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Abstract
We treat the non-equilibrium process of random sequential adsorption of hard
particles onto a solid substrate by means of a geometry-based density functional
theory. As a prerequisite we solve the zero-dimensional case exactly and use it to
construct density functionals in higher dimensions, permitting the treatment of
adsorption onto arbitrary spatially inhomogeneous substrates. As applications
we study the influence of a hard boundary of the adsorption region in the
one-dimensional car-parking problem and for colloidal deposition on a two-
dimensional solid substrate. Comparing to our computer simulation results,
we find that the respective density functionals correctly predict the oscillatory
density profiles near the boundary, with amplitudes that are considerably smaller
than in the corresponding equilibrium models.

1. Introduction

Random sequential adsorption (RSA) is one process that allows the systematic study of
structure emerging in non-equilibrium situations (see [1] for a classic work and [2, 3] for
reviews). In RSA a d-dimensional space (the substrate) is sequentially filled by particles.
Each newly placed (deposited) particle is subject to the influence of the particles already
present. In contrast, all deposited particles remain frozen at their positions and do not adjust to
the presence of any newly deposited particles. Due to the intrinsic asymmetry of interactions,
such a system is not characterized by an equilibrium distribution.

In the simplest case the particles are represented by hard spheres (HS), but generalizations
exist; moreover RSA is often studied in low spatial dimensionality. In one dimension (1D) one
refers to the (random) car-parking problem where exact results, e.g. for the pair correlation
function [4], are known. In 2D, the RSA of HS is a common model for describing the adsorption
of proteins [5, 6] or colloids [3] on solid surfaces.
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Standard equilibrium liquid-state methods have been extended to treat such systems [7];
one particular example is the Percus–Yevick integral equation for RSA [8]. The principal
derivation relies on the replica trick for studying quenched–annealed systems. In a binary
quenched–annealedsystem the quenched species is commonly used to model a porous material
and the annealed species an adsorbate fluid. Extending this framework to multi-component
systems and differentially quenching single species allows one to treat the RSA process, where
in a certain limit each particle in RSA corresponds to one species in the differentially quenched
system.

Within the framework of density functional theory (DFT) [9] the equilibrium systems
that correspond to the above-mentioned RSA models (hard rods in 1D, hard discs in 2D)
are prototype examples where in 1D Percus derived the exact free energy functional [10],
and in higher dimensions, via Rosenfeld’s fundamental-measure theory (FMT), excellent
approximations are available [11–14].

Along a similar route to that above for integral equation theory, recently DFT was extended
to quenched–annealed systems [15, 16]. The ‘trick’ for arriving at an approximation for the
excess free energy is to solve the statistical mechanics in an idealized strongly confined situation
called the 0D limit exactly, and input this knowledge into the geometric concept of FMT.

In the present contribution we propose, to the best of our knowledge, the first DFT for
RSA. It is based on the exact solution for RSA in the 0D limit, and uses Rosenfeld’s concept
to generalize to higher dimensions. As test cases, we consider particle deposition near a hard
wall in 1D and 2D. Good agreement of the theoretical density profiles with our computer
simulation data is found. The density profiles show considerably less pronounced structure
when compared to the corresponding equilibrium systems. We can trace that back to the
relatively smaller contribution of the excess part of the free energy compared to the ideal part
in the RSA case, a feature that is already present in 0D.

The paper is organized as follows. In section 2 we define the process of RSA on an
inhomogeneous substrate more explicitly. Section 3 is devoted to the exact solution for RSA
in 0D and the subsequent DFT generalization to higher dimensions. In section 4 we use
hard boundaries of the adsorption region in the 1D car-parking problem and for 2D colloidal
deposition on a smooth wall as test cases to compare theoretical results to those from our
computer simulations. We conclude in section 5.

2. The model

Inhomogeneous RSA is characterized by spheres with radius R that are placed sequentially
onto a d-dimensional space characterized by an external potential Vext(r) where r is the
spatial coordinate. The placement is done according to repeated application of the following
procedure.

• A trial sphere is placed at a random position r.

• The trial sphere is removed with probability 1 − exp(−βVext(r)), where β is the inverse
temperature.

• The trial sphere is removed if it overlaps with any other sphere. Thereby overlap is
characterized by a separation of sphere centres less than 2R.

As a dimensionless density we use the coverage θ = vdρ, where ρ is the number density
of particles and vd is the volume of a d-dimensional ‘sphere’, i.e. v1 = 2R, v2 = π R2. The
particle diameter is denoted by σ R.
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3. Theory

3.1. Overview

We seek to obtain the density distribution ρ(r) for inhomogeneous RSA from a grand potential
functional�[ρ(r)], which becomes minimal for the actual RSA profile. Hence the RSA profile
fulfils the Euler–Lagrange equation δ�/δρ(r) = 0. We write the functional as a sum

�[ρ(r)] = Fid[ρ(r)] + Fexc[ρ(r)] +
∫

dr ρ(r)[Vext(r) − µ], (1)

where r is the d-dimensional space coordinate, µ is a Lagrange parameter used to adjust the
overall density, Fid is the ideal-gas free energy functional, and Fexc is the contribution due to
interactions with already adsorbed particles. The ideal-gas part is the same as in the equilibrium
case and is given by

β Fid[ρ(r)] =
∫

dr ρ(r)[ln(�dρ(r)) − 1], (2)

where � is the (irrelevant) thermal wavelength. In the following we will obtain an
approximation for Fexc using Rosenfeld’s fundamental-measure concept, starting from the
exact solution for RSA in zero dimensions.

3.2. Zero dimensions

The 0D limit is represented by a hard cavity that confines the particle centres to a small volume
v0D. Explicitly, we may chose a spherical cavity of radius ε, such that v0D = 4πε3/3, and
it is assumed that ε � R. Due to the HS interaction, the cavity may either be empty or be
occupied by a single particle. Canonically this is trivial, but in the grand ensemble a non-trivial
relation between average number of particles and chemical potential results. This can be used
(see below) to construct density functionals (DF) in higher dimensions. In the following we
deal with multi-component HS where i = 1, . . . , m is an index that labels the species. This
labelling will later permit description of RSA in terms of differential quenching. We first lay
out the general procedure by reviewing the equilibrium case.

For an equilibrium m-component mixture of HS in 0D, the mean number of particles of
species i is given as

η̄i = zi

1 +
∑m

j=1 z j
, (3)

where, for species i , the scaled fugacity is defined as zi = exp(βµi)v0D/�3
i . Summing the

individual contributions yields the total number of particles

η̄ =
m∑

i=1

η̄i = ztot

1 + ztot
, (4)

where we have defined the total fugacity ztot = ∑m
i=1 zi . Hence, not surprisingly, we recover

the solution for one-component HS (without distinction of species) by setting m = i = 1
in (3) and identifying z1 in (3) with ztot in (4). The total fugacity is related to the total chemical
potential via βµtot = ln(ztot), and the excess (over ideal gas) part is βµex = βµtot − ln η̄,
which is explicitly obtained from inversion of (4) as

βµex = − ln(1 − η̄). (5)
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The relation to the 0D excess free energy F0D is via ∂ F0D/∂η̄ = µex. Integration yields

β F0D = (1 − η̄) ln(1 − η̄) + η̄. (6)

From this result, DFs for equilibrium systems in higher dimensions can be derived (see
sections 3.3, 3.4).

We next perform the same steps as above for RSA. Particles are inserted into the cavity
with increasing species index i , such that species i is subject only to the influence of species
1, . . . , i − 1. Later we will turn to the differentially quenched case by taking the proper limit
of infinitely many components m each at vanishing fugacity zi . The mean number of particles
of species i is given by the relation

η̄i = zi

�i
j=1(1 + z j )

, (7)

differing from the equilibrium result (3). The total number of particles is obtained as

η̄ =
m∑

i=1

zi

�i
j=1(1 + z j)

. (8)

In the following we assume all fugacities to be equal, z ≡ zi = z j for all i, j . This simplifies
the subsequent calculations but is not mandatory; we have checked that other choices (where zi

is i -dependent) lead to the same final result after the RSA limit is taken. We can now simplify
equation (8) and obtain

η̄ =
m∑

i=1

z

(1 + z)i
= 1 − 1

(1 + z)m
. (9)

In order to describe RSA a limiting procedure is required. We need to let z → 0, to ensure that
only a minute fraction of i -particles are present so that no interactions between particles of the
same species i occur. However, to arrive at non-vanishing η̄ we let the number of components
diverge, m → ∞. Both limits are taken while keeping the total fugacity ztot = ∑m

i=1 zi = mz
constant. Performing the limit in (9) yields η̄ = 1 − exp(−ztot), which can readily be inverted
to βµtot = ln(− ln(1 − η̄)). The excess part is

βµex = ln(− ln(1 − η̄)) − ln η̄, (10)

which can be integrated to give the 0D excess free energy for RSA:

F0D = li(1 − η̄) − γ − (1 − η̄) ln(− ln(1 − η̄)) − η̄[ln(η̄) − 1], (11)

where γ ≈ 0.577 216 is Euler’s constant, and li(x) = ∫ z
0 dt/ ln t is the logarithmic integral

function. Note that the limiting procedure, z → 0, m → ∞, mz = constant, can also be
(trivially) applied in the equilibrium case (4) leading to an unchanged result (6).

It is interesting to compare (11) with the equilibrium result (6). Both free energies increase
monotonically with η̄, have positive curvature, and are defined for 0 � η̄ � 1. We find,
however, that the result for RSA is smaller by a factor of roughly 1/2 over almost the entire
density range; hence as a rule of thumb FRSA

0D ≈ Feq
0D/2. (Explicit numerical values, e.g. for

η̄ = 0.7, are β FRSA
0D = 0.1594, β Feq

0D/2 = 0.3388/2 = 0.1694.) As a consequence the ideal
free energy (which is the same in both cases) gives a stronger contribution in RSA than in the
equilibrium system. This property will persist through the construction of the DFs for higher
dimensions, which we next turn to.
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3.3. One dimension

The excess (over ideal gas) free energy functional is expressed as

β Fexc[ρ(x)] =
∫

dx �({nν(x)}), (12)

where the weighted densities nν(x) are obtained by 1D convolutions of the actual density
profile ρ(x) with weight functions wν :

nν(x) =
∫

dx ′ ρ(x ′)wν(x − x ′), ν = 0, 1. (13)

The weight functions are defined as

w1(x) = �(R − |x |), (14)

w0(x) = δ(R − |x |)/2, (15)

where �(r) is the step function, and δ(r) is the Dirac distribution. The excess free energy
density is given by

� = n0β F ′
0D(n1). (16)

where the prime denotes differentiation w.r.t. the argument. In the equilibrium case � = �eq,
where we use (6) to obtain

�eq = −n0 ln(1 − n1). (17)

Up to now this is a reformulation of Percus’s exact hard-rod functional [10]. For RSA we set
� = �RSA and usage of (11) gives

�RSA = n0[ln(− ln(1 − n1)) − ln n1]. (18)

We emphasize that although this procedure generates the exact functional for the case of
equilibrated hard rods, this does not hold in general; e.g. in the case of a 1D model colloid–
polymer mixture [17] it yields bulk free energies differing from (albeit approximating well)
the exact result [18].

3.4. Two dimensions

Again the excess free energy is a spatial integral:

β Fexc[ρ(r)] =
∫

dx�({nν(x)}), (19)

and the weighted densities are obtained by 2D convolutions:

nν(x) =
∫

dr ρ(r)wν(x − r), ν = 0, 1, v1, 2 (20)

of the four 2D weight functions

w2(r) = �(R − r), (21)

w1(r) = δ(R − r), (22)

wv1(r) = δ(R − r)r/r, (23)

w0(r) = δ(R − r)/(2π R), (24)

where r in equations (21)–(24) denotes the 2D position vector; the subscript v is a reminder
that wv1 is a vector. The free energy density has the generic structure

� = n0β F ′
0D(n1) +

n1n1 − nv1 · nv1

4π
β F ′′

0D(n1). (25)
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Inserting the equilibrium 0D excess free energy (6) yields the free energy density of Rosenfeld’s
functional in 2D:

�eq = −n0 ln(1 − n2) +
n1n1 − nv1 · nv1

4π(1 − n2)
. (26)

For RSA we use (11) to obtain

�RSA = n0[ln(− ln(1 − n2)) − ln n2] − n1n1 − nv1 · nv1

4π

[
1

(1 − n2) ln(1 − n2)
+

1

n2

]
. (27)

This completes the prescription for the 2D case. The generalization to 3D is straightforward,
and also higher d > 3 can be treated in principle [19].

4. Results

4.1. One dimension

Here and in the 2D case below,we study the influence of an external potential Vext that describes
the boundary of the adsorption region, given by

Vext(x) =
{

∞ x < R,

0 otherwise.
(28)

In order to provide benchmark results we have carried out computer simulations of the RSA
process with fixed total number of insertion trials. We have stayed somewhat away from the
jamming limit, where no further particles can be deposited due to hard-core overlap. In 1D
this jamming coverage is θ = 0.7476, and we have considered θ = 0.6883, i.e. ∼92% of the
jamming value.

In the simulations a second wall is used in order to build up a finite system. The resulting
external potential is Vext(x) + Vext(L − x), where the wall distance L is chosen sufficiently
large that the density profiles from both walls are well decoupled from each other; we use
L = 20σ , which we find to be amply sufficient. The number of insertion trials is fixed to 100;
hence the number of particles present in the system fluctuates from realization to realization.
Averaging over 106 realizations yields the above-quoted value for the coverage. Histograms
of the particle coordinates are used to obtain ρ(x).

Within DFT we numerically minimize (via iteration of the corresponding Euler–Lagrange
equation) the grand potential functional �, equation (1), where the excess part, Fexc, in the
present 1D case is given in section 4.1. The Lagrange parameter µ is determined to yield the
prescribed coverage.

Results from simulation and theory are displayed in figure 1. The density has a maximal
value at contact with the wall, x = R+. It decreases monotonically over a distance of one
particle diameter (σ/2 < x < 3σ/2). At x = 3σ/2 a kink occurs, and for larger x the
oscillations are rapidly damped as the bulk value is approached. The results from theory and
simulation agree well, except that the DFT underestimates the behaviour near contact and the
contact value itself. The behaviour of ρ(x) away from the contact region is reproduced quite
well, with the correct wavelength and decay length of the oscillations. We emphasize that the
coverage considered is relatively large (the arrow in figure 1 indicates the jamming coverage).

In figure 1 we also show the density profiles of equilibrium hard rods against a hard wall
(i.e. the external potential given in (28)) at the same density. This is obtained from numerical
minimization of Percus’s functional [10] given in section 3.3. As the hard wall exerts a similar
effect to a fixed particle, in the equilibrium case the density profile at the hard wall is equal (up
to the bulk density as a multiplicative constant) to the pair correlation function g(x). We have
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Figure 1. Density profile ρ(x)σ as a function of the scaled distance x/σ for 1D RSA against a
hard wall. The solid curve is the DFT result; the symbols indicate computer simulation data. For
comparison, the equilibrium profile of hard rods against a hard wall is also shown (dashed curve).
The arrow indicates the density at the jamming limit θ = 0.7476.

checked that our result agrees (within reasonable numerical accuracy) with the exact analytic
result for the pair distribution function for 1D hard rods [20].

It is striking that in the equilibrium system more structure is built up; the amplitude and
decay length of the density profile are considerably larger than in the RSA case. Physically, this
means that non-equilibrium in RSA hinders the emergence of structure. Technically, within
the DFT approach the origin can be traced back to the fact that the RSA excess free energy
functional is smaller (by about a factor 1/2) compared to the equilibrium functional. Hence
the ideal free energy functional (2) plays a more dominant role than the excess part, which
generates the structural correlations. (Note that in the case of adsorption of non-interacting
particles, i.e. Fexc = 0, the density profile is constant for x > σ/2.)

As an aside, for RSA in 1D the pair distribution is also known exactly [4]. However, there
is a slightly more subtle relation between ρ(x) at the hard wall and g(x). As the hard wall is
present from the beginning of the RSA process, it exerts a similar effect to the first particle
placed in the bulk case without a wall. To obtain g(x), however, an average over all particle
pairs is to be performed; hence this will in general differ from ρ(x).

4.2. Two dimensions

Here we apply the 2D functional outlined in section 3.4 to the hard wall represented by the
external potential (28), where x is the coordinate perpendicular to the wall. In 2D the jamming
limit is known to be θ ≈ 0.547 from computer simulations [21]. We consider θ = 0.4712
corresponding to ∼86% of the jamming coverage. For the computer simulations we use a
wall separation distance L = 11σ and periodic boundary conditions in the y-direction (10σ

perpendicular to the x-direction); the number of insertion trials is 1000. In figure 2 DFT and
simulation results are shown. The qualitative behaviour is similar to the result in 1D; however,
no kink at x = 3σ/2 is present.

Again the agreement of theory and simulation is satisfactory; the only significant deviation
is near contact, where the DFT result again underestimates the simulation value. As above in
the 1D investigation, we attribute these deviations to the relatively large coverage considered.
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Figure 2. Density profile ρ(x)σ 2 as a function of the scaled distance x/σ for 2D RSA against a
hard wall. The key is the same as in figure 1. The arrow indicates the density at the jamming limit
θ = 0.547.

We also present the profile for equilibrium hard discs against a hard wall obtained from
numerical minimization of Rosenfeld’s 2D functional (section 3.4). Again the equilibrium
profile shows significantly stronger structure than the RSA profile.

5. Conclusions

In conclusion, we have derived a DFT for the non-equilibrium process of RSA of d-dimensional
HS onto a d-dimensional substrate focusing on the resulting structure not on the adsorption
kinetics. To the best of our knowledge, DFT has so far not been applied to RSA. We have
explicitly treated in this contribution the space dimensions d = 1, 2; the extension to d = 3 is
straightforward. As was done for other systems before, the exact solution of the 0D limit was
used as an input into the powerful machinery of FMT to arrive at explicit approximations for
the RSA free energy functional.

Our theory permits the study of spatially inhomogeneous substrates where the adsorption
probability at space point r is governed by a Boltzmann weight according to a freely prescribed
external potential Vext(r). Such applications include the study of deposition onto stripe-
patterned substrates [22].

As test applications we focused on the 1D car-parking problem and on 2D colloidal
deposition on a solid substrate, and have studied in both cases the effect of an impenetrable
boundary region (hard wall) of the adsorption region. When compared to our computer
simulation results, we find the theoretical results to correctly describe the oscillatory behaviour
with a slight tendency to underestimate the contact value, but with very good agreement of
wavelength and decay length of the oscillations into the bulk. The densities in both cases
considered are close to the jamming limit; hence a severe test of the accuracy of the DFT is
provided. We expect the accuracy of the theoretical curves to further improve upon lowering
the density (i.e. moving further away from the jamming limit).

When compared to the corresponding equilibrium systems of hard rods and hard discs
against a hard wall, significantly less structured density profiles result at equal bulk densities.
We can trace that back to the fact that in RSA the ideal-gas free energy (that smooths out
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structure) plays a more dominant role over the excess free energy (arising from interactions)
than in the equilibrium case. This feature was found to be already present in 0D. As a rule of
thumb, we find the d-dimensional excess free energy functional for RSA to be roughly half
that of the corresponding equilibrium system.

Hence in conjunction with the machinery of FMT, the 0D limit is an, albeit seemingly
trivial, useful seed for studying non-trivial behaviour in physically relevant dimensions, and
permits one to broaden the scope of DFT to non-equilibrium situations.
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