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Fluid demixing in colloid–polymer mixtures:
Influence of polymer interactions
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We consider a binary mixture of hard colloidal spheres and nonadsorbing polymer coils. The
polymers are regarded as effective spheres that interact with one another via a repulsive
step-function pair potential and with colloids solely via excluded volume. The system is treated with
a geometry-based density functional theory based on the exact zero-dimensional limit of the model.
For bulk fluid phases, we calculate demixing binodals and find that with increasing strength of
polymer–polymer interaction the coexisting colloidal liquid~vapor! phase becomes more
concentrated~dilute! in polymer. In contrast to a simple mean-fieldlike perturbative density
functional, our approach yields good agreement with an experimental demixing phase diagram.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1528191#
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I. INTRODUCTION

Colloid–polymer mixtures are experimentally acce
sible, well-characterized systems, that serve as models
studying emergence of structure in condensed matter. In
ticular, phase transitions between colloidal vapor, liquid, a
crystalline phases have attracted much experimental and
oretical interest. For mixtures of colloids and nonadsorb
polymer, the Asakura–Oosawa~AO! model1,2 treats the
polymer chains as effective spheres that are mutually id
~noninteracting! but that have excluded-volume interactio
with the colloids. Within the AO model, perturbation theor3

and free-volume theory4 predict bulk fluid demixing, the lat-
ter theory qualitatively describing experimental trends of
phase behavior.5,6

Recent work has been devoted to integrating out po
mer degrees of freedom to obtain an effective~many-body!
Hamiltonian for the colloids.7 A pairwise approximation to
the effective Hamiltonian can then be input to standard b
perturbation theory in order to calculate thermodynamic a
structural properties.7 This principle approach was also use
for investigation of interfacial properties8,9 in the framework
of density-functional theory~DFT!.10

An alternative approach is to explicitly treat the full b
nary mixture and hence effective many-body colloidal int
actions. Following previous work on hard sphe
mixtures,11–15a DFT approach to the AO model was recen
proposed.16,17 The bulk fluid free energy, and hence th
fluid–fluid demixing phase diagram, that arise from this D
are identical to the predictions of free volume theory.4 How-
ever, as the theory is constructed to deal with inhomo
neous systems, it also can be applied to~entropic! wetting at
a hard wall and layering phenomena in the interface betw
demixed fluids.18
1540021-9606/2003/118(3)/1541/9/$20.00
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All of these approaches neglect direct polymer–polym
interactions, an assumption that is most valid at the th
temperature, where the second virial coefficient of t
monomer–monomer interaction vanishes. In order to tr
interactions between polymers, Warrenet al.19 proposed a
perturbation theory around the AO model as a reference
tem ~which, again, is described with free-volume theory!. A
more microscopic picture that works on the segment leve
the polymers is provided by the macromolecular approach
Fuchs and co-workers.20,21 In their theory, interactions be
tween segments~and hence polymers! are intrinsically built
in. However, both approaches seem to be limited primarily
bulk considerations.

Although a description on the segment level is desirab
we note that for pure polymer solutions, recent studies h
suggested a ‘‘soft colloid’’ picture.22 In this picture, upon
averaging over the monomer degrees of freedom, effec
polymer interactions can be well represented by a Gaus
pair potential. Such penetrable potentials have been show
be well described by a simple mean-fieldlike density fun
tional, which in bulk is equivalent to the random phase a
proximation ~RPA!.22 In the same spirit, a recent study e
amined thebinary Gaussian core mixture in inhomogeneo
situations.23,24 In the context of colloid–polymer interac
tions, structural correlation functions were obtained from
Percus–Yevick theory applied to the AO model and als
~Gaussian! repulsion between polymers was taken in
account.25

In the present work, we aim at a DFT for a more realis
description of colloid–polymer mixtures than provided b
the AO model, one that takes polymer–polymer interactio
into account. Specifically, we consider a model in which t
polymers, although still treated as effective spheres, inte
1 © 2003 American Institute of Physics
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via a repulsive step-function pair potential. This mod
bridges recent studies by interpolating between the
model for ideal polymers and the binary hard-sphere~HS!
mixture. Note that while the AO model system displa
stable fluid–fluid coexistence,3,4,7binary HS mixtures do not
as freezing preempts fluid demixing.26

In Sec. II, the model mixture of colloids and interactin
polymers is defined. In Sec. III, we develop the nonpertur
tive geometry-based DFT. The explicit construction of t
functional is guided by the exact solution of the model in t
special zero-dimensional case. For comparison, we also
cuss two mean-fieldlike perturbative theories. In Sec. IV,
derive the bulk free energy, which allows us to calcula
phase behavior. We conclude in Sec. V.

II. THE MODEL

We consider a binary mixture of hard colloidal spher
~speciesC) of radiusRC and polymer coils~speciesP) with
radius of gyrationRP . The colloid–colloid pair interaction
potential as a function of the center–center interparticle
tance,r, is V(r )5`, if r ,2RC , and zero otherwise. We
assume that the polymer–colloid interaction is also ha
VCP(r )5`, if r ,RC1RP , and zero otherwise. The intera
tions between polymers are represented by a step-func
pair potential:VPP(r )5e, if r ,2RP , and zero otherwise
Apart from trivial kinetic energy terms and external pote
tials, the resulting Hamiltonian is

H~$Ri%,$r j%!5(
i , j

NC

VCC~ uRi2Rj u!1(
i

NC

(
j

NP

VCP~ uRi2r j u!

1(
i , j

NP

VPP~ ur i2r j u!, ~1!

where $Ri% denotes colloid and$r j% polymer coordinates
Note that in the limite/kBT→0 we recover the AO model
and fore/kBT→` binary hard spheres. Although in Ref. 1
VPP(r ) is assumed to have a range ofRP , our ~longer-
ranged! choice is more consistent with the effective~Gauss-
ian! potentials of Louiset al.,22 which extend out even be
yond 2RP . We do not use the Gaussian potential as our a
is at a minimal model that displays the essential features

As bulk thermodynamic parameters, we use the pack
fractions h i54pRi

3r i /3, i 5C,P, where r i is the number
density of speciesi. The control parameters are the size rat
q5RP /RC , of colloid and polymer radii and the reduce
strength,e/(kBT), of polymer–polymer interactions, wher
kB is the Boltzmann constant andT absolute temperature.

III. THEORY

A. Zero-dimensional limit

In the original context of hard spheres,14 it was shown
that an idealized zero-dimensional~0D! limit can motivate
the construction of density functionals for 3D systems. T
benefit of zero dimensions is that the partition sum can
calculated exactly, as the configurational integral over
spatial degrees of freedom is trivial. Choosing an expl
~approximate! form for the free energy functional, one im
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poses that it correctly recovers the 0D properties, when
plied to an appropriate~d-functionlike! density profile. This
constraint has guided the development of DFTs for mod
such as penetrable spheres27 and the AO model.16,17

Let us consider the current model in the 0D limit,
which particle centers are confined to a volumev0D whose
dimensions are smaller than all relevant length scales in
system. The microstates accessible in that limit are co
pletely specified by the occupation numbers of particles
both species. Each microstate is assigned a statistical we
according to the grand ensemble. In general, the grand
tition sum for a binary mixture is

J5 (
NP50

` zP
NP

NP!
(

NC50

` zC
NC

NC!
exp~2bVtotal!, ~2!

where the~reduced! fugacities arezi5(v0D /L i
3)exp(bmi),

L i is the thermal wavelength,m i is the chemical potential o
speciesi, b5(kBT)21, andVtotal is the total potential energy
in the situation where all particles have vanishing separat
Note that for hard-core interactions, the Boltzmann fac
vanishes for forbidden configurations, which practically lim
its the upper bounds in the summations in Eq.~2!. For the
present case, whereVCC andVCP are hard-body interactions
we obtain

J5zC1 (
NP50

` zP
NP

NP!
exp@2beNP~NP21!/2#, ~3!

where theNP dependence in the Boltzmann factor stem
from combinatorial counting of pairs of polymers. Clear
for zC50, we recover the limit of one-component penetrab
spheres;27 for be50, Eq. ~3! reduces to the AO result,16,17

J5zC1exp(zP). In order to obtain the Helmholtz free en
ergy, a Legendre transform is to be performed, and the
pendence on the fugacities is to be replaced with depend
on the mean numbers of particles,h i5zi] lnJ/]zi . Taking
the particle volume of speciesi as the reference volume,h i is
also the 0D packing fraction of speciesi. Subtracting the
ideal contribution, one calculates the excess free ene
bF0D52 lnJ1(i5C,Philn(zi)2(i5C,Phi@ln(hi)21#. In the
present case~as for pure penetrable spheres!, this cannot be
achieved analytically. As we are interested in the case
smalle ~close to the AO behavior!, we perform an expansion
in powers ofbe, and obtain

bF0D5~12hC2hP!ln~12hC!1hC1
be

2

hP
2

12hC

, ~4!

which is exact up to lowest~linear! order inbe. In the limit
be→0, we recover the AO result,16,17 which is bF0D,AO

5(12hC2hP)ln(12hC)1hC . In the absence of colloids
hC→0, we obtain a mean-fieldlike expression,F0D,MF

5ehP
2 /2.

Some terms of higher than first order can be obtain
analytically. We write the free energy asF0D1DF0D , where
F0D is the linear contribution given by Eq.~4! andDF0D up
to cubic order inbe is obtained as
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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bDF0D52
hP

2 ~be!2

4~12hC!
1F hP

2

12hC

1
2hP

3

~12hC!2G ~be!3

12
.

~5!

In the case of largebe, the 0D free energy has to be calc
lated numerically, which is an easy task.

B. Geometry-based density functional

Returning to three dimensions, the total Helmholtz fr
energy of an inhomogeneous system may be written aF
5F id1Fexc, where F id5( i 5C,P*drr i(r )$ ln@ri(r )L i

3#21%
is the ideal-gas free energy functional~for two species!,
and Fexc is the excess contribution arising from inte
actions between particles. Following previous work
mixtures,11–13,16,17we express the Helmholtz excess free e
ergy as a functional of colloid and polymer density fields
a spatial integral

Fexc@rC~r !,rP~r !#5kBTE d3xF„$nn
C~x!%,$ng

P~x!%…,

~6!

where the weighted densities

nn
i ~x!5E d3rr i~r !wn

i ~x2r !, i 5C,P ~7!

are defined as convolutions of weight functions,wn
i , with the

actual density profiles, andn denotes the type of weigh
function.

In previous work on HS,11 F is a function of species
independent weighted densities. Here we use the genera
form introduced in Ref. 16, whereF is a function of species
dependent weighted densities. This form was shown to
necessary to capture the distinct properties of colloids
polymers. The weight functionswn

i are independent of the
density profiles and are given by

w3
i ~r !5u~Ri2r !, w2

i ~r !5d~Ri2r !, ~8!

wv2
i ~r !5w2

i ~r !r /r , ŵm2
i ~r !5w2

i ~r !@rr /r 221̂/3#, ~9!

where r 5ur u, u(r ) is the step function,d(r ) is the Dirac
distribution, and1̂ is the identity matrix. Further, linearly
dependent, weights arew1

i (r )5w2
i (r )/(4pRi), wv1

i (r )
5wv2

i (r )/(4pRi), w0
i (r )5w1

i (r )/Ri . The weight functions
are quantities with dimension (length)n23. They differ in
their tensorial rank:w0

i , w1
i , w2

i , w3
i are scalars;wv1

i , wv2
i

are vectors~subscript v!; and ŵm2
i is a ~traceless! matrix

~subscript m!. The scalar and vectorial weights are borrow
from Ref. 11, whereas the tensor weight is equivalent to
formulation in Ref. 15.

The free energy density is composed of three parts,

F5F11F21F3 , ~10!

which are defined as

F15 (
i 5C,P

n0
i w i~n3

C ,n3
P!, ~11!

F25 (
i , j 5C,P

~n1
i n2

j 2nv1
i
•nv2

j !w i j ~n3
C ,n3

P!, ~12!
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1

8p (
i , j ,k5C,P

S 1

3
n2

i n2
j n2

k2n2
i nv2

j
•nv2

k

1
3

2
@nv2

i n̂m2
jnv2

k 2tr~ n̂m2
i n̂m2

j n̂m2
k!# D

3w i jk~n3
C ,n3

P!, ~13!

where tr denotes the trace, and derivatives of the 0D exc
free energy@Eq. ~4!# are

w i¯k~hC ,hP![
]m

]h i¯]hk

F0D~hC ,hP!. ~14!

In the absence of polymer,F1 andF2 are treated as in Ref
11 andF3 as in Ref. 15. Equations~11!–~13! are generali-
zations of expressions in Refs. 11 and 15 that include s
mations over species.16,17

C. Perturbative density functional

It is instructive to relate the above approach to a pert
bative treatment, where the AO model is used as a refere
system, and the polymer–polymer interactions are regar
as a perturbation. Apparently, perturbed and reference
tems are very similar. Aside from sharing the sameVCC , the
cross interactionsVCP are the same~namely hard-core inter-
actions!. Only the remaining polymer–polymer interactio
differs ~and vanishes in the reference system!. The reference
system may be well described by the AO functional,16,17

which is recovered by usingF0D5(12hC2hP)ln(12hC)
1hC as a generator in the above geometrical recipe. W
remains to be treated is the perturbative contribution to
free energy due to polymer–polymer interactions. To obt
that, a minimal requirement is that the pure polymer syst
~free of colloids! is described reasonably. As was recen
discovered28 for penetrable interactions, this is the case fo
mean-field~excess! functional

FMF@rP~r !#5 1
2E dr dr 8rP~r !VPP~ ur2r 8u!rP~r 8!.

~15!

This DFT was utilized to investigate Gaussian core partic
adsorbed at a hard wall.28 The generalization of Eq.~15! to
binary mixtures was used in Ref. 23 to study interfac
properties23 and wetting24 of the binary Gaussian core mode
Note that in bulk Eq.~15! is equivalent to using the RPA
which is a reasonable approximation for penetra
interactions.29,30

It might at first appear thatF85FAO1FMF would give a
good description of the excess free energy of the mixture
the hard-body interactions between polymers and collo
are already accounted for inFAO . Hence the perturbative
contribution dependssolely on the polymer density profile
This reasoning is independent of the precise model un
consideration, and should hold also for soft repulsive int
actions. For the present model, we can show, in contrast,
F8 is ~apart from trivial limits! never a good approximation
to treat the mixture, and nonsensical trends in phase beha
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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arise~see Sec. IV C!. We expect similar failings when apply
ing this approach to other models consisting of mixtures
hard-core and penetrable particles.

Within our framework,F8 can be derived fromF0D

5F0D
AO1ehP

2 /2 and applying the recipe outlined in Sec. III B
By comparing with the exact linear-order result@Eq. ~4!#,
F0D5F0D

AO1 1
2ehP

2 /(12hC), one immediately observes tha
already the linear term inhC differs. This discrepancy per
sists throughout the construction of the DFT, and henceF8
displays a similar failing. The predictions of phase behav
from this approach are shown at the end of Sec. IV C bel

Evidently, the mean-field functional neglects exclusi
of polymer from the volume occupied by the colloid. In co
trast, the geometry-based functional naturally accounts
excluded volume: A given polymer interacts with polymer
the available volume whose density is higher than the den
of polymer in the system.

D. Perturbative bulk theory

Warrenet al.19 proposed a perturbative approach for t
free energy of bulk colloid–polymer mixtures in which pol
mers interact with a penetrable repulsive interactionVPP(r ).
This can be viewed as a perturbative treatment where in
reference systemVPP(r )50, andVPP(r ) is regarded as the
perturbation. As input, the bulk void–void correlatio
function31 of the pure hard sphere system is required, a
Ref. 19 proposes an empirical analytical form that interp
lates between the known limits of vanishingly and infinite
separated polymers. In the following, we rederive this the
in a general framework. This will allow us to relate the a
proach of Warrenet al. to the oversimplistic bulk theory tha
arises from the perturbative DFT. Moreover, we can qua
tatively compare this approach against the bulk predicti
of the geometry-based DFT.

We consider the fully interacting binary mixture wit
fixed colloid particle numberNC and polymer fugacityzP .
The semigrand partition function is given by

Jsemi5TrCe2bHCCF (
NP50

` zP
NP

NP!
E drNPe2b~HCP1lHPP!G ,

~16!

wherel is a charging parameter which is equal to unity
the fully interacting system, and the canonical trace o
colloid coordinates is

TrC5
1

LC
3NCNC!

E dRNC. ~17!

By expanding the integrand in Eq.~16! in a Taylor series
aboutl50, we obtain a perturbation theory

bVsemi5bVsemi,01E
0

1

dlS ]bVsemi

]l
D

'bVsemi,01S ]bVsemi

]l
D

0

, ~18!

wherebVsemi52 lnJsemi. The first term on the right is the
semigrand free energy of the AO model, given by
Downloaded 07 Jan 2003 to 134.99.64.157. Redistribution subject to A
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bVsemi,0

52 lnS TrCe2bHCC (
NP50

` zP
NP

NP!
E drNPe2bHCPD ~19!

52 lnS TrCe2bHCC (
NP50

`
@zPVa~$RNC%!#NP

NP!
D ~20!

52 ln$TrCe2bHCCexp@zPVa~$RNC%!#%, ~21!

wherea($RNC%) is the ratio of the free volume of a singl
polymer sphere, in the presence of the colloids, to the sys
volume,V. By replacing the exacta($RNC%), which depends
on all coordinates of the colloids, by its average for ha
spheres,Vsemi,0becomes identical to the result from the fre
volume theory of Lekkerkerkeret al.4 The second term on
the right side of Eq.~18! is given by

S ]bVsemi

]l
D

0

5Jsemi,0
21 TrCe2bHCC (

NP50

` zP
NP

NP!
E drNP

3(
i , j

bVPP~ ur2r 8u!e2bHCP ~22!

5Jsemi,0
21 TrCe2bHCC (

NP50

` zP
NP

NP!

3E drNP22
NP

2
~NP21!a~$RNC%!NP22

3E drE dr 8bVPP

3~ ur2r 8u!a~r ;$RNC%!a~r 8;$RNC%! ~23!

5Jsemi,0
21 TrCe2bHCCE drE dr 8bVPP

3~ ur2r 8u!a~r ;$RNC%!a~r 8;$RNC%!

3
zP

2

2
(

NP50

`
@zPVa~$RNC%!#NP22

~NP22!!
, ~24!

whereJsemi,0 is the term inside the logarithm in Eq.~21!.
The final result is thus

S ]bVsemi

]l
D

0

5Jsemi,0
21 TrCe2bHCCexp@zPVa~$RNC%!#

3
zP

2

2
E drE dr 8bVPP~ ur2r 8u!

3a~r ;$RNC%!a~r 8;$RNC%!. ~25!

Equations~21! and ~25! give the exact free energy to linea
order in bVPP(r ). We now proceed by making the mea
field approximations and replacing quantities by their av
age values in the unperturbed~AO! system
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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a~$RNC%!→a~hC ,zP!, ~26!

a~r ;$RNC%!a~r 8;$RNC%!→gvv~ ur2r 8u;hC ,zP!, ~27!

wherea(hC ,zP) is the exact free volume fraction for the AO
model ~noninteracting polymers! and gvv(ur2r 8u;hC ,zP)
[^a(r ;$RNC%)a(r 8;$RNC%)&AO is the void–void correlation
function of the AO model. The voids are the spaces betw
the colloids that can be occupied by the polymer. Insertion
Eq. ~26! into Eq. ~21! clearly yields the exact AO free en
ergy. The final result is thus

bVsemi5bVsemi,AO1
zP

2

2
VE dr bVPP~r !

3gvv~ ur2r 8u;hC ,zP!. ~28!

If we now further approximate the relevant quantities
their HS values,a(hC ,zP)→a(hC)[a(hC ,zP50) and
gvv(ur2r 8u;hC ,zP)→gvv

HS(ur2r 8u;hC)[gvv(ur2r 8u;hC ,zP

50), then the first term reduces to the free-volume theory
Lekkerkerkeret al. and we obtain

bVsemi5bFHS2zPa~hC!V1
zP

2

2
VE dr bVPP~r !

3gvv
HS~ ur2r 8u;hC!, ~29!

whereFHS is the Helmholtz free energy of pure HS. We giv
the explicit ~approximative! expression fora(hC) below in
Sec. IV A. The original result of Warrenet al. for the semi-
grand free energy, Eq.~27! in Ref. 19, is identical to Eq.
~29!, if bVPP(r ) in ~29! is replaced by its correspondin
Mayer function, 12exp@2bVPP(r)#. The difference arises
from the fact that in the original version a virial expansion
polymer density is performed, while we apply thermod
namic perturbation theory. However, for smallbe the differ-
ences are negligible.

An equivalent perturbation theory can be derived
rectly in the canonical ensemble. The result for the canon
excess free energy is

bFexc
pert~rC ,rP!

V
5bfHS~rC!2rPlna~rC!

1
b

2 S rP

a~rC!
D 2E drVPP~r !

3gvv
HS~ ur2r 8u;rC!, ~30!

wherefHS(rC) is the excess free energy per unit volume
pure HS. While the same level of approximation is employ
in both derivations, Eqs.~29! and ~30! are inequivalent, in
general, when related by a Legendre transform. They ca
shown, however, to be equivalent to linear order inVPP(r ).

IV. RESULTS

A. Bulk fluid phases

In bulk, the one-body densities of both species are s
tially uniform: r i(r )5const. This leads to analytic expre
sions for the weighted densities, Eq.~7!, and therefore for the
Downloaded 07 Jan 2003 to 134.99.64.157. Redistribution subject to A
n
f
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excess free energy density, Eqs.~10!–~13!. The integration in
Eq. ~6! becomes trivial and gives a factorV. Explicitly, the
result is

bFexc~rC ,rP!

V
5bfHS~rC!2rPlna1~rC!

1
bṼPP~0!

2
rP

2 @12 lna2~rC!#, ~31!

where the integrated potential is ṼPP(0)
54p*dr r 2VPP(r )54pesP

3 /3 and fHS, in the scaled-
particle ~Percus–Yevick compressibility! approximation, is
given by

bfHS5
3hC@3hC~22hC!22~12hC!2ln~12hC!#

8pRC
3 ~12hC!2

.

~32!

In Eq. ~31!, the a i , which depend solely onhC and q, are
given through

lna15 ln~12hC!2 (
m51

3

Cm
~1!gm, ~33!

lna252 1
8 (

m51

4

Cm
~2!gm, ~34!

where the dependence on density is throughg5hC /(1
2hC), and the coefficients are polynomials in the size ra
given as C1

(1)53q13q21q3, C2
(1)5(9q2/2)13q3, C3

(1)

53q3, and C1
(2)58115q16q21q3, C2

(2)515q124q2

17q3, C3
(2)518q2115q3, C4

(2)59q3.
For be50, our result is identical to that of free-volum

theory for the AO model.4 Central to that approach is the fre
volume ratio,a ~defined in Sec. III D!, which we find to be
identical toa1 . Hence the DFT recovers free-volume theo
in bulk; a discussion of relations between the two approac
can be found in Ref. 17. According to the physical mean
of a1 , we interpreta2 as the ratio of two six-dimensiona
volumes, namely, the volume that is accessible to a pai
two overlapping polymer spheres and the same quantit
the absence of colloids, the latter being just 4psP

3V/3. In
Fig. 1 we plot both free volume fractions as a function ofhC

for size ratiosq50.57 and 1. Qualitatively,a1 anda2 both
monotonically decrease with increasinghC due to the ex-
cluded volume occupied by colloidal particles. Note, ho
ever, thata2.a1 over the whole density range. This may b
due to correlations between polymer pairs. At fixedhC , both
free-volume fractions decrease monotonically with incre
ing size ratio.

The total canonical free energy is given byF/V
5Fexc/V1kBT( i 5C,Pr i@ ln(riLi

3)21#. It is convenient to
transform to the semigrand ensemble, where the poly
chemical potential instead of the system density is p
scribed. The appropriate thermodynamic potential is a se
grand free energyVsemi, related toF via Legendre transform
Vsemi/V5F/V2mPrP , wheremP is the chemical potentia
of polymers, given as
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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bmP5]~bF/V!/]rP

5 ln~rPLP
3 !2 lna1~rC!2bṼPP~0!rP@12 lna2~rC!#.

~35!

Equation~35! is a transcendental equation to be solved
rC oncemP is prescribed, which is a trivial numerical task

B. Comparison between DF and perturbative
approaches

Comparing the density-functional and perturbative e
pressions for the bulk excess free energy@Eqs.~31! and~30!,
respectively#, it is clear that they differ only in the
interacting-polymer terms. Thus, focusing on these terms
define the additional contributionFP[F2Fue50 to the free
energy per volume due to polymer interactions, and find

FP
DF

V
[

ṼPP~0!

2
rP

2 @12 lna2~rC!# ~36!

and

FP
pert

V
[

1

2 S rP

a1~rC!
D 2E drVPP~r !gvv~r ;rC!. ~37!

As r→`, two voids become uncorrelated and the void–vo
correlation function reduces togvv(r )5a1

2. Substituting this
form for gvv(r ) in Eq. ~37! yields the mean-field~MF! result

FP
MF

V
5

ṼPP~0!

2
rP

2 , ~38!

which is independent of colloid volume fraction. Similarl
as r→0, the two voids become perfectly correlated,gvv(r )
5a1 . An approximate interpolation between these two e
tremes was proposed in Ref. 19:

gvv~r !5a1
21a1~12a1!exp~2r /RC!. ~39!

Substituting Eq.~39! into Eq. ~37! and integrating over the
step-function polymer–polymer pair potential, we obtain

FIG. 1. Free-volume ratios of single polymers (a1) and pairs of overlapping
polymers (a2) as a function of colloid packing fraction for polymer–colloi
size ratiosq50.57 ~top curves, thick! andq51 ~bottom curves, thin!.
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FP
pert5FP

MFF11
3

4 S 1

a1

21D q23
„12~2q212q11!e22q

…G .

~40!

We can now numerically compare the predictions of t
different approximations for the interacting-polymer free e
ergy. As the mean-field contribution is a constant~with re-
spect tohC), we take it as a reference and consider t
fractional excess (FP2FP

MF)/FP
MF as a function ofhC . Fig-

ure 2 compares the DF and perturbative results, compu
from Eqs.~36! and ~40!. At lower colloid volume fractions
(hC,0.2) both approaches give similar results. With i
creasinghC , however, there is a crossover, beyond whi
the approaches deviate rapidly. In fact, beyondhC.0.2, the
DF prediction increases much more gradually than the p
turbative. The deviations in the free energy evident in Fig
suggest a significant difference in the predicted phase be
ior, which is confirmed upon explicit calculation of phas
diagrams in the next section.

C. Phase diagrams

The general conditions for phase coexistence are eq
ity of the total pressuresptot , of the chemical potentialsm i ,
and of the temperatures in the coexisting phases. For p
equilibrium between phases I and II,

ptot
I 5ptot

II , ~41!

m i
I5m i

II , i 5C,P. ~42!

These are three equations for four unknowns~two state
points each characterized by two densities!. Hence two-phase
coexistence regions depend parametrically on one free
rameter. In our caseptot /kBT52F tot1( i 5C,Pr i]F tot /]r i ,
and m i5kBT]F tot /]r i , where f tot5F/V, yield analytical
expressions. We solve the resulting sets of equations num
cally, which is straightforward.

In order to compare the results from the different the
retical approaches, we consider the case of equal sizeq
51, and moderately weak polymer–polymer interactio
namelybe50.25. Our aim is to compare the fluid–fluid bin

FIG. 2. Fractional excess over mean field~MF! of the free energy predicted
by the density-functional~DF! and perturbative approaches@Eqs. ~36! and
~40!# vs colloid volume fractionhC , for polymer–colloid size ratioq
50.57.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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odals from the various approaches: the perturbative~Sec.
III C ! and geometry-based~Sec. III B! DFTs, and the pertur-
bative bulk theory of Warrenet al. ~Sec. III D!. We find that
the semigrand version of the latter@Eq. ~29!#, when applied
to our model, does not give fluid–fluid demixing forbe
50.25. Rather, the stability of demixing is restricted to
narrow range of interactions, wherebe is smaller than abou
0.1. We believe that this is more a failure of the theory th
of the model. As shown in Fig. 3, the binodals from t
perturbative DFT and from the canonical version of t
theory of Warrenet al. @Eq. ~30!# predict stabilization of the
colloidal vapor phase when compared to the case of no
teracting polymers. This is at odds with the physical exp
tation that the polymer–polymer repulsion shoulddestabilize
the polymer-rich phase. In contrast, the binodal from o
geometry-based DFT does capture this trend.

Stable fluid–fluid phase separation~with respect to
freezing! in colloid–polymer mixtures is observed in expe
ments only at sufficiently large polymer-to-colloid size r
tios. We consider the size ratioq50.57, for which experi-
mental data are available for poly~methyl methacrylate!
~PMMA! colloid and polystyrene incis-decalin.6 Figure 4
shows the predicted phase diagrams with and without p
mer interactions. For noninteracting polymers@be50 in Fig.
4~a!#, our result is identical to that from free-volume theo
Although the predicted phase diagram may appear to cap
the main experimental trends, closer inspection reveals
crepancies. Experimentally, the colloidal liquid phase c
tains a significant concentration of polymer, whereas the
oretical binodal for ideal polymer suggests strong dilution
polymer. In order to apply our theory to this situation, w
must first prescribe the potential energy barrier.

The potential energy barrier,e, can be obtained by esti
mating the second virial coefficient,B2 , of a pure polymer
solution. For our repulsive step-function potential,B2 is
trivially related toe via

B25
2psP

3

3
~12e2be!. ~43!

FIG. 3. Demixing phase diagram of a model colloid–polymer mixture
q51 as a function of packing fractions of colloid and polymer,hC andhP .
Shown are the theoretical binodals~lines! and critical points~dots! for ideal
polymer (be50) as a reference case, along with the results forbe50.25
from the geometry-based DFT, the perturbative DFT of Sec. III C, and
perturbative bulk theory of Sec. III D@Eq. ~30!#.
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The second virial coefficient also can be expressed as19,32

B2

4p3/2RP
3

5z24.8z21O~z3!, ~44!

accurate up toz.0.1, wherez is the Fixman parameter. Th
Fixman parameter32 is a measure of polymer nonideality (z
50 corresponding to ideal polymers! that depends on tem
perature, radius of gyration, and molecular mass (M ). An
empirical relation forz was established by Berry32 for poly-
styrene in a range of hydrocarbon solvents:

z50.00975AM S 12
Tu

T
D , ~45!

valid over a wide range of temperatures around the th
temperature,Tu .

Now, for the polymer–solvent system considered in R
6, polystyrene in cis-decalin, M514.43106 and Tu

512.5 °C, while the experimental phase diagrams w
measured significantly aboveTu , at T523 °C. From Eq.
~45!, this temperature corresponds toz51.3, well beyond the
range of validity of Eq.~44!. However, Berry32 has measured
B2 over a considerable range ofz, up toz55. Thus, we can
apply Eq.~44! to obtainB2 for a small departure from ide
ality and then appeal to Berry’s data. If we consider,
example, only a one-degree departure fromTu , T
513.5 °C, then Eq.~45! givesz50.129, for which Eqs.~43!

r

e

FIG. 4. Demixing phase diagram of a model colloid–polymer mixture
q50.57 as a function of packing fractions of colloid and polymer,hC and
hP . Shown are the theoretical binodal and critical point together with
experimental data of Ref. 6.~a! be50, equivalent to the result from free
volume theory~Ref. 4!, ~b! be50.5.
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and ~44! in turn yield be50.068. From Berry’s measure
ments, asz increases from 0.13 to 1.3,B2 increases by a
factor of about 5, which, from Eq.~43!, corresponds roughly
to be.0.5 atT523 °C.

A second, independent, estimate ofe can be drawn from
simulations of interacting polymer coils~in the absence o
colloids!.22 At zero separation between two coils, the effe
tive pair potential was determined to be about (1 – 2)kBT.
Hence, as a plausible value, we choosebe50.5. To achieve
higher accuracy than provided by the linear expansion of
0D free energy, Eq.~4!, we use the cubic order expressio
Eq. ~5!, in Eqs.~10!–~13!. Figure 4 shows a comparison o
the calculated theoretical binodal with the experimental d
of Ref. 6.

Although the measured one-phase state point at high
loid packing fraction lies inside the theoretical two-pha
region, it is obvious that our theory predicts a shift into t
correct direction. We also predict that the coexisting colloi
vapor phase is more strongly diluted in colloids, as compa
to the noninteracting case. All these results can be un
stood in terms of a free energy penalty due to polyme
polymer interactions. This primarily applies to the colloid
vapor phase. Only a small penalty arises in the colloi
liquid phase, where polymers are strongly diluted.

V. CONCLUSIONS

We have investigated a model of a colloid–polymer m
ture in a good solvent, where excluded volume of monom
gives rise to a soft, penetrable repulsion between center
masses of polymer coils. The model interpolates between
AO colloid–ideal-polymer model and binary hard spher
through a repulsive step-function polymer–polymer inter
tion, whose height is a control parameter. We have derive
density-functional theory for the full crossover between b
limits and have focused on the physically relevant case
weakly interacting polymers. Our theory predicts that w
increasing strength of polymer–polymer interaction the
existing colloidal liquid~vapor! phase becomes more co
centrated~dilute! in polymer.

We stress that calculating bulk phase diagrams from
present theory is not more difficult than application of t
original free volume theory.4 The only additional task is to
convert from the polymer fugacity to the polymer density
the system. While this can be done analytically in the fr
volume theory, here we need to solve Eq.~35! numerically.
In order to compare to experiment, the strength of polym
polymer interactions must be prescribed. This quantity a
the polymer-to-colloid size ratio are adjustable parameter
our model.

We have shown that a simple perturbative DFT, in wh
the free energy is approximated by that of an AO refere
system and an additive mean-field contribution is an inapp
priate approach. We believe that this failure may hold a
for other binary mixtures, where an additional interacti
between particles of the same species is treated as a pe
bation, neglecting the presence of the other component.

A recent assessment21 of the performance of free volum
theory for the AO model in describing colloid–polymer mi
tures in a good solvent~where polymers repel! found the AO
Downloaded 07 Jan 2003 to 134.99.64.157. Redistribution subject to A
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model to be seriously in error, particularly for long polym
chains with a radius of gyration greater than the radius of
colloids. Here we restrict ourselves to shorter chains, wh
we expect an effective sphere model to be reasonable.

We emphasize that our model of polymer–polymer
teractions is idealized in~at least! four ways:~i! The shape of
the pair interaction is assumed to be a step function ra
than a more realistic smooth, Gaussian-type function. T
has a prominent effect on the structural correlation~in par-
ticular on the polymer–polymer pair distribution function!.
We expect, however, that predictions of the phase beha
are reasonable provided appropriate values for both mo
parameters, step height and range are chosen.~ii ! In order to
be able to derive a geometrical DFT, we set the range of
step function equal to twice the polymer radius of gyratio
the latter also sets the thickness of the depletion zo
around colloids. This is an ‘‘additive’’ restriction, leading t
well-defined particle shapes, that can be exploited to de
the theory. In general, however, a more realistic descript
would be provided by a freely adjustable range of polyme
polymer interaction. This would, however, include nonad
tivity as an additional complication, which we have avoid
in the present study.~iii ! We assume that the strength an
range of the interaction are independent of the concentrat
of both colloids and polymers~in general, independent of th
respective one-body profiles!. It is, however, known22 that
the effective polymer–polymer interaction~as obtained from
simulations on the segment level! is density-dependent, al
though this effect appears to be quantitatively small. In pr
ciple, given some prescription of how the step height d
pends on the state point, this effect could be treated wit
the current approach.~iv! We neglect the effect of colloida
confinement on the polymer radius of gyration, and hence
the range of polymer–polymer interaction. Recently,
have modeled the influence of colloid-induced polymer co
pression, on demixing albeit only for the case of ide
polymer.33 A similar model could, in principle, be applied t
the case of interacting polymer.

Concerning future work, it is desirable to test our pha
diagrams against simulation and more detailed experime
data for phase coexistence. It would be interesting to loo
the depletion potential between colloids that is generated
the presence of nonideal polymer. The concept of integra
out degrees of freedom provides the necessary machin
which already has been applied to limits of the pres
model, namely the AO7 and HS26 cases. Of course, mor
realistic polymer–polymer interactions, such as a repuls
Gaussian pair potential, are worthy of investigation. Fina
we emphasize that because our theory is intrinsically c
structed to deal with inhomogeneous situations, influence
polymer interactions on the properties of interfaces and
havior near walls, such as wetting and layering phenome18

are problems open to investigation.
Note added. After completion of this work we becam

aware of a simulation study of colloid–polymer mixtures34

where similar phase behavior to that reported here w
found.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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