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Fluid demixing in colloid—polymer mixtures:
Influence of polymer interactions
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We consider a binary mixture of hard colloidal spheres and nonadsorbing polymer coils. The
polymers are regarded as effective spheres that interact with one another via a repulsive
step-function pair potential and with colloids solely via excluded volume. The system is treated with
a geometry-based density functional theory based on the exact zero-dimensional limit of the model.
For bulk fluid phases, we calculate demixing binodals and find that with increasing strength of
polymer—polymer interaction the coexisting colloidal liquiddapon phase becomes more
concentrated(dilute) in polymer. In contrast to a simple mean-fieldlike perturbative density
functional, our approach yields good agreement with an experimental demixing phase diagram.
© 2003 American Institute of Physic§DOI: 10.1063/1.1528191

I. INTRODUCTION All of these approaches neglect direct polymer—polymer
Colloid—polymer mixtures are experimentally acces-nteractions, an assumption that is most valid at the theta

sible, well-characterized systems, that serve as models fdfmPerature, where the second virial coefficient of the
studying emergence of structure in condensed matter. In paf?ONomer—monomer interaction vanlshes.lgln order to treat
ticular, phase transitions between colloidal vapor, liquid, and"téractions between polymers, Warrenal.™ proposed a
crystalline phases have attracted much experimental and thBerturbation theory around the AO model as a reference sys-
oretical interest. For mixtures of colloids and nonadsorbing®M (Which, again, is described with free-volume theow
polymer, the Asakura—OosawéAO) model? treats the More m|croscpp|c p|f:ture that works on the segment level of
polymer chains as effective spheres that are mutually ided® Polymers is prowdeg by the macromolecular approach of
(noninteracting but that have excluded-volume interactions Fuchs and co-workefS:#" In their theory, interactions be-
with the colloids. Within the AO model, perturbation thebry tween segmentgand hence polymersare intrinsically built
and free-volume theofypredict bulk fluid demixing, the lat- in. However, both approaches seem to be limited primarily to
ter theory qualitatively describing experimental trends of thePulk considerations.
phase behaviot® Although a description on the segment level is desirable,
Recent work has been devoted to integrating out polyWe note that for pure polymer solutions, recent studies have
mer degrees of freedom to obtain an effectimeany-body  suggested a “soft colloid” picturé’ In this picture, upon
Hamiltonian for the colloid$.A pairwise approximation to averaging over the monomer degrees of freedom, effective
the effective Hamiltonian can then be input to standard bulolymer interactions can be well represented by a Gaussian
perturbation theory in order to calculate thermodynamic angpair potential. Such penetrable potentials have been shown to
structural propertie$ This principle approach was also used be well described by a simple mean-fieldlike density func-
for investigation of interfacial properti8in the framework  tional, which in bulk is equivalent to the random phase ap-
of density-functional theoryDFT).° proximation (RPA).?? In the same spirit, a recent study ex-
An alternative approach is to explicitly treat the full bi- amined thebinary Gaussian core mixture in inhomogeneous
nary mixture and hence effective many-body colloidal inter-situations?®?* In the context of colloid—polymer interac-
actions. Following previous work on hard spheretions, structural correlation functions were obtained from the
mixtures*~*%a DFT approach to the AO model was recently Percus—Yevick theory applied to the AO model and also a
proposed®!” The bulk fluid free energy, and hence the (Gaussiah repulsion between polymers was taken into
fluid—fluid demixing phase diagram, that arise from this DFTaccount®
are identical to the predictions of free volume thebkow- In the present work, we aim at a DFT for a more realistic
ever, as the theory is constructed to deal with inhomogeedescription of colloid—polymer mixtures than provided by
neous systems, it also can be appliedeotropig wetting at  the AO model, one that takes polymer—polymer interactions
a hard wall and layering phenomena in the interface betweeimto account. Specifically, we consider a model in which the
demixed fluids'® polymers, although still treated as effective spheres, interact
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via a repulsive step-function pair potential. This modelposes that it correctly recovers the 0D properties, when ap-
bridges recent studies by interpolating between the A(plied to an appropriatés-functionlike) density profile. This
model for ideal polymers and the binary hard-sph@i&) constraint has guided the development of DFTs for models
mixture. Note that while the AO model system displayssuch as penetrable sphéefeand the AO modet®!’
stable fluid—fluid coexistence"’ binary HS mixtures do not, Let us consider the current model in the OD limit, in
as freezing preempts fluid demixifgy. which particle centers are confined to a volumg whose

In Sec. I, the model mixture of colloids and interacting dimensions are smaller than all relevant length scales in the
polymers is defined. In Sec. lll, we develop the nonperturbasystem. The microstates accessible in that limit are com-
tive geometry-based DFT. The explicit construction of thepletely specified by the occupation numbers of particles of
functional is guided by the exact solution of the model in theboth species. Each microstate is assigned a statistical weight
special zero-dimensional case. For comparison, we also distccording to the grand ensemble. In general, the grand par-
cuss two mean-fieldlike perturbative theories. In Sec. IV, weition sum for a binary mixture is
derive the bulk free energy, which allows us to calculate

phase behavior. We conclude in Sec. V. Neo 2 e

c oz
=> 3 exp— Vi ®)

NP:0 Np' Nc:0 NCI

I

Il. THE MODEL

We consider a binary mixture of hard colloidal sphereswhere the(reduced fugacities _arezi=(UOD_/Ai3)exp(ﬁ,¢_Li),
(specieC) of radiusR. and polymer coilgspeciesP) with A, |s_th_e thermal walvelengtmi is the chemical p(_)tent|al of
radius of gyrationRp. The colloid—colloid pair interaction SPecies, B=(kgT) ", andViyg is the total potential energy
potential as a function of the center—center interparticle disin the situation where all particles have vanishing separation.
tance,r, is V(r)=c, if r<2R., and zero otherwise. We NOte that for ha_rd—core interactions, the. BoItzmgnn faptor
assume that the polymer—colloid interaction is also hardyanlshes for forbldden. conflguratlons_, wh|ph practically lim-
Vep(r) =, if r<Rc+Rp, and zero otherwise. The interac- its the upper bounds in the summations in 1(—2) For t.he
tions between polymers are represented by a step-functidf€Sent case, whekéc andVcp are hard-body interactions,
pair potential:Vpp(r)=e, if r<2Rp, and zero otherwise. e obtain
Apart from trivial kinetic energy terms and external poten-

tials, th lting Hamiltonian i “ oz

lals, the resultin amiitonian I1s —
g S=zet S P exd - BeNp(No—1)/2], @3)
N Nc Np Np=0 Np!

H{RL{NH =2 VecIRi=RiD+2 2 Vep(IRi— 1)) _
1<l b where theNp dependence in the Boltzmann factor stems
Np from combinatorial counting of pairs of polymers. Clearly,
+2 VPP(|ri_rj|)1 (1)  forzc=0, we recover the limit of one-component penetrable
i< sphereg’ for Be=0, Eq. (3) reduces to the AO result;’

where {R;} denotes colloid andr;} polymer coordinates. ==Zc*eXp(). In order to obtain the Helmholtz free en-
Note that in the limite/kgT—0 we recover the AO model, ©€rdy; & Legendre transform is to be performed, and the de-
and for e/kgT— binary hard spheres. Although in Ref. 19 pendence on the fugacities is to be replaced with dependence
Vpp(r) is assumed to have a range Bf, our (longer- ©n the mean numbers of particles, = z;4In=/dz . Taking
ranged choice is more consistent with the effecti(®auss- the particle volume of specieéss the reference volume; is
ian) potentials of Louiset al,?? which extend out even be- @lso the 0D packing fraction of speciesSubtracting the
yond 2R, . We do not use the Gaussian potential as our aimdeal contribution, one calculates the excess free energy,
is at a minimal model that displays the essential features. BFop=—~INE+Zi—cpnin(z)=Zi—cpnlin(z)—1]. In the

As bulk thermodynamic parameters, we use the packin§"®Sent caseas for pure penetrable spherethis cannot be
fractions 77i:477Ri3Pi/3: i=C,P, wherep; is the number achieved analytically. As we are interested in the case of
density of species The control parameters are the size ratio,?ma” € (close to the AO bghavmrwe perform an expansion
g=Rp/Rc, of colloid and polymer radii and the reduced inN Powers ofBe, and obtain
strength,e/(kgT), of polymer—polymer interactions, where

2
kg is the Boltzmann constant affdabsolute temperature. Be  71p
. BFop=(1—1nc— ﬂp)ln(l_ﬂc)+7lc+71
~7c

(4

IIl. THEORY
which is exact up to lowegtinear order inBe. In the limit

Be—0, we recover the AO resulf;*” which is BFqp a0

In the original context of hard spher¥sit was shown = (1—7¢c— 7p)In(1—7)+ 7. In the absence of colloids,
that an idealized zero-dimensiond@D) limit can motivate  7c—0, we obtain a mean-fieldlike expressiof,p vr
the construction of density functionals for 3D systems. The= 677|23/2.
benefit of zero dimensions is that the partition sum can be Some terms of higher than first order can be obtained
calculated exactly, as the configurational integral over thenalytically. We write the free energy &sp+ AFyp, where
spatial degrees of freedom is trivial. Choosing an explicitFqp is the linear contribution given by E¢4) andAF oy up
(approximatg form for the free energy functional, one im- to cubic order inBe is obtained as

A. Zero-dimensional limit
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2 2 2 3 3 1 1. . .
(Be) 2 € k k
IBAFOD:_ 7p 18 + 7p + p (B ) . q)3:g A Z §n|2nJ2n2—n|2n{/2.nV2
41-7nc) |[1-mc (1-nc)?| 12 hik=C.P
® 3
I |
In the case of largge, the OD free energy has to be calcu- + 5[”v2”m2]”v2_tr(”m2 Nm2' Nm2 ) ]
lated numerically, which is an easy task. c b
X @jjk(nz,n3), (13
B. Geometry-based density functional where tr denotes the trace, and derivatives of the 0D excess
Returning to three dimensions, the total Helmholtz free/"€® energyEq. (4)] are
energy of an inhomogeneous system may be writtefr as m
3 Jd
=Figt Few, Where Fig=Xi_c p[drpi(r{Iin[p(r)A7]—1} @i k(mc,mp)=—"———Fop(nc,7p). (14)
is the ideal-gas free energy functiondbr two speciep an; Iy

and F.,. is the excess contribution arising from inter-

actions between particles. Following previous work onIn the absence of polyme®, and®, are treated as in Ref.

mixturestt~1316.1ye express the Helmholtz excess free enL and®; as in Ref. 15. Equationd1)~(13) are generali-
zations of expressions in Refs. 11 and 15 that include sum-

ergy as a functional of colloid and polymer density fields as ations over specidgl?
a spatial integral

Fexc[Pc(f),Pp(r)]=kBTf d*x@ ({5 ()}, {n(0}),
(6)

C. Perturbative density functional
It is instructive to relate the above approach to a pertur-
bative treatment, where the AO model is used as a reference
P 3, iy o system, and the polymer—polymer interactions are regarded
n,,(x)—f drpi(Nw,(x=r), 1=C,P @) as a perturbation. Apparently, perturbed and reference sys-
tems are very similar. Aside from sharing the savike., the
cross interaction¥p are the saménamely hard-core inter-

actiong. Only the remaining polymer—polymer interaction

where the weighted densities

are defined as convolutions of weight function$,, with the
actual density profiles, and denotes the type of weight

function. . . .
differs (and vanishes in the reference systelhe reference

In previous work on HS! & is a function of species- . e
independent weighted densities. Here we use the generalizééﬁtem. may be well desgrlbed by the AO functioffal’
which is recovered by usingop=(1— nc— np)IN(1—nc)

form introduced in Ref. 16, wher® is a function of species- N nerator in the abov metrical recipe. What
dependent weighted densities. This form was shown to be r?wca;i ?ogse etrZac:ed is tﬁea Zrtirgzgveecocna}[ribiiigﬁ.to thae
necessary to capture the distinct properties of colloids an P . . .
. . i . ree energy due to polymer—polymer interactions. To obtain
polymers. The weight functions, are independent of the 22 . .
. . . that, a minimal requirement is that the pure polymer system
density profiles and are given by L :
_ _ (free of colloidg is described reasonably. As was recently
wi(N=0(Ri—r), wxr)=58R;—r), (8) discovered for penetrable interactions, this is the case for a

) . N . . mean-field(excess functional
WL () =Wo(r)r/r,  Wio(r)=wy(r)[rr/r?=1/3], (9)

wherer=|r|, 6(r) is the step functiong(r) is the Dirac Fuelpp(r)]= %f dr dr’pp(r)Vep([r—r1'|)pp(r’).
distribution, and1 is the identity matrix. Further, linearly (15)

dependent, weights arew)(r)=wy(r)/(4mR;), W, (r) _ N _ _ _ _
_ iz(r)/(4wRi) Wio(r)zwil(r)/Ri The weight functions This DFT was utilized to investigate Gaussian core particles
V. 1 .

adsorbed at a hard wafl. The generalization of Eq15) to
binary mixtures was used in Ref. 23 to study interfacial
propertied® and wetting* of the binary Gaussian core model.

are vectors(subscript V¥; and vaz is a (traceless matrix . . : .
(subscript M. The scalar and vectorial weights are borrowedNO.te th"."t in bulk Eq/(15) is equwa!ent .to using the RPA,
which is a reasonable approximation for penetrable

from Ref. 11, whereas the tensor weight is equivalent to th?nt raction2®3
formulation in Ref. 15. eractions.

. It might at first appear thdt’' =F oo+ F e would give a
The free energy density is composed of three parts, good description of the excess free energy of the mixture, as

O=P;+D,+ Dy, (100 the hard-body interactions between polymers and colloids
are already accounted for Rpao. Hence the perturbative
contribution dependsolely on the polymer density profile.
This reasoning is independent of the precise model under
consideration, and should hold also for soft repulsive inter-
actions. For the present model, we can show, in contrast, that
(12) F' is (apart from trivial limit9 never a good approximation

to treat the mixture, and nonsensical trends in phase behavior

are quantities with dimension (length)’. They differ in
their tensorial rankwg, W), wh, Wy are scalarswy, , Wi,

which are defined as

<I>1=_ZCP noei(ng ,ng), (11)

_ NN Cc P
®y= EC o (ninb—ny;-niy) @i (N3 ,n3),
ij=C,
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arise(see Sec. IV ¢ We expect similar failings when apply- g0
ing this approach to other models consisting of mixtures of \
hard-core and penetrable particles. A At

=—In (19

semi,0

—BH P Npno—BH
Within our framework,F’ can be derived fronFp Tree # chZ:O Not dreeArice
=F§S+ en3/2 and applying the recipe outlined in Sec. Il B. : -

By comparing with the exact linear-order res{ifiq. (4)], * [zpVa({RNc}) NP
Foo=Foo+ 2en3/(1— nc), one immediately observes that =—In che_BHCCN20 N (20
already the linear term im¢ differs. This discrepancy per- P P

sists throughout the construction of the DFT, and hete = —In{Trce PHccexd zpVa({RNS}) 1}, (21)

displays a similar failing. The predictions of phase behavior

from this approach are shown at the end of Sec. IV C belowvhere a({R"}) is the ratio of the free volume of a single
Evidently, the mean-field functional neglects exclusionPOlymer sphere, in the presence of the colloids, to the system

of polymer from the volume occupied by the colloid. In con- Volume,V. By replacing the exaat({R"c}), which depends

trast, the geometry-based functional naturally accounts foPn @ll coordinates of the colloids, by its average for hard

excluded volume: A given polymer interacts with polymer in SPheres{2semiobecomes identical to the result from the free-

4
the available volume whose density is higher than the densityomme theory of Lekkerkerkeet al." The second term on

of polymer in the system. he right side of Eq(18) is given by

D. Perturbative bulk theory (%‘)
Warrenet al® proposed a perturbative approach for the 0
free energy of bulk colloid—polymer mixtures in which poly- = Np
mers interact with a penetrable repulsive interactip(r). =B L rce FHee > | grhe
This can be viewed as a perturbative treatment where in the ' Np=0 Np!
reference systeripp(r)=0, andVpp(r) is regarded as the
perturbation. As input, the bulk void—void correlation X >, BVpp(|r—r'|)e AHce (22
i1<j

functiort? of the pure hard sphere system is required, and

Ref. 19 proposes an empirical analytical form that interpo- = Np

lates between the known limits of vanishingly and infinitely —gZ-1 Tr.e BHcc 2 P
. . . ~semi,0''C

separated polymers. In the following, we rederive this theory =0 Np!

in a general framework. This will allow us to relate the ap-

proach of Warreret al. to the oversimplistic bulk theory that < f drNP‘Z&(N —1)a({RNC})NF’_2
arises from the perturbative DFT. Moreover, we can quanti- 2

tatively compare this approach against the bulk predictions

of the geometry-based DFT. derj dr' BV
We consider the fully interacting binary mixture with BVee
fixed colloid particle numbeN: and polymer fugacityz . % , (BN ' N
) " o - {R"e {RYc 2
The semigrand partition function is given by (Ir=rDa(ri{R¥eha(r:{R7eh @3
o Np _ =1 —IBH f f ’
=Eemiolfce ~rcc| dr | dr'pVvV
Esemi:TrCeiﬁHcc NZ_O ﬁ drNPeiﬁ(HCPH\HPP) ) semioe Pl
T (16 X(Ir=r'Da(r;{R"ha(r {RNe})
where\ is a charging parameter which is equal to unity in z% ” [zpVa({RNc}) NP2
the fully interacting system, and the canonical trace over XK= 2 ' (29)
. . . 2 Np=0 (Np—2)!
colloid coordinates is
L where E¢emiois the term inside the logarithm in Eq21).
The final result is thus
Tre= ——— f dRNe, 1
© e (17

— —BH N
By expanding the integrand in E@16) in a Taylor series Py =Ecemdlrce Precexd zpVa({Re}) ]

about\ =0, we obtain a perturbation theory

aBQsemj =1
0

2
1 [ 9B em z , /
ﬁQsemi:,BQsemi,O"'f d)\<Ml> XEJ er dr BVPP(|r_r |)
0 N
Xa(r{RY} a(r’;{RN}). (25
~ B0 é’BQsemi 18
= Bllsemiot I\ ’ (18 Equations(21) and (25) give the exact free energy to linear
0

order in BVpp(r). We now proceed by making the mean-
where BQgem= — INEgemi- The first term on the right is the field approximations and replacing quantities by their aver-
semigrand free energy of the AO model, given by age values in the unperturb@lO) system
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a({RNe)) = a(9¢,zp), (26) excess free energy density, EqH0)—(13). The integration in

N R ) Eq. (6) becomes trivial and gives a factvt Explicitly, the
a'(l';{R C})a(r ;{R C})‘)gvv(“_r |;77012P)1 (27) result is

wherea(7¢,zp) is the exact free volume fraction for the AO

model (noninteracting polymejsand g,,(|r—r'|; 7c.zp) IBFexc(PC’PP): ~paln
=(a(r;{RNc}) a(r’;{RNc})) oo is the void—void correlation V Béuspc)—prinaslpc)
function of the AO model. The voids are the spaces between _
the colloids that can be occupied by the polymer. Insertion of n BVep(0) , 1-] 31
Eq. (26) into Eq. (21) clearly yields the exact AO free en- —, pell—Inax(pc)], (3D
ergy. The final result is thus
2 where the integrated potential is Vpp(0)
BQeem= BLsemiact —PVI dr BVpp(r) =4xfdr rzvpp(r)=47-rea§,/3 and ¢ys, in the scaled-
' 2 particle (Percus—Yevick compressibilityapproximation, is
iven b
ngv(|r_r,|;7701ZP)- (28) g Y
If we now further approximate the relevant quantities by :3770[377(:(2_77c)_2(1_77c)2|n(1_77(:)]
their HS, vaIues,a(nﬁS,zp)e,a(nc)sa(nc,zp,=0) and HS 8mR3(1— 7¢)? :
9ou(Ir=1"[imc Z6) = 9 (Ir =1 [s mc) =0, (Ir =1 7c 20 (32
=0), then the first term reduces to the free-volume theory of _
Lekkerkerkeret al. and we obtain In Eqg. (31), the a;, which depend solely omc andq, are
5 given through
Zp
BO = BF s~ Zoa n)V+ - [ df BVop(r) 2
2 Inay=In(1-7¢)— X CH'y™, (33)
Xgylr=r'limc), (29
4
whereF g is the Helmholtz free energy of pure HS. We give _ 1 (2) ,m
the explicit (approximative expression fora(7nc) below in Nz 8 mZ’l Con' 7™ 349

Sec. IV A. The original result of Warreet al. for the semi-
grand free energy, Eq27) in Ref. 19, is identical to Eq. Where the dependence on density is through »c/(1
(29), if BVpp(r) in (29) is replaced by its corresponding —7¢c), and the coefficients are polynomials in the size ratio,
Mayer function, +exg—BVpu(r)]. The difference arises given as C{V=3q+3q¢?+q? C{V=(99%2)+3q® C§’
from the fact that in the original version a virial expansion in =30°, and C{)=8+15q+6q?+q°% C{?=15q+ 24q?
polymer density is performed, while we apply thermody- +79°, C$=18¢2+15q°% C{)=9q°.
namic perturbation theory. However, for smgk the differ- For Be=0, our result is identical to that of free-volume
ences are negligible. theory for the AO modet.Central to that approach is the free
An equivalent perturbation theory can be derived di-volume ratio,« (defined in Sec. Il I, which we find to be
rectly in the canonical ensemble. The result for the canonicafentical toe; . Hence the DFT recovers free-volume theory
excess free energy is in bulk; a discussion of relations between the two approaches
can be found in Ref. 17. According to the physical meaning
BFEe(pcpp) of a1, we interpreta, as the ratio of two six-dimensional
————=Bduslpc) —pelnalpc) : . .
\V; volumes, namely, the volume that is accessible to a pair of
) two overlapping polymer spheres and the same quantity in
Bl pp the absence of colloids, the latter being just-aq?,V/B. In
E( ) f drVee(r) Fig. 1 we plot both free volume fractions as a functiornef
for size ratiosq=0.57 and 1. Qualitativelyw,; and a, both
xg:'vs(“_r'“pc), (30) monotonically decrease with increasing due to the ex-
. ) cluded volume occupied by colloidal particles. Note, how-
where dns(pc) is the excess free energy per unit volume of oyer thata,> a, over the whole density range. This may be
pure HS. While the same level of approximation is employedy ;e to correlations between polymer pairs. At fixgd, both

in both derivations, Eqs29) and (30) are inequivalent, in - a6 yolume fractions decrease monotonically with increas-
general, when related by a Legendre transform. They can Qﬁg size ratio.

shown, however, to be equivalent to linear ordeNigp(r).

a(pc)

The total canonical free energy is given Wy/V
=Fex/ V+KsTZ ¢ ppilIN(pAY)—1]. It is convenient to
IV. RESULTS transform to the semigrand ensemble, where the polymer
. chemical potential instead of the system density is pre-
A. Bulk fluid phases scribed. The appropriate thermodynamic potential is a semi-

In bulk, the one-body densities of both species are spagrand free energf) .., related toF via Legendre transform
tially uniform: p;(r)=const. This leads to analytic expres- Qgsemi/ V=F/V—uppp, Whereup is the chemical potential
sions for the weighted densities, E@), and therefore for the of polymers, given as
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FIG. 1. Free-volume ratios of single polymeks,§ and pairs of overlapping
polymers () as a function of colloid packing fraction for polymer—colloid
size ratiosq=0.57 (top curves, thickandq=1 (bottom curves, thin

FIG. 2. Fractional excess over mean fiéldF) of the free energy predicted
by the density-functionalDF) and perturbative approachgsgs. (36) and
(40)] vs colloid volume fractionzns, for polymer—colloid size ratiog
=0.57.

Bup=3d(BFIV)ldpp
, N Fpert_ pMF 1+§ i_l 3(1-(292+2qg+1)e 29
=In(ppAp) —Inas(pc) = BVpp(0)pp[ 1= INaz(pc) |- F ] Hay A e |

(39 (40)

. . . We can now numerically compare the predictions of the
Equation(35) is a transcendental equation to be solved for . L . .
; . L . ) different approximations for the interacting-polymer free en-
pc onceup is prescribed, which is a trivial numerical task.

ergy. As the mean-field contribution is a constanith re-
B. Comparison between DF and perturbative spect tozc), we take it as a reference and consider the

approaches fractional excessKp—FN)/FM" as a function ofyc . Fig-
Comparing the density-functional and perturbative ex-Uré 2 compares the DF and perturbative results, computed
pressions for the bulk excess free endifgs.(31) and(30), from Egs.(36) and (40). At Iowgr col!0|q volume fractl.ons'
respectively, it is clear that they differ only in the (7c<0.2) both approaches give similar results. With in-
interacting-polymer terms. Thus, focusing on these terms, wE'€asingzc, however, there is a crossover, beyond which
define the additional contributiofip=F —F|._, to the free  (he approaches deviate rapidly. In fact, beyopgd=0.2, the

energy per volume due to polymer interactions, and find DPF Prediction increases much more gradually than the per-
turbative. The deviations in the free energy evident in Fig. 2

EOF  § (0) suggest a significant difference in the predicted phase behav-
p _ Vpp 2 . L . . .
—= pp[1—Inay(pc)] (36 ior, which is confirmed upon explicit calculation of phase
v 2 diagrams in the next section.
and
C. Phase diagrams

pert 2

Fp — l pp j drVpp(r)g,,(F:pe) (37) The general conditions for phase coexistence are equal-
Vo 2\ ai(pe) PP Bt e ity of the total pressurep,,;, of the chemical potentialg;,

and of the temperatures in the coexisting phases. For phase
Asr—o, two voids become uncorrelated and the void—voidequilibrium between phases | and II,

correlation function reduces ®,,(r)= a%. Substituting this |

_ il
form for g,,(r) in Eq. (37) yields the mean-fieldMF) result Ptot™ Prot (42)
| 1l ;
~ i=m;, 1=C,P. 42
FE™_ Vep(0) il (42)
—= PP (38)  These are three equations for four unknowiso state

v 2 points each characterized by two densijtiétence two-phase

which is independent of colloid volume fraction. Similarly, coexistence regions depend parametrically on one free pa-
rameter. In our caspy/kgT=— D1+ Zi—c ppidPiot/ Ipi

asr—0, the two voids become perfectly correlateg, (r . X
P y &, (1) and u;=kgTod/dp;, where ¢=F/V, yield analytical

=a4. An approximate interpolation between these two ex- , . . .
tremes was proposed in Ref. 19: expressions. We solve the resulting sets of equations numeri-

cally, which is straightforward.
Ouo(r)=ad+ ay(1—ay)exp —r/Re). (39) In order to compare the results from the different theo-
retical approaches, we consider the case of equal siges,
Substituting Eq(39) into Eq. (37) and integrating over the =1, and moderately weak polymer—polymer interactions,
step-function polymer—polymer pair potential, we obtain  namelyBe=0.25. Our aim is to compare the fluid—fluid bin-
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! ! ' ideal polymelr Iiéuid—vapc.Jr | ¢
geometrical DFT — — — 0.6 fluid  ©
08y perturbative DFT ----=-=-- :
perturbative bulk theory -------
*
N 06 | é‘ 04 r
=
04 | . (a)
0.2t ©
02 o
0 === 0 ' ' ' '
0 03 0.4 0 0.1 0.2 0.3 04 0.5
MNc
FIG. 3. Demixing phase diagram of a model colloid—polymer mixture for I I li::uid-vapor e
g=1 as a function of packing fractions of colloid and polymegg,and 7 . 06 r * fluid  ©
Shown are the theoretical binoddlmes) and critical pointgdots for ideal
polymer (Be=0) as a reference case, along with the resultsfer 0.25
from the geometry-based DFT, the perturbative DFT of Sec. Ill C, and the 0.4 |
perturbative bulk theory of Sec. Ill DEg. (30)]. é- ’
. 02 r
odals from the various approaches: the perturbat®ec.
[l C) and geometry-basg@ec. Ill B) DFTs, and the pertur-
bative bulk theory of Warreet al. (Sec. Il D). We find that 0 : : : :
the semigrand version of the lattgq. (29)], when applied 0 0.1 02 03 04 05
to our model, does not give fluid—fluid demixing fgte N¢

=0.25. Rather, the stability of demixing is restricted to a . ) ) .

. . . FIG. 4. Demixing phase diagram of a model colloid—polymer mixture for
narrow range of interactions, whege is smaller than about g=0.57 as a function of packing fractions of colloid and polymss,and
0.1. We believe that this is more a failure of the theory thany,, . shown are the theoretical binodal and critical point together with the
of the model. As shown in Fig. 3, the binodals from the experimental data of Ref. 6a) Be=0, equivalent to the result from free-
perturbative DFT and from the canonical version of thevolume theory(Ref. 4, (b) Be=0.5.
theory of Warreret al. [Eq. (30)] predict stabilization of the
colloidal vapor phase when compared to the case of nonin-
teracting polymers. This is at odds with the physical expecThe second virial coefficient also can be expressédti*as
tation that the polymer—polymer repulsion shodistabilize
the polymer-rich phase. In contrast, _the binodal from our Bz =7-4.82+0(2), (44)
geometry-based DFT does capture this trend. A7PR3

Stable fluid—fluid phase separatiamith respect to
freezing in colloid—polymer mixtures is observed in experi-
ments only at sufficiently large polymer-to-colloid size ra-
tios. We consider the size ratip=0.57, for which experi-

mental data are available for péigethyl methacrylate .. . .
(PMMA) colloid and polystyrene ircis-decalin® Figure 4 empirical relation forz was established by Berfy/for poly-
styrene in a range of hydrocarbon solvents:

shows the predicted phase diagrams with and without poly=
mer interactions. For noninteracting polymgg< =0 in Fig.
4(a)], our result is identical to that from free-volume theory. ~ z=0.00975/M
Although the predicted phase diagram may appear to capture
the main experimental trends, closer inspection reveals disralid over a wide range of temperatures around the theta
crepancies. Experimentally, the colloidal liquid phase contemperatureT,.
tains a significant concentration of polymer, whereas the the-  Now, for the polymer—solvent system considered in Ref.
oretical binodal for ideal polymer suggests strong dilution ing, polystyrene in cis-decalin, M=14.4<1® and T,
polymer. In order to apply our theory to this situation, we =12.5°C, while the experimental phase diagrams were
must first prescribe the potential energy barrier. measured significantly abovgé,, at T=23 °C. From Eq.
The potential energy barriee, can be obtained by esti- (45), this temperature correspondszte 1.3, well beyond the
mating the second virial coefficier,, of a pure polymer range of validity of Eq(44). However, Berry” has measured
solution. For our repulsive step-function potentid, is B, over a considerable range nfup toz=>5. Thus, we can

accurate up t@=0.1, wherez is the Fixman parameter. The
Fixman parametéf is a measure of polymer nonideality (

=0 corresponding to ideal polymerthat depends on tem-
perature, radius of gyration, and molecular makk).( An

Ty
1- ) : (45)

trivially related toe via apply Eq.(44) to obtainB, for a small departure from ide-
PY ality and then appeal to Berry's data. If we consider, for
B,= WUP(l_efﬁe)_ (43 example, only a one-degree departure fromy, T

=13.5 °C, then Eq(45) givesz=0.129, for which Eqs(43)
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and (44) in turn yield Be=0.068. From Berry’s measure- model to be seriously in error, particularly for long polymer
ments, asz increases from 0.13 to 1.8, increases by a chains with a radius of gyration greater than the radius of the
factor of about 5, which, from Eq43), corresponds roughly colloids. Here we restrict ourselves to shorter chains, where
to Be=0.5 atT=23°C. we expect an effective sphere model to be reasonable.
Asecond, independent, estimateeofan be drawn from We emphasize that our model of po|ymer_p0|ymer in-
simulations of interacting polymer coil$n the absence of eractions is idealized ifat least four ways:(i) The shape of
c_oIIoids_).zz At zero separation between two coils, the effec-ihe pair interaction is assumed to be a step function rather
tive pair potential was determined to be about (1kgd).  han 3 more realistic smooth, Gaussian-type function. This
Hence, as a plausible value, we chogie=0.5. To achieve .o 5 orominent effect on the structural correlationpar-
higher accuracy than provided by the linear expansion of th%cular on the polymer—polymer pair distribution functjon

(éD f(r:)eiﬁné r%y’(lEO(;E?l’?:)NeFiusuer;hf schuc?vlvcs (;rdc%rrfxgrrizf)?%? We expect, however, that predictions of the phase behavior
g- 1), as- -9 b are reasonable provided appropriate values for both model

the calculated theoretical binodal with the experimental dat _ .
of Ref. 6. parameters, step height and range are chagern order to

Although the measured one-phase state point at high Cope able to_ derive a geom_etrical DFT, we set _the range qf the
loid packing fraction lies inside the theoretical two-phaseSteP function equal to twice the polymer radius of gyration;

region, it is obvious that our theory predicts a shift into thethe latter also sets the thickness of the depletion zones
correct direction. We also predict that the coexisting colloidaf@round colloids. This is an “additive” restriction, leading to
vapor phase is more strongly diluted in colloids, as compare®ell-defined particle shapes, that can be exploited to derive
to the noninteracting case. All these results can be undethe theory. In general, however, a more realistic description
stood in terms of a free energy penalty due to polymer-would be provided by a freely adjustable range of polymer—
polymer interactions. This primarily applies to the colloidal polymer interaction. This would, however, include nonaddi-
vapor phase. Only a small penalty arises in the colloidativity as an additional complication, which we have avoided

liquid phase, where polymers are strongly diluted. in the present studyiii) We assume that the strength and
range of the interaction are independent of the concentrations
V. CONCLUSIONS of both colloids and polymersn general, independent of the

We have investigated a model of a colloid—polymer mix-respective one-body profilesit is, however, knowff that
ture in a good solvent, where excluded volume of monomeréhe effective polymer—polymer interacti¢as obtained from
gives rise to a soft, penetrable repulsion between centers §mulations on the segment leyes density-dependent, al-
masses of polymer coils. The model interpolates between th@ough this effect appears to be quantitatively small. In prin-
AO colloid—ideal-polymer model and binary hard spheresciple, given some prescription of how the step height de-
through a repulsive step-function polymer—polymer interacpends on the state point, this effect could be treated within
tion, whose height is a control parameter. We have derived the current approaclhiiv) We neglect the effect of colloidal
density-functional theory for the full crossover between bothconfinement on the polymer radius of gyration, and hence on
limits and have focused on the physically relevant case ofhe range of polymer—polymer interaction. Recently, we
weakly interacting polymers. Our theory predicts that withhave modeled the influence of colloid-induced polymer com-
increasing strength of polymer—polymer interaction the copression, on demixing albeit only for the case of ideal
existing colloidal liquid(vapon phase becomes more con- polymer®® A similar model could, in principle, be applied to
centrateddilute) in polymer. the case of interacting polymer.

We stress that calculating bulk phase diagrams from the  concerning future work, it is desirable to test our phase
present theory is not more difficult than application of theyiagrams against simulation and more detailed experimental
original free volume theorg‘/.The_ only additional task is 10 a4 for phase coexistence. It would be interesting to look at
convert from the polymer fugacity to the polymer density iny,e gepletion potential between colloids that is generated by
the system. While this can be done analytically in the free—,[he presence of nonideal polymer. The concept of integrating

volume theory, here we neeq o solve E85) numerically. out degrees of freedom provides the necessary machinery,
In order to compare to experiment, the strength of polymer—

polymer interactions must be prescribed. This quantity ané{\’hwh already has been applied to limits of the present

6
the polymer-to-colloid size ratio are adjustable parameters irr1nOdeL namely the ADand HS® cases. Of course, more

our model. realistic polymer—polymer interactions, such as a repulsive
We have shown that a simple perturbative DFT, in whichGaussian pr?\ir potential, are worthy of inv.esFigqtiop. Finally,
the free energy is approximated by that of an AO referencd/® €mphasize that because our theory is intrinsically con-
system and an additive mean-field contribution is an inapproStructed to deal with inhomogeneous situations, influence of
priate approach. We believe that this failure may hold alsd?0lymer interactions on the properties of interfaces and be-
for other binary mixtures, where an additional interactionhavior near walls, such as wetting and layering phenortiena
between particles of the same species is treated as a pert@-€ problems open to investigation.
bation, neglecting the presence of the other component. Note addedAfter completion of this work we became
A recent assessméhof the performance of free volume aware of a simulation study of colloid—polymer mixturés,
theory for the AO model in describing colloid—polymer mix- where similar phase behavior to that reported here was
tures in a good solveritvhere polymers repgfound the AO  found.
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