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Abstract
We investigate the freezing transition in a two-dimensional lattice model of
annealed hard squares that are subject to the influence of randomly placed
quenched particles of the same size. The latter model is a porous medium.
By combining two recent density functional approaches we arrive at a theory
for quenched–annealed lattice fluids that treats the quenched particles on the
level of their one-body density distribution. We show that this approach
yields thermodynamics that compare well with results from treating matrix
realizations explicitly and performing subsequent averaging over the disorder.
The freezing transition from a fluid to a columnar phase is found to be
continuous. On increasing matrix density it shifts towards close packing and
vanishes beyond a threshold matrix density.

1. Introduction

Ordering phenomena, like the freezing transition, in the presence of disorder [1] and
confinement [2] are genuinely interesting, as self-organization competes with external
constraints. Much work has been devoted to understand liquid condensation in porous media—
for recent work see e.g. [3–5], where insight was gained into hysteresis in sorption curves and
its relation to the occurrence of a complex free-energy landscape. However, generally speaking
the freezing transition under confinement is not as well understood as in the bulk. Thalmann
et al [6] have investigated a hard sphere fluid in a random pinning potential, finding that the
first-order crystallization transition of the pure fluid changes to a continuous glass transition as
the strength of the disorder is increased above a critical value. For the same system, Dasgupta
and Valls [7] have mapped out regions in the phase diagram corresponding to liquid, glassy
and crystalline states. As a theoretical toy one often models disordered, amorphous matrices

3 On leave from: Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1,
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by quenched (immobilized) configurations of a (model) fluid. Then the adsorbate is annealed
(allowed to equilibrate) in the presence of the matrix particles that act as an external potential.

In this work we study freezing in porous media by combining two recent density
functional techniques [8], both of which originate from Rosenfeld’s fundamental measure
theory (FMT) [9], and construct the functional from the zero-dimensional (0D) limit [10]. The
first technique is lattice fundamental measure theory (LFMT), which is the generalization of
continuum FMT to lattice models [11, 12]. The second technique is a formulation of density
functional theory (DFT) where the functional gives directly the free energy averaged over
matrix realizations [13]; we refer to this approach as a quenched–annealed (QA) DFT, as the
free-energy functional operates on density profiles of both quenched and annealed species.
These approaches have been tested before in some situations. In particular, the latter produces
results for fluid demixing and liquid structure that compare well with those from integral
equation approaches [14]. The comprehensible structure of FMT allows us to derive a DFT for
QA lattice fluids. The main motivation for considering such an approach is the computational
simplicity of the lattice model over the continuum model. On the lattice it is practical (as will
be shown below) to also consider the matrix explicitly as an external potential and minimize
the inhomogeneous adsorbate density profile. In the continuum case this would be a daunting
task (although some progress has been reported [15]). In essence we follow the same strategy
as that in [3–5], albeit not for liquid condensation but for an ordering phase transition. Despite
the fact that our main concern is the study of equilibrium properties, we have also checked for
the presence of out-of-equilibrium hysteresis in the sorption isotherms.

Hard-body systems provide a paradigm in the study of freezing within statistical
mechanics. The simplicity introduced by lattice models, compared to continuum models,
led many authors to use them to investigate the liquid–solid transition [16]. Since hard-body
systems have no interaction energy in any admissible configuration, the driving force of phase
transitions is entropy alone. Thus, calculating the partition function of such systems amounts
to counting the number of allowed microscopic configurations compatible with a certain
macroscopic state (in a one-component system determined by the density or the fugacity).
This task can only be performed in an exact manner for a few models, thus approximate
schemes are needed in order to deal with a broad range of models. The most successful
theories in this respect are based on combinatorial facts, however this makes the calculation
of an approximate entropy a daunting task [17]. The theory we use in this work (LFMT) [12]
has the advantage of circumventing the counting task and producing a closed-form density
functional from which the thermodynamics and structure can be extracted through the standard
routes of DFT. Furthermore, the results obtained are of the same level of accuracy as those
produced by the classical approaches [11].

As a simple model for both the adsorbate and the matrix species we use two-dimensional
hard square particles. This is just the lattice gas with nearest- and second-nearest-neighbour
exclusion on the simple square lattice. This system has been studied before [18–21] but no
definitive conclusion has been reached about its phase behaviour. Some authors have claimed
it to have a second-order transition [18, 20], others a weaker (third-order) transition [18, 21]
and others even no transition at all [18–20]. The only thing that seems clear is the structure near
close packing: periodic along one coordinate axis while uniform along the other (i.e. columnar).
The period of the density oscillation equals the particle size. The FMT also predicts the
columnar phase to be stable and a continuous fluid–columnar transition [12].

We add freely overlapping matrix particles and describe their influence via two different
routes. First, we model the matrix as an external potential and minimize the functional
explicitly. This is a straightforward application of the equilibrium LFMT; we refer to this
as the external potential method. Second, we use the QA DFT and compare results for
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Figure 1. Illustration of the lattice model of adsorbate square particles (grey, species a) and matrix
square particles (black, species m) on a two-dimensional cubic lattice. The adsorbate–adsorbate
and adsorbate–matrix interactions are hard core; the matrix–matrix interaction is ideal.

thermodynamic quantities, where we find reasonably good agreement over a broad range
of densities in the fluid phase. Hence we trust the results for the phase diagram of the QA
DFT. This indicates that the fluid–columnar transition remains continuous in the presence of
disorder. On increasing the matrix density, the critical density shifts towards close packing and
the ordered phase ceases to exist beyond a certain threshold value (very close to the percolation
threshold of the matrix).

We do not find any signs for the occurrence of hysteresis in sorption curves, i.e. the same
results for the adsorption are obtained whether increasing or decreasing the adsorbate fugacity.
We speculate that this is due to the fact that the underlying equilibrium phase transition is
continuous.

This paper is organized as follows. We define the lattice hard-body model in section 2. In
section 3 we describe both density functional approaches (the details of the derivation of the
QA DFT are given in the appendix). Section 4 is devoted to the thermodynamics and phase
behaviour, and we conclude in section 5.

2. Model

As an adsorbate we consider square hard-core particles (species a) on a two-dimensional square
lattice (with unit-length lattice spacing) that interact by means of a pair potential as a function
of the relative distance vector s of particle centres given by

Vaa(s) =
{

∞ if |sx | < 2 and |sy | < 2,

0 otherwise.
(1)

The adsorbate is subject to the influence of a porous matrix that is modelled by freely
overlapping particles (species m) of the same shape as the adsorbate particles. Then the
interaction between matrix and adsorbate particles is also Vam(s) = Vaa(s). As the matrix
consists of freely overlapping particles, it is just an ideal gas, hence Vmm(s) = 0. Figure 1
shows a sketch of the model. Notice that ideality of the matrix implies the possibility of
multiple occupancy of lattice sites.

We denote the one-body distributions of adsorbate and matrix particles by ρa(s) and ρm(s),
respectively, and the fugacity of the adsorbate particles by za .
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3. Theory

3.1. Matrix as an external potential

The grand potential functional (in fact a function of the density at the lattice sites) for the
system is expressed as

�[ρa] = Fid [ρa] + Fexc[ρa] +
∑
s∈Z2

ρa(s)[V rand
ext (s) + V misc

ext (s) − µa], (2)

where µa = kB T ln za is the adsorbate chemical potential, kB T being the Boltzmann constant
multiplied by the absolute temperature. We have split the external potential into two parts:
V rand

ext (s) models the presence of the matrix particles; V misc
ext (s) is a possible additional

contribution such as a gravitational field. (In the following we will restrict ourselves to
situations where V misc

ext = 0.) The ideal free-energy functional in equation (2) is given by

Fid [ρa] = kB T
∑
s∈Z2

ρa(s) ln[ρa(s) − 1]. (3)

Following the recent extension of FMT to lattices [11, 12], the excess free-energy functional
is approximated as

Fexc[ρa] = kB T
∑
s∈Z2

[�0( a
) − �0( a

) − �0( a) + �0( a)], (4)

where the exact 0D excess free energy as a function of the mean number of adsorbate particles,
ηa , is

�0(ηa) = (1 − ηa) ln(1 − ηa) + ηa . (5)

The arguments in equation (4) are weighted densities, for which we use a diagrammatic
notation [22]: each circle corresponds to the density at a lattice point and lines indicate lattice
spacings; the subscript i indicates the species (here only a). More explicitly, the weighted
densities for species i are given as

i
= ρi (sx , sy) + ρi (sx + 1, sy) + ρi (sx , sy + 1) + ρi (sx + 1, sy + 1), (6)

i
= ρi(sx , sy) + ρi (sx , sy + 1), (7)

i = ρi (sx , sy) + ρi (sx + 1, sy), (8)

i = ρi(sx , sy). (9)

As usual in DFT for one-component systems, the equilibrium condition is
δ�[ρa]

δρa(s)
= 0, (10)

from which the equilibrium density profile and grand potential are obtained once a matrix
realization V rand

ext is prescribed.
The average over different matrix realizations is performed subsequently. In practice we

use a two-dimensional lattice of 64 × 64 sites with periodic boundary conditions. A realization
of the external potential is generated by randomly placing matrix particles on the lattice:

V rand
ext (s) =

∑
s′∈M

Vam(s − s′), (11)

where M is a set of random lattice sites. Clearly, this yields a discrimination into forbidden and
allowed lattice sites. Then, for a given adsorbate fugacity za , the Euler–Lagrange equation (10)
is solved by a simple iteration procedure. From the converged solution both the grand potential,
β�, where β = 1/(kB T ), and the density of the adsorbate, ρa , are obtained. This procedure
is carried out multiple times and a subsequent average over the disorder is taken. We use 50
independent matrix realizations, which we find to be sufficient.
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3.2. Quenched–annealed density functional theory

Here we express the grand potential of the adsorbate in the presence of the quenched matrix
particles as

�[ρm; ρa] = Fid [ρa] + Fexc[ρm; ρa] +
∑
s∈Z2

ρa(s)[V misc
ext (s) − µa]. (12)

This functional is to be minimized only with respect to the adsorbate component,

δ�[ρm; ρa]

δρa(s)

∣∣∣∣
ρm

= 0, (13)

while the matrix density field, ρm(s), is kept fixed. We remark that the structure of
equations (12) and (13) is different from that of DFT for fully annealed systems, whether
pure or binary. Although the first and third term on the right-hand side of equation (12) also
appear in a one-component theory for ρa, the dependence of the excess free energy (second term
on the right-hand side of equation (12)) on ρm is absent in such a treatment (see equation (2)).
In the theory for a fully annealed (equilibrium) binary system, minimization would be required
not only with respect to ρa but also with respect to ρm .

Furthermore, the excess free energy in the current treatment has a fundamentally different
meaning to that of the equilibrium case. It includes not only the adsorbate–adsorbate
interactions but also the interactions between (annealed) adsorbate and (quenched) matrix
particles. It is an approximation for the free energy averaged over matrix realizations. As
an aside, it differs (in general, but not necessarily) from the free energy of a corresponding
equilibrium system, where the matrix is annealed rather than quenched.

Since (12) is a disorder-averaged grand potential, the meaning of the ρa(s) resulting
from equation (13) differs from that of the solution of equation (10): the latter represents the
equilibrium density profile for a given realization of the matrix and will be non-uniform even
in fluid phases; the former is an average density profile over matrix realizations and will be
uniform in fluid phases.

In [13] the functional Fexc[ρm; ρa] was obtained by first computing the exact excess free
energy of a continuum system in a 0D cavity (i.e. one that is so small that all particles inside
overlap) and then applying a general procedure to obtain a fundamental measure functional
in three dimensions. As equation (4) reflects, a similar procedure to pass from 0D to higher
dimensions exists for lattice models [12], which involves evaluating the 0D functional, �0, for
a certain set of 0D cavities (the diagrams (6)–(9)). The derivation of �0 for those cavities in
the presence of matrix particles and the subsequent construction of the functional is deferred
to the appendix. We quote here that the final functional for an ideal matrix has the form

Fexc[ρm; ρa] = kB T
∑
s∈Z2

[�0( m
;

a
) − �0( m

;
a
) − �0( m; a) + �0( m; a)],

(14)

where the weighted densities are defined in equations (6)–(9) and �0 is a function of the mean
numbers of matrix particles, ηm , and adsorbate particles, ηa , given by

�0(ηm; ηa) = (e−ηm − ηa) ln(e−ηm − ηa) + ηa + ηme−ηm . (15)

In what follows we will be concerned with homogeneous matrices, i.e. those for which
ρm(s) = constant. This allows us to evaluate the functional (12) and obtain analytical
results. Hence, as could already be anticipated from the overall structure, this approach is
computationally much simpler than that of the external potential method in section 3.1.
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(a) (b)

(c) (d)

Figure 2. The density profile of the hard square adsorbate in a porous medium. Bright (dark)
colours correspond to high (low) values of adsorbate density, ρa ; black squares indicate lattice sites
that are forbidden due to matrix particles. Fluid (a), (b) and columnar (c), (d) configurations are
shown. Adsorbate fugacities and matrix densities are: (a) za = 4, ρm = 0.003 91; (b) za = 4,
ρm = 0.050 78; (c) za = 16, ρm = 0.003 91; and (d) za = 16, ρm = 0.007 82. These snapshots
are from lattices with 32 × 32 sites; the results presented are obtained with 64 × 64 sites.

4. Results

4.1. Thermodynamics

We start by comparing, over a broad range of densities of both adsorbate and matrix particles,
the results from the QA DFT (section 3.2) with those from treating the matrix as an external
potential (section 3.1). This serves as a benchmark to assess the accuracy of the QA DFT.

As an illustration, we plot the adsorbate density profiles, ρa(s), in figure 2. For clarity we
used a smaller system with 32 × 32 sites. Fluid configurations for low (a) and moderate (b)
matrix densities are shown. As expected, the matrix causes inhomogeneities in the adsorbate
density profile. For small ρm this is only a weak perturbation, but for larger ρm a highly
irregular distribution results.

We first consider the change in grand potential due to the presence of the matrix. In
particular, we consider the change in grand potential per matrix particle, β[�(ρm) − �(ρm =
0)]/Nm , where Nm is the number of matrix particles, along a path of increasing ρm and fixed
fugacity of the adsorbate, za. In figure 3 results are shown for za = 0.2, 1, 4, 10, 20, 60 and for
matrix densities in the range ρm = 0–0.25. Were the interaction between matrix particles that
of hard bodies, ρm = 0.25 would correspond to close packing; the ideality, however, causes a
void structure with non-zero free volume. The agreement is remarkably good up to za = 10
(corresponding to moderate adsorbate densities) in the entire range of ρm . At and above this



Freezing in the presence of disorder: a lattice study 4701

0 0.05 0.1 0.15 0.2 0.25

m

0

1

2

3

4

5

6

7

 β
(Ω

−Ω
0)

/N
m

Figure 3. The change in grand potential, β[� − �(ρm = 0)]/Nm , due to the presence of matrix
particles as a function of matrix density ρm for prescribed adsorbate fugacities za = 0.2, 1, 4, 10,
20, 60. Solid curves are from the QA DFT; the symbols are from treating the matrix as an external
potential and averaging over explicit matrix configurations. Dashed curves depict the over-imposed
phase diagram of figure 5 (adapted to represent the change in grand potential versus ρm ).

value, deviations become more and more pronounced. Those occurring at low ρm are very
significant: they may reveal the inherent inaccuracy of the external potential method due to
the small system size.

Next we investigate the adsorbate density, ρa , for prescribed za and increasing ρm ; results
are shown in figure 4. The agreement is also good for za up to 10; above that value there are
deviations for high matrix densities, ρm > 0.1, where the QA DFT over-estimates ρa .

Despite the discrepancies between the two approaches, we should acknowledge that the
overall agreement is sufficiently good to take the QA functional seriously. Besides, we want
to stress that it is not clear a priori which of the two methods is more accurate. It will be
shown below by considering order parameters (figure 6) that considerable finite-size effects
are present in the external potential method. Those may partly account for the discrepancy. It
would be interesting to compare our results with those from computer simulations that would
serve as a benchmark.

4.2. Phase diagram

Having thus gained confidence in the QA DFT, we will use it to calculate phase behaviour,
which would be a challenging task with the external potential method. In the absence of
the matrix, the LFMT predicts a second-order transition from a fluid phase to a columnar
phase [12]. For small but non-zero ρm this continuous phase transition persists. In figure 5
the phase diagram is plotted as a function of ρa and ρm . For ρm = 0 the critical density and
fugacity are ρcrit

a = (3 − √
5)/4 = 0.190 98 and zcrit

a = (11 + 5
√

5)/2 = 11.0902 [12].
This result is compatible with that obtained by Bellemans and Nigam [18] using Rushbrooke
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Figure 4. The adsorbate density ρa inside a porous matrix of density ρm for different adsorbate
fugacities za = 0.2, 1, 4, 10, 20, 60. Solid curves indicate results from the QA DFT; symbols are
from treating the matrix as an external potential. Dashed curves depict the over-imposed phase
diagram of figure 5.
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Figure 5. The phase diagram of hard squares of density ρa in a matrix of freely overlapping squares
of density ρm . The solid curve indicates a continuous phase transition from fluid to columnar; the
transition density ρcrit

a is given by equation (18). The dashed curve indicates close packing, given
by equation (20). Both curves meet at ρ∗

m = 0.145 80, ρ∗
a = 0.139 53; for larger ρm the fluid is the

only stable phase.

and Scoins’ method [23]. They also found a second-order transition but at slightly different
parameters, namely ρcrit

a = 0.201 75 and zcrit
a = 17.2878.
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Figure 6. The columnar order parameter qc of equation (21) computed for varying matrix density
ρm and at constant adsorbate fugacity (za = 20 and 60). Curves are obtained from the QA density
functional (top za = 60; bottom za = 20) and stars (za = 60) and pluses (za = 20) are the values
computed with the random matrix approach averaged over 50 matrix realizations. Notice the strong
finite-size effect in the fluid regions (where qc should vanish).

The transition to a columnar phase can be studied by particularizing the functional (14) to
a density profile which is uniform along columns that alternately take values ρ1 and 2ρa − ρ1.
The fluid phase corresponds to ρ1 = ρa . The result is the free-energy density

β FV −1 = ρ1

2
ln ρ1 +

(
ρa − ρ1

2

)
ln(2ρa − ρ1) − ρa + �0(4ρm; 4ρa)

− �0(2ρm; 2ρa) − 1
2�0(2ρm; 2ρ1) − 1

2�0(2ρm; 4ρa − 2ρ1)

+ 1
2�0(ρm; ρ1) + 1

2�0(ρm; 2ρa − ρ1), (16)

where V is the number of lattice sites (i.e. the system ‘volume’). Minimizing with respect to
ρ1 leads to a third-degree polynomial in ρ1, one of whose roots is ρa (corresponding to the
fluid phase); of the other two, one is

ρ1 = ρa +

√
(e−2ρm − 2ρa)(ρa − ρcrit

a )( 3
2 e−ρm − ρcrit

a − ρa)

2ρa + (1 − e−ρm )e−ρm
(17)

and the other one 2ρa − ρ1, where

ρcrit
a = 3

4 e−ρm (1 − √
1 − (4/9)e−ρm ). (18)

These two roots are real whenever ρcrit
a � ρa � e−2ρm /2 (the upper bound is never reached

because it is higher than the close-packed density; cf equation (20) below); this means that
alternating columns have different densities, thus ρcrit

a is the critical density of the continuous
fluid–columnar transition.
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Isofugacity curves are obtained as

za = (e−2ρm − 2ρa)
2
(e−2ρm − 2ρ1)

2
ρ1

(e−4ρm − 4ρa)
4
(e−ρm − ρ1)

, (19)

where ρ1 = ρa for ρa < ρcrit
a and ρ1 is given by (17) for ρa � ρcrit

a ; thus zcrit
a results from

substituting ρ1 = ρa = ρcrit
a in this expression. As ρa � ρ1 < 2ρa and e−ρm � e−4ρm , on

increasing ρa the fugacity za diverges at

ρcp
a = exp(−4ρm)/4, (20)

the close-packed density. This result has a very clear physical meaning: 4ρa is the packing
fraction of the adsorbate particles and exp(−4ρm) is the free volume left by the matrix particles;
according to (20), close packing is reached when both are equal. This result is expected if
the surface is negligible with respect to volume, so the true close-packed density must deviate
from this prediction whenever the matrix consists of an ensemble of relatively small cavities.

The two curves ρcrit
a (ρm) and ρ

cp
a (ρm) meet at ρ∗

m = 0.145 80. This means that, for
ρm > ρ∗

m , the columnar phase ceases to exist and only the fluid phase is stable. In order
to understand the meaning of this special value of ρm we can relate it to the percolation
threshold of the matrix. We do not know the precise value for this threshold, but we can
check that of similar models: for 2 × 2 hard squares the estimated site percolation threshold
is ρ = 0.155 [24], while a quarter of that of an ordinary lattice gas (squares occupy four sites)
is ρ = 0.148 [25]. Both values are very close to ρ∗

m . This suggests that the disappearance
of the fluid–columnar transition at this matrix density is associated with the splitting of the
free volume left by the matrix into a disconnected ensemble of meso- and microscopic cavities
within which the adsorbate is confined. Further investigations of the true percolation threshold
for this particular matrix would be needed to settle this point.

Although we have not attempted to calculate the phase diagram using the external potential
method, we have been able to check the phase that the system exhibits with the help of two
order parameters. If we divide the lattice into four sublattices—such that sublattice 1 is formed
by all sites, s, with even sx and even sy ; sublattice 2 by those with even sx and odd sy ; sublattice
3 by those with odd sx and odd sy , and sublattice 4 by those with odd sx and even sy—and
compute the average of the density in every sublattice, qi (i = 1, 2, 3, 4), then the order
parameters are defined as

qc = 1

2ρa

√|q1 − q3||q2 − q4|, (21)

qs = 1

4ρa
|q1 + q3 − q2 − q4|. (22)

Clearly, qc is non-zero only in a columnar phase while it vanishes in the fluid and solid phases,
and qs is non-zero only in a solid phase while it vanishes in the fluid and columnar phases.
Normalization is chosen so that 0 � qc,s � 1. These order parameters are also averaged over
matrix realizations.

The first observation to be made is that both order parameters are affected by strong finite-
size effects, so that they fluctuate around 0.1 when they should vanish. Apart from that, qs

is never found to increase anywhere in the phase diagram, while qc rises rather close to the
points where the fluid–columnar transition is predicted (see figure 6). The precise values of
qc in the columnar phase deviates from the analytical curves derived from the QA functional,
but the region where this occurs is such a narrow gap in ρm and contains so few points that it
is hard to tell how much of this deviation is due to the strong finite-size effect.

To give an illustration of what an ordered phase in a random matrix looks like, we present
density profiles for the columnar phase in figures 2(c) and (d). In figure 2(c) the columns are
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horizontal. Matrix particles generate a disturbance, mainly along the columns, which decays
with distance.

We have confirmed the prediction of the external potential method that the solid phase is
less stable than the columnar phase. To this purpose we have carried out an analysis similar
to that performed for the columnar phase, but for a solid-like density profile. We have found
that, for any 0 � ρm � ρ∗

m , the solid—like the columnar—is more stable than the fluid for
densities ρa > ρcrit

a , but its free energy is larger than that of the columnar all the way up to
close packing.

The location of the columnar phase with the help of the order parameters has allowed
us to check for the existence of hysteresis. As in [3–5], for a given matrix density in
the range 0 < ρm < ρ∗

m we have started off from a converged density profile at a low
fugacity za and used it as the initial configuration to converge the density profile at a slightly
higher za . We have iterated this procedure, making sure to be well in the columnar phase,
and then repeated the whole process by decreasing za . For the convergence criterion from
iteration step n to n + 1 we used maxi |ρ(n+1)

i − ρ
(n)
i | < 10−5. (Notice that Kierlik et al used

(1/N)
∑

i (ρ
(n+1)
i −ρ

(n)
i )2 < 10−8, which is milder than ours: the square root of this is less than

10−4 and there is an average over lattice sites; we take the worst case instead.) We performed
this analysis at a single value of ρm = 0.03 where we are certain that, by increasing sufficiently
the fugacity, the columnar phase is stable. We find that the two curves ρa(za) thus obtained
coincide, showing no sign of hysteresis. In the light of the study carried out in [3–5], this may
be justified by the continuous character of the fluid–columnar transition of this model.

One final remark concerns the close packing. In figures 3 and 4 we have over-imposed
the phase diagram obtained from the QA functional. Although the higher fugacity considered
is za = 60, it is very clear that the close packing predicted by equation (20) strongly over-
estimates that obtained from the external potential approach (for a few large values of ρm we
have increased za up to 1000; the resulting values are very close to those obtained for za = 60—
still very far from the close packing). It is not difficult to understand what happens. For (20) to
hold, it is necessary that surface contributions are negligible compared to bulk contributions.
But for large ρm the fluid is confined in an ensemble of (relatively small) cavities, so both
contributions are comparable and (20) becomes a bad estimate for the close-packed density.
The percolation threshold of the matrix is then an upper bound for the limit of validity of the
QA functional, at least for high adsorbate densities.

5. Conclusions

In conclusion, we have considered the freezing of a hard-body lattice model in a porous
medium. The latter is modelled as immobilized configurations of freely overlapping particles
(or others—see appendix) which have the same size as the adsorbate particles. We have
combined two recent density functional approaches to obtain the thermodynamics of the
system via two routes. First, we treat the matrix as an external potential and minimize the
free energy explicitly for many such matrix realizations. Subsequently, an explicit average
over the different matrix realization is performed. The second route is direct via a DFT for
mixtures of quenched and annealed species and gives the average free energy directly. The
functional is constructed using the FMT recipe to generate a higher-dimensional theory from
the 0D limit—an idealized situation where the many-body problem can be solved exactly. The
second approach is computationally much simpler. We compare results for the free energy and
the equation of state from both approaches and find reasonable agreement over a large density
regime. Some deviations are apparent at high densities, but the overall agreement is quite good.
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We note that the present combination of the lattice theory with the QA DFT indicates that
the FMT is a flexible toolbox, where different components can be combined systematically.

For the present model we have not found any indications for the occurrence of hysteresis
in sorption curves. We believe this is related to the fact that the model undergoes a continuous
phase transition. The principal route that we followed in this work is applicable to other
(also three-dimensional) lattice models [11, 12] that display first-order phase transitions. It
would be interesting to address questions like hysteresis and the relation with the occurrence
of metastable states in future work.
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Appendix. Construction of the quenched–annealed fundamental measure functional

The present lattice case allows us to make the construction of a QA fundamental measure
functional more explicit than in the continuum case [13]. In the latter, one uses idealized 0D
cavities, represented by delta-spike density distributions. On the lattice, however, one is able
to treat cavities with varying shapes extending over several lattice sites (not just a single lattice
site). Such cavities are still 0D, in the sense that placing two particles at arbitrary sites within
the cavity induces pair overlap. We are led to consider such cavities due to the particular
structure of the lattice fundamental measure functional (4): weighted densities are nothing but
the probability of finding a fluid particle in the cavity defined by the diagrams, given that the
density profile of the fluid is ρa(s). In the following we make this fully explicit. This will
allow us to also treat other pair interactions representing, alternatively to the ideal case, point
and hard square matrix particles.

So let us start by considering a particular 0D cavity for the adsorbate, C. As in [13], we
must determine p(C) = �m(C)−1, the probability that the cavity is devoid of matrix particles,
where �m(C) is the grand partition function of the matrix particles in the cavity C. A 0D
cavity for the adsorbate does not mean a 0D cavity for the matrix particles: due to the different
interaction potential, C may allocate more than one matrix particle at the same time. Once
p(C) is determined, the grand potential of the adsorbate in the cavity will be given by

β�0d = −p(C) ln[1 + za(C)], (A.1)

where za(C) ≡ ∑
s∈C za(s), with za(s) = zae−βVext (s) the ‘local’ fugacity of the adsorbate.

From this,

ρa(s) = −za(s)
δβ�0d

δza(s)
= p(C)

za(s)

1 + za(C)
, (A.2)

thus

za(C) = ρa(C)

p(C) − ρa(C)
(A.3)

where ρa(C) ≡ ∑
s∈C ρa(s), and

β�0d = −p(C) ln p(C) + p(C) ln[p(C) − ρa(C)]. (A.4)
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Therefore the excess free energy of the 0D cavity will be given by

β F0d
exc = β�0d +

∑
s∈C

[ρa(s) ln za(s) − ρa(s) ln ρa(s) + ρa(s)] (A.5)

= �0(p(C); ρa(C)), (A.6)

where

�0(p(C); η) ≡ η + [p(C) − η] ln[p(C) − η] − p(C) ln p(C). (A.7)

As in equation (4), the functional will be given by

Fexc[ρm; ρa] =
∑
s∈Z2

[�0(p( );
a
) − �0(p( );

a
) − �0(p( ); a) + �0(p( ); a)].

(A.8)

The diagrams used as arguments of p are meant to denote the 0D cavities formed by the lattice
nodes defining the corresponding weighted densities, cf equations (6)–(9).

It only remains to determine p(C) in terms of ρm(s) to complete the description. For that
purpose we must compute �m(C) for the three types of interaction potentials between matrix
particles:

(a) ideal: Vmm(s) = 0, (A.9)

(b) points: Vmm(s) =
{

∞ if sx = sy = 0,

0 otherwise,
(A.10)

(c) squares: Vmm(s) =
{

∞ if |sx | < 2 and |sy | < 2,

0 otherwise.
(A.11)

In the ideal case (a),

�m(C) = ezm(C), ρm(s) = zm(s), (A.12)

and therefore

p(C) = e−ρm (C). (A.13)

In the points case (b),

�m(C) =
|C|∑

N=0

zN
m Z N (C), (A.14)

where Z N (C) is the partition function of N matrix particles in the cavity C made of |C| lattice
sites. If we order these sites from 1 to |C|, then this partition function is easily expressed as

zN
m Z N (C) =

∑
s1<s2<···<sN

zm(s1)zm(s2) · · · zm(sN ), (A.15)

hence

�m(C) =
∏
s∈C

[1 + zm(s)]. (A.16)

Now, from this grand partition function,

ρm(s) = zm(s)

1 + zm(s)
, zm(s) = ρm(s)

1 − ρm(s)
; (A.17)

therefore

p(C) =
∏
s∈C

[1 − ρm(s)] = e−ρ∗
m(C), (A.18)
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where we have made clear that p(C) has the same expression as in the ideal case in terms of
the new densities ρ∗

m(s) ≡ − ln[1 − ρm(s)]. This makes sense if we take into account that
the configuration of the ideal case corresponds to the configuration of this case with multiple
occupancy of the sites. So, despite its higher complexity, this case maps trivially to the ideal
case.

Finally, for the squares case (c), matrix and adsorbate particles have the same interaction
potential, so

�m(C) = 1 + zm(C), ρm(s) = zm(s)

1 + zm(C)
, zm(C) = ρm(C)

1 − ρm(C)
, (A.19)

and therefore

p(C) = 1 − ρm(C). (A.20)

Substituting in (A.8) the expressions of p(C) obtained for the two nontrivial cases (a)
and (c), we end up with the expression (14), where �0(ηm; ηa) is given by (15) for the ideal
case (a) and by �0(ηm; ηa) = (1 − ηm − ηa) ln(1 − ηm − ηa) + ηa + ηm − (1 − ηm) ln(1 − ηm)

for the squares case (c).
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