich and needle-poor fluidphere liquidl coexists when, say, 20 needle orientations are considered, we are
with a sphere-poor and needle-rich fluigbhere gas For  dealing in effectdue to the additional sphere profilith a
low densities, the density discontinuity vanishes at a criticab1 component mixture.
point. We also display the Fisher-Wido(®W) line, which We chose the size ratio/L=1 for our interface study.
separates regimes in the phase diagram where the ultimaf@js is of the same order as realized in the experim8its
decay of pair correlation functiortand inhomogeneous one- with silica spheres of 78 nm diameter and polymer rods
body density profilgsat large separation is either damped (PBLG) with L=70 nm. However, we disregard effects aris-
oscillatory or monotoni¢33—36. The FW line was calcu- ing from rod flexibility and finite rod thickness and hence
lated for the present model in RdR28] by considering the consider onlyD =0 (note thatD=1.6 nm for the polymer in
pOleS of the partial structure factors in the plane of Comple)fg]) We first turn to the Sphere density proﬁ'e&z), dis-
wave vectord 34,35. Furthermore, we display four tielines played in Fig. 3 as a function of the scaled distante for
between coexisting fluid states. These belong to reservolicgled needle reservoir densitieé = 16,18,20,22. These
densities of needles, =16,18,20,22, and indicate the states statepoints are indicated by tielines in Fig. 2. The asymptotic
where we will carry out detailed structural studies below.qensities forz—s + o in Fig. 3 correspondup to the factor
Tielines are horizontal in the phase diagram in needle reser;/e) to the sphere packing fractions at both ends of the
voir representatiorias a function ofp andp} ), see the inset  ielines. With increasing’. , and hence increasing distance
in Fig. 2. The smallest reservoir densipyj, =16, is close 10 to the critical point, the interface becomes sharper, i.e., it
the critical point (which is located atp=0.15767, p,  crosses over from one to the other limititlgulk) value over
=9.3141,p}, =14.642). Forp}, =16 the liquid density is lo- a shorter distance. For the highest needle reservoir density
cated well on the monotonic side of the FW line, hence weconsideredp, =22, clear oscillations emerge on the liquid
expect one-body interface profiles to decay monotonicallyside of the interface, see the inset in Fig. 3. The amplitude of
into both bulk phases. The set of the three higher reservoithe oscillations, however, is considerably smaller than that
densities p}, =18,20,22) covers the region up to the triple typically found at interfaces in the AO modélhere the
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03[ a function ofz/o. The factor sirg is the spherical volume

element, hence the density distribution at a given amgie
weighted according to the actual probability thatis at-
tained. This weight is maximal foé= /2 (parallel to the
interface and vanishes fo#=0 (perpendicular to the inter-
face. In order to graphically represent the density profile, we
display a set of curves parametrized Byeach curve then
depends on the single varialdesee Fig. 4. As expected, the
needles show a clear tendency to aggregate on the sphere-
poor side of the interface. In order to assess the orientational
I : distribution we also plot the bare, (z, ) in the inset of Fig.
'-'7----7--_--_--::"‘." - . . . . 4. We observe that for fixed on the needle-rich side of the
profiles the density increases with increasthgrhis means
that large angles are favored, hence the needles tend to ar-
FIG. 3. Scaled sphere density profiledpg(z) at the free inter- range parallel to the surface, corresponding to biaxial order.
face between sphere-poar<{0) and sphere-richz>0) phases as On the needle rich side of the interface, however, the oppo-
a function of the scaled distaneéo perpendicular to the interface site trend is manifest. Upon increasidgat fixed z the den-
for p, =16,18,20,22 corresponding to the tielines in the phase diasity decreases. Hence small angles are more favorable;
gram, Fig. 2. The inset shows a magnified view of tbscillatory  needles arrange perpendicular to the interface displaying
profile a°p(2) as a function ofz/o at the sphere-rich side for, uniaxial order.
=22. In order to investigate the needle behavior in more detail,

. we obtain two characteristic distributions from the full
depletants are ideal spheres rather than nepfB3% From  neegle density profile, (z,6). One is the orientation aver-
the general theory of asymptotic decay of correlation fU”C'aged needle density profile, defined as

tions[34,35, we expect that all statepoints where the liquid
density is inside the oscillatory region of the phase diagram — d2Q
(separated by the FW linavill display similar behavior, and pn(Z)= f 2. PNLE), (39
indeed we find oscillations on the liquid side of the interface
also forp) =18, 20. The liquid state at densip), =16 is 1 Fai2
inside the monotonic region, and no oscillations emerge :_J' dosin(0)pn(z,0), (40)
upon magnifying the corresponding density profile in Fig. 3. 2Jo

In the present geometry, the needle density profile de-
pends on two variables, namely, the perpendicular distancewhich measures the density of needle midpoints regardless
from the interface and the angteof needle orientation and of their orientation. The other is an orientational order pa-
interface normal. The DFT vyieldsy(z, ) fully dependent rameter profile defined as
on both variables. In order to demonstrate this, we chose

P . I . )
p, =22 as an example and display in Figp4(z,6)sin6 as — ., [dQ
" (P2(cos))=pn(2) " f 2 PN Q)Py(cosh), (4]

0796
0.6 3

3
0.79
G p s 04}

0.2

-

= [ZFN(Z)]_lf désin(0)pn(z,6)P,(cosb),
(42

where P,(x) = (3x?—1)/2 is the second Legendre polyno-
mial. Negative values of P,(cos#)) indicate biaxial order-
ing, the extreme value being1/2 for full parallel alignment
to the interfacgneedles withd= 7r/2 lying in a plang. Posi-
tive values({P,(cos#)) indicate uniaxial ordering, the ex-
treme valugunity) is attained for perpendicular alignment to
S 0 1 2z the interface §=0). Finally,(P,(cos#))=0 indicates isotro-
z/0 pic states. Note that this order parameter has the same inflec-

FIG. 4. Scaled needle density multiplied by the spherical voI-tlon symmetry as the_needles. . .
ume elementp, (z,6)sin6, as a function ofz/¢ at the interface In Fig. 5 we showpy(z) for the four statepoints consid-
between sphere-pooz€0) and sphere-richz>0) fluids forp, ~ €red. A crossover from high values for negatweo low
=22. Each curve is for fixed angle to the interface normal; from values for positivez is manifest; hence, as observed before,
bottom to topé increases from @direction normal to the interfage  the needles are depleted in the space occupied by the col-
to /2 (direction parallel to the interfagén steps ofr/24. The inset  l0ids. The inset in Fig. 5 shows a magnified view of the
shows the bare, (z,6) without the volume element sif profile for p} =22 on the sphere-rich side of the interface.
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FIG. 5. Orientation averaged needle density profiigéz) as a
function of the scaled distance/ o for pL:16,18,20,22 corre-
sponding to Fig. 3. The inset showg (z) as a function ofz/o on
the sphere-rich sidez{>0) of the interface forp}, =22. Damped
oscillations are visible.

FIG. 7. Scaled interface tensigyc>3L Y2 as a function of the
scaled distance from the critical poinpy(— p}, cri)/ Pk ot TOr Size
ratiosL/o=1,1.5,2. All curves practically collapse onto each other.
The inset shows the scaled interface tengorL ~* as a function
of the difference between liquid and vapor sphere packing fractions,
m—n,, for the same size ratids/oc=1,1.5,2.

Clear oscillations can be observed. These arise from the
packing effects of thespheresand are “imprinted” on the C. Interface tension

needle distribution. The interface tensioy between demixed fluids is defined
We next turn to the order parameter prof{le;(cosf)), a5 the difference per unit area in grand potentials in the in-

see Fig. 6. On the needle-rich side0) of the interface we  homogeneous situation and in bulk. It is given by
find that(P,(cos#))<0. This indicates needle ordering par-

allel to the interface, and can be understood in terms of pack- yA=Q+PV, (43
ing effect, similar to those of rods near a hard wall. On the o

sphere-rich sidez>0) we find that(P,(cos#))>0, hence whereA is the interface ared) is the grand potential in the
the needles are oriented preferentially perpendicular to th#nhomogeneous situation, afis the total pressure. Within
interface. We attribute the ordering to needles that stickour DFT approch it is obtained from

through the voids in the first sphere layer.

y:f dZ w(z)+P], (44)

0.015

— d2Q i
©(2)=— usps(2) — unpn(2) +Bf ﬂ‘b({ny(z, 0)}),

2
001 Sos - (45)
3° where ® is the excess free energy densjtiven through
s ‘ , 1 Egs.(10—-12] dependent on the weighted densitiés[Eqs.
% S ] (18-20], and u; is the chemical potential of specids
2, k) i NS | =S,N. From dimensional analysis, it is clear that the typical
A L NS4 ¥ ] scale ofy should be the thermal enerdi T, divided by an

=3
g

______ T area that is related to molecular length scales. However, as
] we deal with a binary mixture it is not obvious which power
bin LPa?~P gives the correct scaling with varying size ratio
L/o. We restrict ourselves to the cadekr=1,1.5,2, where
o015 ———————————— we find thatb= 1/3 gives an almost complete data collapse,
z/6 see Fig. 7 for a plot oByo>3LY3 as a function of the scaled
distance to the critical value of the needle reservoir density,

function of the scaled distan@o for p, = 16,18,20,22 across the (pi = Py cr) Pl it FOT states close to the critical point, we

interface between sphere-poar(0) and sphere-richz(>0) fluids. find mean-field scaling of the surface_ tensmmgxl(p;.

Negative values indicate parallel, positive values indicate normal™ Pl ein) ¥ For (o, —pl, crit) Py cri™>0-4 @ linear relation is
alignment of needles relative to the interface. The inset shows théound that extends up to the triple point, for=o this is

(scaled integrand of the interface tensiofiw(z)+P]B8c° as a  from the perturbation theory of Rdf9] roughly at the right
function of z/ o for pf, = 22. end of the horizontal axis in Fig. 7.

-0.01

FIG. 6. Orientational order parameter profilg3,(cos#d)) as a

031401-8



COLLOIDAL ROD-SPHERE MIXTURES: FLUID-FLUID . .. PHYSICAL REVIEW E566, 031401 (2002

The magnitude of the interface tension is mainly governectount in the present treatment. It is tempting to interpret the
by the difference in bulk densities of both phases. Hence amaller amplitude in the current model by a washing out of
relevant variable is the differencg— 7, , wheres, (n,) is  oscillations due to the depletants’ rotator degrees of freedom,
the sphere packing fraction in the coexisting liqichpod  which are absent in the AO case. On the needle-(aid
phase. In the same spirit as above, we seek a combination gphere-podrside of the interface both density profiles decay
length scales to scajey, in order to obtain data collapse for monotonically towards the respective bulk densities. Needles
differentL/o. It turns out that this is the case fBryo®L ™",  possess biaxial order on the needle-rich side, i.e., they lie
see the inset in Fig. 7. Clearly, the different exponent to thereferentially parallel to the interface plane. This can be un-
case above arises from the relation betwgeandp, given  gerstood in terms of simple packing of needles against the
through the binodals for differerit/o. Although we only  gense hard sphere fluid. On the sphere-rich side uniaxial or-
present results for<L<2c, we expect the scaling rela- ey of needles occurs, i.e., needles tend to be oriented normal
tions to hold beyond that range. However, .IO}>0' 'ghere o the interface. This is somewhat surpising, and we interpret
might well be a crossover to a different scaling regime, an his effect as being caused by the void structure of the hard

preliminary results show deviations already for50. sphere fluid, into which the needles stick to maximize their
As a final issue, we seek to elucidate further the origin o ntropy

the surface tension. A recent study by Archer and Evans ad
dressed this issue in a binary mixture of Gaussian core par- We have furthermore shown that the geometry-based DFT

ticles[42] (see Figs. 11 and 12 thergimhey consider two can be _coqsistentl_y extend_ed to the case Of hard spheres
different regimes for their modela) where demixing is mixed with interacting rods in the Onsager limit. The exten-

driven by nonadditivity andb) where it is driven by ener- Sions of geometry-based DFT in Rg28] are the integration
getics, and constuct two new variables, namely the total derVer director spacgEq. (9)], and the introduction of double-
sity and a local concentration. In order to calculate the surindexed weight function§Eq. (5)] are supplemented in this
face tension one must perform the integral E2p) in Ref. ~ work by the introduction of angular convolutiopgg. (15)]

[42] [corresponding to our Eq44)]. If the integrand is plot- to obtain weighted densities. The consistent treatment of
ted they find that in regiméa) it closely resembles the local nontrivial rod-rod interactions provides an important step-
concentration and in regim@) the total density. Their con- ping stone towards the treatment of more general hard body
clusion is that, in one regimey is dominated by concentra- systems. We have given explicit expressions for the present
tion fluctuations and, in the other, by fluctuations in the totaldensity functional for the important cases of planar and
density. spherical symmetries, facilitating future studies.

Applying this analysis to our model, we find that neither \We emphasize that testing our predictions for the fluid-
local concentration nor total density resembles the integranfluid interface constitutes a demanding task for computer
of the surface tension in Eq44). However, the integrand = simulations due to the large numbers of needles involved at
closely resembles thénegative of the orientational order state points of interest, and due to the difficulty of stabilizing
parameter, see the inset in Fig. 6 for a plot [0f(z)  the free fluid-fluid interface in a finite simulation box. An
+P]B0° as a function ofz/ o for the largest reservoir den- ajternative to circumvent the first problem could be to study
sity consideredp; =22. As interpretation of the similarity, an effective one-component system of spheres that interacts
negative values ofP,(cosé)) indicate a loss of rotational by means of the needle-depletion potenfisB], although,
entropy, and hence a positive constribution yto Positive  such an approach would prevent study of the orientational
values of (P,(cos#)) indicate a relaxation of the needles distribution of the needles.
sticking through the first sphere layer and hence lowering the
tension. From this analysis, it it tempting to argue that in the
present model the surface tension is determinedrimnta- ACKNOWLEDGMENTS

tion fluctuations. )
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on the case of vanishingly thin needles, which constitutes a

minimal model for orientational order at fluid interfaces.

Both sphere and needle density profiles show either mono- APPENDIX A: DECONVOLUTION OF MAYER BONDS

tonic or damped oscillatory behavior on the sphere-(aid

needle-poorside of the interface, depending on which side

of the Fisher-Widom line in the bulk phase diagram the We take the difference vector between the centers of mass

sphere liquid state resides. The amplitude of the oscillationgyf needle and sphere to lie in the equatorial plane:

however, is considerably smaller than in the related AO=(r sing,r cose,0). Due to the rotational symmetry, we can

model of sphericalpolymen depletants, and will be further choose the needle to be aligned parallel to yhaxis: Q

reduced by capillary fluctuations that are not taken into ac=(0,1,0). Then

V. CONCLUSIONS

1. The sphere-needle Mayer bond
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1 o 2 ™
W§(r)*wg(r,ﬂ)=§fo dr’f0 d(p’Jo de’r’zsine’G)(R—r’)Z S(rsing—r’sing’'sing’)

L
X O rcos<p—r’sin0’cos<p’i§) S(—r'cosh’) (A1)
—12 RZ2—r2 L2+L A2
=32 r ik r cose |, (A2)
and
1 sing'sine’ 0
o0 2 T
ng(r,n)*wT(r,Q)=§fodrrfo dgprfodarr,zsmg sing’cose’ | .| 1|]s(R=r")
cosé’ 0

L/2
xf dl&(r sing—r'siné’'sing’)8(r cose—r’sinf’ cose’ +1)5(—r’'cosd’) (A3)
—L/2

r cose+ \R2—r?sirfe

1 _ L
=§§ ®(R—|rsm<p|)®(§— ) (A4)

where the integrals ovet’, r’, andl in Egs.(Al), (A3) are straightforward. The integral overis split into two domains: for

0< @<, sing is positive, while form< <27 it is negative. The sum of Eq$A2), (A4) represents thénegative Mayer

bond between sphere and needle, henégy=w35* wj + w5 w) . This can be seen by considering the cases where the above
expressions are nonvanishing: In E42), the step function counts the number of needle endpoints that lie in the sphere. In
Eq. (A4) the first step function is nonzero only if the needle axis intersects the sphere. If it does, the second step function
counts how often the needle intersects the surface of the sphere. This covers all cases of sphere-needle overlap.

2. The rod-rod Mayer bond in the Onsager limit

Since only the relative orientation of both rods is relevant, we @ke- (0,0,1), Q= (0,sind,cosé); the difference vector
between both particle positions ig,{,z). We then perform the spatial convolution of the weight functions given in &9s.
(14) as

—2wyN(r, ;" )*wh(r, Q) (A5)

w 0 % L/2
= —ZDJ dz’f dy’j dx’sin GJ dlé(x")é(y' +1sin@)6(z' +1 cosh)
— — — ~Lr2

L/2
xf dl’ 8(x—x")8(y—y")8(z—z' +1") (A6)
—L/2
=—2DJOc dz’jwd ’J’w dx'tanfs(x")® E—y—, 52,_y_’
o e y . 2 |[sinéd tané@
L/2
XJ dl’ s(x—x")8(y—y")8(z—z' +1") (A7)
—L/2
— 20500 - | 214 |6l | L A8
T 0|5~ 1@ne 722 " [sing 18)
=fun(r,Q2;Q). (A9)
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From Eg.(A6) to (A7), we solve the integral ovdras an S o %
explanatory case; the other integrals can be done analo- WV(Z)Zf_def_xdyWS(r), (B2)
gously. In order to recognize that E¢A8) is indeed the

rod-rod Mayer bond, we compare with the expressions given % o

in Ref.[43], and observe that the step-functions in Eag8) WgN(Z,0)=j dxf dyws(r,Q), (B3)
correspond to EqgAL), (A2) in the Appendix of Ref[43]. 0"
Since limy_,®(D—|x|)/(2D)=8(x), the term D 5(x)
corresponds to EqA3) in Ref. [43] in the limit of small
values ofD, hence Eq(A9) constitutes a valid equality.

wherer =(x,y,z), and in the following we employ cylindri-
cal coordinates = (r cose,r sine,z). For the scalar and vec-
torial sphere weight functionfEgs. (3), (4)] as well as for
the pure needle weight functiofigs. (1), (2)] the integra-
tions in Egs.(B1), (B2) are straightforward and yield the

results given in Eqs(22)—(26). The calculations fow},,,(2)
and w;"(z,6) [defined through Eqs(4), (5), respectively

The reduced weight functions in planar geometry appearare slightly more involved, and are given explicitly in the
ing in Egs.(18)—(20) are obtained as following sections.

APPENDIX B: WEIGHT FUNCTIONS IN PLANAR
GEOMETRY

1. Tensor sphere weight function

wh(z,6)= fx dew dyw(r,Q), (B1) We insert the definition of the tensor weidig. (4)] into
! —o S T Eq. (B2),
s °° o o1
W= | ax| aysReleh| -3 84)
r2sirfe r?sing coseg rsingz :
2 o
=f d(pf drr S(R—r2+22)| (r2+z%) 1| r?sinpcosp  rcose  rcosez -3 (B5)
° ° r sinez r cosgz Z
® 2.
=f drr S(R—r2+2%) (r2+22)*1diag7-rr2,7-rr2,222)—?771 (B6)
0
T 27R.
=(§ diag R?— 7?,R?— 72,27%) — Tl)@(Rz—zz), (B7)

from which Eq.(27) can be readily obtained. The off-diagonal elements in (B&) vanish due to the integration over a
complete wavelength, and to obtain EB7) we have used[ f(x)]=|f'(xo)| 18(x—X,), wherex, is the zero off (x), hence
f(Xp)=0.

2. Mixed sphere-needle weight function

Due to the rotational symmetry around thaxis, we can tak€)= (sin #,0,cosf), and due to the inflection symmetry of the
needles, we can restrict to<09< /2. By inserting the definition of the mixed weight functipg. (5)] into Eq. (B3) we
obtain

L r cose siné
SN, i
w5 (z,a)zzf dxf dy| S(R=[r|)—===| rsine | .| 0 (B8)
etz z cosd

ZCOoSH+rcose sin 0‘

iz (B9)
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:{

8V(R?—2Z%)sirt 60— z2coS 0+ 4z cos sgn( VRZ— Z%sin 6)

» r( zcosd ) ol1 zcosd +an] 0l® zcosh 1) ®(R—|2)) (810
arcsif ———=— = |z cos _— -z
VR?—7%sin@ JR?—Z7%sin 6 JR?—Z7%sin 6
i .| zcoté . .
8\R?sirf9—z°+8zcosharcsin ———| if |z|<Rsing,
JR—2
= ) ) (B11)
41|z| coso if Rsing<|z|<R,
0 otherwise.
|
In Eqg. (B9), we have used the same representation forsthe =sgnb)(2b sinx+ 2ax—am) (B15)
function as before. The nontrivial part is the integral oger
which we discuss in the following. It is of the form ) —a —a
=sgnb)| 2b sin arccosF +2a arccosT —amw
2
j |a+b cose|de (B12) (B16)
0
a
with constantgwith respect top) a,b. Due to the symmetry =2\b*~a*+2asgnb)arcsin_, (B17)

of the cosine function, the integration from 0 togives the b

same result as that fromr to _27r. We consider two cases: \yherex=arccos(-a/b). If, on the other handa/b|>1, the
The argument of -| changes its sign once ja/b|<1, and  argument does not change its sign. Thimtb cosg|=(a

we have +bcose)sgn(@),
fo |a+bcoselde (B13) fw|a+bCOSgo|d(p=|a|7T. (B19)
0
=sgna+b)([ap+bsing]§+[—ae—bsing]y) Note that in Eq.(B10), sgn()=+1 holds, since &6

(B14) </2.
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