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We investigate the structure of amphiphilic molecules exposed to a substrate that is modelled
by a hard wall. Our simple model amphiphiles consist of a hard sphere head group to which a
vanishingly thin needle tail is radially attached, resulting in a lollipop shape. Such particles act
as amphiphiles when added to a binary fluid of hard spheres and needles. Focusing on the pure
amphiphile system we compare the results for the positional and orientational order profiles
obtained from a recent density functional approximation to those of our computer simulations
and find good agreement. For low densities the structure is ruled by the loss of orientational
free volume near the wall, while for higher densities packing of the spherical heads dominates.
Furthermore, we test the wall sum rule explicitly for this model fluid and find rich structure of
the contact distribution which can be interpreted in terms of typical particle configurations.

1. Introduction

In order to understand the behaviour of ternary
water–oil–surfactant mixtures on a microscopic level,
different model systems have been utilized, ranging from
very simplified phenomenological theories to more
realistic simulation studies. The principal objective of
such research is to start from model interactions
between individual molecules and to predict macro-
scopic properties such as phase behaviour and structural
correlations [1–6]. Often the attractive parts of the pair
potentials are specifically tailored to generate the
required amphiphilic properties. However, it was
shown by computer simulations that hard body inter-
actions alone are sufficient to generate mesoscopic
micellar structures [7], using a model of amphiphilic
molecules immersed in a hard sphere fluid. As a model
for mesogens, van Duijneveldt et al. investigated the
phase behaviour of hard spherocylinders with a flexible
tail attached to either endcap [8] and to only one of the
endcaps [9]. They found that the presence of the tails
enhances the stability of the smectic-A phase and
suppresses the nematic phase.

Recently, a similar simple model that features hard
body interactions only was proposed [10]. To a binary
mixture of hard spheres and vanishingly thin needles
[11], a third component is added that consists of a sphere
and a radially joined needle. Besides being the ‘natural’
amphiphile for the sphere–needle mixture, this mimics
the shape of the hydrophilic headgroup and hydrocar-
bon tail of real amphiphile molecules. The appeal of the
model stems from the absence of an energy scale, hence
its behaviour is governed solely by the (three) densities of
the species and the ratio of needle length and sphere
diameter as an additional geometric parameter that
determines the amphiphile strength. In the framework of
density functional theory (DFT) [12, 13] extending
Rosenfeld’s work [14–16] and following the treatment
of a binary sphere–needle mixture [17], a geometry-based
DFT for this model was proposed [10]. The bulk fluid
equation of state derived from the theory was found to
be in good agreement with that obtained from computer
simulations. Theoretical results for the fluid demixing
phase behaviour of the binary subsystems (obtained by
setting the density of one of the components to zero)
supported the amphiphilic character of the model. In
particular it was found that compared to the demixing
binodal in the sphere–needle mixture, the mixed region
grows (demixing is suppressed) if either component is
replaced with amphiphiles. Besides the ternary bulk
phase behaviour (which has not been considered so far),
the crucial test to prove the validity of the model is
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whether the interfacial properties are in accordance with
those of real ternary surfactant mixtures. Clearly, this is a
potentially demanding project, and as a prerequisite, in
the present study we seek to understand the nature of
correlations that emerge from the shape (and hence the
interactions) of the model amphiphiles.

We choose a generic situation, the hard, impenetrable
wall, to study the packing effects caused by the hybrid
shape of the particles. Besides the intrinsic interest in
amphiphiles at surfaces, our aim is also to assess the
accuracy of the theory in inhomogeneous situations. In
contrast to fluid–fluid interface studies, the behaviour
near walls can be obtained more easily from computer
simulations, and hence we have carried out Monte Carlo
(MC) simulations for the pure system of amphiphiles
against a hard wall.

We find that for low densities the behaviour is driven
by the (trivial) loss in rotational free volume (accessible
particle orientations) that arises from the overlap of the
particle tail with the wall. Increasing the bulk density
leads to a crossover to behaviour that is governed by the
packing of the heads, and thus resembles that of the
hard sphere fluid. Theoretical and simulation results
agree well, given the complexity of the situation, also
very close to the wall. The peculiar shape of the second
peak is captured correctly but its height is slightly
overestimated. Our theoretical results for the wall–
particle contact distribution show rich structure, which
we can relate to special geometric particle arrangements
at the wall.

The paper is organized as follows. In Section 2 we
define the model explicitly. Section 3 is devoted to the
density functional and computer simulation methods.
In Section 4 we present results and we conclude in
Section 5.

2. Model

We consider amphiphilic hard core particles which
consist of a hard sphere of diameter � and a vanishingly
thin needle of length L. The needle (tail) is attached
radially to the sphere (head). We take the centre of the
sphere as the position of the particle (denoted by r) and
denote the direction of the tail by a unit vector :, see
figure 1 (a). The interparticle interactions are such that
both sphere–sphere and sphere–needle overlaps are
forbidden. The excluded volume between two needles
is zero owing to their vanishing thickness. Hence
configurations with overlapping needles carry vanishing
statistical weight, and the needle–needle interactions can
be assumed as being ideal. The wall (see figure 1 (b)) is
impenetrable to both the head and tail. Let � be the
angle between : and the surface normal towards the
wall (see again figure 1 (b)), and let z be the component
of r perpendicular to the wall. Then we can describe the

wall as an external potential

VwallðzÞ ¼
1 z< zþð�Þ
0 otherwise,

�
ð1Þ

where zþð�Þ is the distance of closest allowed approach
between the sphere centre and the wall, given by

zþð�Þ ¼
ðLþ �=2Þ cos � �<arccos[1/(1+2L/�)]
�=2 otherwise.

�
ð2Þ

The system is governed by only one thermodynamic
parameter, which we take to be the packing fraction of
the spherical heads, �A ¼ �A��

3=6, where �A is the
amphiphile number density. The size ratio of needle
length and sphere diameter, L=�, is a further geometric
control parameter.

3. Methods

3.1. Density functional theory
As a theoretical approach to the study of the

interfacial properties of our model fluid we use the
DFT of [10] which extends Rosenfeld’s fundamental
measures theory [14–16] to an example of non-convex
particles with orientational degrees of freedom. The only
inputs to the theory are a geometrical description of the
particle shape and exactly known limits for situations of
extreme confinement. The theory in [10] is formulated
for a multicomponent mixture. Here we apply it to a
one-component system (monodisperse in sphere dia-
meter and tail length). As an essential feature, this DFT
describes the many-body behaviour of the system in
terms of geometrically determined weight functions that
correspond to the particle shape. The weight functions
are used to obtain weighted densities by building
convolutions with the actual density profile. The excess
(over ideal gas) free energy density is expressed as a
function of these weighted densities and integration over
space and orientational degrees of freedom yields the
excess free energy. For the full definition of the weight
functions, that of the free energy density, and all further
technical details we refer the reader directly to [10].

Figure 1. Sketch of the model amphiphilic system. (a) Each
amphiphilic molecule consists of a hard sphere of diameter
� to which a vanishingly thin needle of length L is radially
attached. The particle orientation is described by the unit
vector:. (b) Typical configuration of amphiphiles against
a hard wall. The needle tails may overlap with each other
owing to their vanishing excluded volume, but they can
penetrate neither the spheres nor the wall.
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The numerical minimization of the density functional in
the presence of the external potential, equation (1), is
done via a standard iteration technique, and follows
closely that of a related investigation in a binary sphere–
needle mixture [18].

3.2. Computer simulations
In order to obtain benchmark results, we performed

canonical Monte Carlo simulations with 500 particles.
Periodic boundary conditions are used in both direc-
tions parallel to the walls. The two walls have square
shapes. The distance between both walls is taken to be
twice their lateral length, in order to reduce finite-size
effects. For the simulated total densities �A ¼ 0:05,
0:10, 0:15, 0:20, 0:25, 0:30 we performed 2.1, 2.7, 3.6, 4.4,
4.7, 7.0 million MC moves per particle, respectively. The
maximal spatial and orientational displacements were
adjusted to obtain acceptance ratios of about 0.85. As
we fix the volume V and the total particle number N, the
mean density in the simulation box is prescribed, but not
the bulk density. We determine this a posteriori from the
(plateau) value of the density profile away from the wall,
that is in the middle of the simulation box.

For the size ratio L=� ¼ 1:5 we obtained reliable
results for the density and order parameter profiles;
those are presented below. Increasing the needle length
(we checked L=� ¼ 5) leads to significant slowing down
of the equilibration of the system, and hence prohibited
the obtaining of high-quality data.

3.3. Order parameters and the wall sum rule
In order to analyse the behaviour of the non-spherical

particles we consider two characteristic distributions
obtained from the full profile �Aðr,:Þ. The first is the
orientation averaged profile which describes the dis-
tribution of the centres of the spheres, regardless of their
tail orientation, given by

��AðrÞ ¼

Z
d2O
4p

�Aðr;:Þ: ð3Þ

The second is an orientational order parameter

hcos�i ¼ ��AðrÞ
	1

Z
d2O
4p

�Aðr;:Þ cos �, ð4Þ

that varies between 	1 for particles with tails pointing
away from the wall and þ1 for particles with tails
pointing towards the wall. It vanishes in the (isotropic)
bulk fluid. As we restrict ourselves to the study of states
with planar symmetry, ��A and hcos �i depend only on z.

For hard spheres, that is L ¼ 0, the density profiles
against a hard wall satisfy the well-known sum rule

P ¼ �ðRþÞ, where 
 ¼ 1=kBT , kB is the Boltzmann
constant, T is absolute temperature, P is the bulk

pressure and Rþ ¼ ð�=2Þþ is the distance of the closest
approach between the sphere centre and the wall surface
[19] (the upper plus indicates a limit from above). This
sum rule was subsequently generalized to systems of
hard anisotropic particles against a hard wall [20] which,
for a one-component system of amphiphiles, is given by


P¼

Z
d2O
4p

�Aðz
þð�Þ, �Þ, ð5Þ

where zþð�Þ is the distance of the closest approach
between the particle centre and the surface of the wall
for a particle with orientation �, see equation (2).

4. Results

4.1. Density and order parameter profiles: comparison
with simulations

To assess the performance of the amphiphile func-
tional we compare positional and orientational order
parameter profiles (equations (3) and (4)) from DFT and
MC simulation for L=� ¼ 1:5. Owing to the complicated
shape of the amphiphilic particles it is not obvious to
what extent our approximate functional will capture the
subtle packing effects which determine the interfacial
structure in this system. Figure 2 shows the angle
averaged density profiles ��AðzÞ. At low densities (�A ¼

0:052 12 in figure 2 (a) and �A ¼ 0:104 37 in figure 2 (b))
the amphiphile tails strongly perturb the density profiles
from those of pure hard spheres at the same packing
fraction. At these low densities the contact value is
reduced compared to pure hard spheres owing to wall–
amphiphile tail collisions which tend to move the sphere
centres away from the wall. Note that the lowering of
the contact value of the averaged density profile does
not imply lowering of the bulk pressure (via relation
through the wall sum rule), as collisions of the tails with
the wall also need to be taken into account. We shall
discuss this issue in the next subsection. The kink in the
profile at z ¼ 2� corresponds to a distance where an
amphiphile with � ¼ 0 makes contact with the wall. For
these low densities we find good agreement between
simulation and theory.

As �A is increased the packing of the amphiphile
heads begins to dominate and the structure becomes
closer to that of hard spheres (�A ¼ 0:155 85 in figure
2 (c) and �A ¼ 0:207 28 in figure 2 (d)). For high densities
(�A ¼ 0:258 10 in figure 2 (e) and �A ¼ 0:307 51 in figure
2 (f)) the profile is very close to that of hard spheres and
the presence of the amphiphile tails acts only as a weak
perturbation. The effect of the tails is overwhelmed by
the sphere packing.

Figure 3 shows the orientational order parameter
profile hcos �i for two typical densities, namely �A ¼

0:05 and 0:25. Despite the markedly differing values the
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simulation yields two very similar profiles, the only
significant difference being the weak oscillations for
�A ¼ 0:25 induced by sphere packing. The ‘triangle’
structure for z < 2� is almost completely determined by
the reduction in solid angle available to each amphiphile

tail when close to the wall; interactions between the
amphiphiles appear to have little effect. In fact the
profile for � ¼ 0:05 already lies very close to the low
density limit with a small positive enhancement at
z ¼ 2�. While the functional gives a good account of the

Figure 2. Angle averaged amphiphile density profiles ��A as a function of the scaled distance from the wall z=� for L=� ¼ 1:5
obtained from simulations (symbols) and DFT (solid curve). For comparison we also plot the DFT results for the pure
hard sphere case (L ¼ 0) for the same densities (dashed curve). Packing fractions are (a) �A ¼ 0:052 12; (b) �A ¼ 0:104 37;
(c) �A ¼ 0:155 85; (d) �A ¼ 0:207 28; (e) �A ¼ 0:258 10; ( f ) �A ¼ 0:307 51.
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low density behaviour of hcos �i when compared to
simulation, for higher densities the agreement is poor.
As � is increased the simulation results show that (i) the
contact value increases (becomes less negative), (ii) there
is a deviation from linearity between contact and z ¼ 2,
(iii) there is enhancement at z=� ¼ 2 and, (iv) oscilla-
tions develop. All of these features are captured by the
DFT, but are grossly overestimated. A possible expla-
nation could lie in our assumption that there is no
ordering parallel to the wall. This is implicit in our
calculation of one-dimensional (z-dependent) density
profiles but is still accounted for within the simulation.
While this presents an interesting possibility, the
numerical minimization of the amphiphile functional
[10] allowing for such ordering presents a formidable
numerical challenge and is beyond the scope of the
present work.

Preliminary simulation results for longer tails,L=� ¼ 5,
and �A ¼ 0:2 indicate deviations from the theoretical
profiles. In particular we observe a dip in �AðzÞ ranging

from about z ¼ 2� to z ¼ 5�, which is about 15% lower
than the bulk density. This feature is absent in the
starting configuration and develops over simulation
time, albeit no equilibrated state could be reached. Our
current DFT implementation is limited to planar
symmetry, and does not reproduce this feature. Thus it
is interesting to speculate that this could be an
indication of lateral ordering at the wall, for example
wall-induced micelle formation or freezing. We leave
this issue for future work.

4.2. Wall contact distribution
The hard wall sum rule, equation (5), is an exact

theorem. When used in an approximative DFT treat-
ment it is expected, from general considerations, that the
equality holds provided both sides of the equation are
obtained from the same theory, that is the pressure (left-
hand side of equation (5)) is obtained from the bulk
equation of state while the right-hand side is obtained
from the density profile which minimizes the functional.
The sum rule should be satisfied by any non-local
functional and thus provides a useful check of our
numerical procedure. For each �A value we find the sum
rule (equation (5)) to be satisfied. The present study
introduces two non-trivial complications over existing
studies of hard particles at a hard wall: (i) the
amphiphile particles are non-convex and (ii) the func-
tional contains only an approximate Mayer function. To
the best of our knowledge the sum rule has never been
explicitly tested for either of these cases. Satisfaction of
the sum rule for amphiphiles proves to be considerably
more demanding than for pure hard spheres or the
sphere–needle binary mixture [18]. A rather fine
numerical mesh is required to achieve good accuracy;
we use 200 spatial grid points per � in z and 150 angular
steps in the range 0 
 � 
 �. To provide good resolution
in rapidly varying regions we employ a non-uniform
grid in �.

In addition to providing a numerical check, the
investigation of the sum rule also yields insight into
the liquid structure at the wall. Using hcos �i as a
measure of orientational order does demonstrate the
average tendency of the amphiphile tails to point away
from the wall. However, much detail is washed out in
the averaging process. Figure 4 shows the contact
distribution �þAð�Þ � �Aðz

þð�Þ, �Þ sin � (the integrand of
equation (5)), for several values of �A. For low �A values
the function is smooth (in �) but as �A increases it
becomes sharply peaked at the point labelled a. A
careful numerical integration is thus required to evaluate
the right hand side of equation (5). For the size ratio
considered (L=� ¼ 1:5) the peak is located at an angle
�a ¼ 1:318, identifying the most common geometrical
arrangement of a particle at the wall. This a-type

Figure 3. The orientational order parameter profiles hcos �i
as a function of the scaled distance z=� from the wall
obtained from simulation (circles) and DFT (curves).
Packing fractions are (a) �A ¼ 0:05 and (b) �A ¼ 0:25.
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configuration is shown in figure 5. It consists of an
amphiphile with both the spherical surface and tail end
simultaneously touching the wall. As �A increases this
configuration becomes more dominant and particles
thus arranged play the largest role in balancing the bulk
pressure via equation 5. We have checked that for longer
tail lengths (L=� ¼ 5) the peak develops at lower �A
values as it becomes easier to ‘flatten’ the amphiphiles
against the wall. Hence in general we expect �a ¼
arccos½1=ð1þ 2L=�Þ.

For �A > 0:3 two more peaks become apparent at
angles b and c in figure 4, each corresponding to a
favoured amphiphile configuration at the wall. The
interpretation of these higher order peaks is more subtle
as they represent configurations involving pairs of
amphiphile particles against the wall, see figure 5.
Configuration b occurs when the amphiphile sphere
surface touches the wall while the tail rests on top of a
neighbouring sphere. If the needle touches the neigh-
bouring surface such that it assumes the largest � value
possible for a given sphere–sphere separation, then for
L=� ¼ 1:5, 1:824 < �b < 2:094 for sphere separations

where the needle is tangent to the neighbouring sphere
surface. This is in excellent agreement with the location
of peak b in figure 4. It should be noted that peak a is
sharp because amphiphiles with angles close to �a all
rapidly fall into a-type configurations; type-b configura-
tions are more varied and include those where the needle
has ‘slid off’ its neighbouring sphere to some extent.
This accounts for the rounding of the peak. Also, the
peak height of b is lower than that of a because b
configurations are unstable and can easily fall into type a.
The peak c is small, even for �A ¼ 0:35, and is the most
unstable of the three identified configurations. If the
head of amphiphile c in figure 5 is positioned directly on
top of the second amphiphile head, that is the line joining
the sphere centres is normal to the wall and the tail
touches the wall, an angle of �c ¼ arccos½3=ð1þ 2L=�Þ is
achieved. For L=� ¼ 1:5 this yields �c ¼ 0:723, in
excellent agreement with the peak location.

It is likely that the smooth background in the contact
distribution (figure 4) also contains numerous other
geometrically significant arrangements involving three-
and higher-body structures but these are so weak that
they cannot be resolved. The dominance of a-type
configurations at large �A values also provides an
explanation for the increase in hcos �i at contact with
increasing �A (see figure 3). As �A is increased a-type
configurations become more common, as �a < �=2: Such
configurations tend to make hcos �i more positive.

5. Conclusions

In summary, we have investigated the structural
correlations that arise near a hard wall in a hard body
amphiphile fluid. In our simple model the amphiphile
headgroup is taken to be a hard sphere and the tail is
modelled as a rigid, vanishingly thin hard needle
attached radially to the sphere. A fluid of such joined
hard particles, when supplemented by species corre-
sponding to water and oil (hard spheres and hard
needles in this case) gives a simplistic representation
of a ternary amphiphilic mixture. The simplicity stems
from the absence of temperature as a relevant variable
and hence the behaviour is solely governed by entropy.

Previous results for the fluid demixing phase beha-
viour indicated that the model indeed displays some of
the features found in real systems [10]. Those results
were obtained using a density functional approach that
utilizes the fundamental measure concept to approx-
imate the excess free energy. In this paper we presented
the first application of the theory to an inhomogeneous
situation. We chose a simple, albeit non-trivial test case,
namely the pure amphiphile fluid against a hard wall,
where non-trivial positional and orientational packing
of particles is found. We have focused on the case of
one-component amphiphiles in order to assess the

Figure 4. Amphiphile contact distribution �þA � �Aðz
þ
Að�Þ, �Þ

sin � for packing fraction �A ¼ 0:15–0:35 in intervals of
0:05 (from bottom to top). � is the angle between the
amphiphile tail and the wall surface normal. The features
labelled a, b, c correspond to the configurations shown in
figure 5.

Figure 5. Typical configurations of model amphiphiles at
contact with the hard wall, shown here for L=� ¼ 1:5. The
configurations labelled a, b, c correspond to the peaks in
the contact distribution, see figure 4.
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accuracy of the DFT and have carried out Monte Carlo
computer simulations to provide benchmark results.

We find good agreement between results from the
theory and the simulations for the total (integrated over
orientations) density, and reasonable agreement for the
angular order parameter profile. We conclude that the
theory gives a good account of the structural correlations
that arise from the packing effects in this model. Owing
to the particle shape, interesting behaviour at contact
with the wall is found. The (orientation-dependent)
density at contact with the wall displays a highly
irregular, peaked structure, and we could qualitatively
interpret the results in terms of typical particle config-
urations. In particular the most probable configuration is
where head and tail touch the wall simultaneously.

As concerns future work, we mention the problem of
how adding amphiphiles changes the free interface
between demixed fluids in the sphere–needle mixture
[18]. Furthermore whether the model leads to mesoscopic
structures such as micelles is interesting. A particular
challenge is to reveal the nature of the crystalline state(s).
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