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Hard sphere fluids in random fiber networks
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We investigate an annealed hard sphere fluid in contact with a rigid, random fiber network modeled
by quenched, vanishingly thin hard needles. For this model a quenched-annealed density functional
theory is presented that treats arbitrary spatially inhomogeneous situations, in particular anisotropic
and spatially varying needle distributions. As a test case we consider the structure of the hard sphere
fluid at the surface of an isotropic fiber network and find good agreement of the theoretical density
profiles with our computer simulation results. For high needle densities the surface acts like a rough
impenetrable wall. In the limit of infinite needle density the behavior near a smooth hard wall is
recovered. Results for the partition coefficient agree well with existing data. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1588993#
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I. INTRODUCTION

The properties of fluids adsorbed in porous media can
drastically different from those of the same substance
bulk.1 Among the wide range of disordered adsorbents
particular class are aggregates of mesoscopic fibers, suc
those present in paper and in colloidal suspensions.2,3 Due to
their geometrical properties the solid volume fraction of fib
networks can be remarkably low. Experimentally, susp
sions of rods can be prepared such that the particles are
tically immobilized ~e.g., by sedimentation or coagulatio!
producing a random network of fibers. The resulting gels
clusters of colloidal rods or fibers were found to exhibit bo
homogeneous and heterogeneous~i.e., fractal! structures.4

One prominent material where the structure of the rod
has been investigated is aqueous dispersions of collo
boehmite.5 Other examples of gels of fairly well-defined co
loidal rods are iron hydroxide rods, clay particles, and im
golite rods~see Ref. 4!. Further very promising particles ar
etched silicon rods.6

Fiber networks provide genuine model porous me
that can be used to address various relevant physical q
tions like the self-diffusion and sedimentation of~tracer!
spheres.7 Particularly striking is the efficiency of randoml
distributed thin rods to cage a test sphere.8 Sphere caging is
relevant for the random dense sphere packing.9 Dense rod
packing has been investigated and a random contact equ
was found to be relevant,10 and packings of spherocylinder
were simulated recently by mechanical contraction.11 Fur-
thermore, the spatial statistics of pore sizes in stochastic fi
networks was investigated.12,13

Experimental rod aspect ratios~of length-to-thickness!
can be as high as 25 for silica coated boehmite rods, and

a!On leave from: Institut fu¨r Theoretische Physik II, Heinrich-Heine
Universität Düsseldorf, Universita¨tsstraße 1, D-40225 Du¨sseldorf, Ger-
many; Electronic mail: mschmidt@thphy.uni-duesseldorf.de
3490021-9606/2003/119(6)/3495/6/$20.00

Downloaded 05 Aug 2003 to 131.211.32.45. Redistribution subject to A
e
n
e
as

r
-

ac-

r

l
al

-

a
es-

ion

er

he

rod densities are typically well below the Onsager nemat
isotropic transition.3 Under equilibrium conditions~i.e., such
that rods are mobile! also mixtures have been considere
e.g., silica spheres3 were added and also immersed in susp
sions of rod-like fd bacteriophage viruses.14 For a simple
theoretical model of hard spheres and vanishingly t
needles the phase behavior was obtained with comp
simulations and perturbation theory.15 Fluids in contact with
a single16,17 and several strictly aligned18 rod-like obstacles
were treated theoretically finding intriguing adsorptio
behavior.18 A molecular model of adsorption in a semiflex
ible porous network was simulated19 taking into account
structural response of the adsorbent.

The pore size distribution in a random fiber network w
derived by Ogston in his classical work20 ~see Ref. 21 for
brief personal recollections!. This solution rules the adsorp
tion probability of an infinitely diluted hard sphere fluid in
bulk fiber network. In the present work we are interested
the adsorption of a dense fluid in a random network of ro
We treat an annealed hard sphere fluid immersed i
quenched network of vanishingly thin hard needles. T
model can be viewed as the quenched-annealed~QA! analog
of the above equilibrium sphere-needle mixture.15 In particu-
lar we address the question how the geometry of
quenched particles affects the properties of such a networ
act as an adsorbent.

We use density-functional theory~DFT!,22,23 which is a
powerful tool to study inhomogeneous fluids. In particul
Rosenfeld’s fundamental measure theory~FMT! for hard
sphere mixtures24 is known for its high accuracy~for very
recent work see, e.g., Refs. 25 and 26!. Rosenfeld general-
ized his approach to nonspherical particles,27,28 albeit with-
out incorporating the exact low-density~second virial! limit.
Introducing angular convolutions into the theory enabled t
exact limit to be recovered in binary mixtures of hard sph
and hard rods with either ideal~vanishing!29 or residual ex-
cluded volume interactions~Onsager limit!.30 Using this
5 © 2003 American Institute of Physics
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theory interesting orientational order at the free fluid–flu
interface between demixed phases was found,30 and later
supported by computer simulation results.31

To investigate the response of fluids to external confi
ment there are two main theoretical routes: First, one re
on idealized pore geometries, i.e., slit-like, cylindrical,
spherical pores with smooth walls.32 The insights gained her
are then related to the behavior in random media by ide
fying typical pore sizes that are characteristic of the am
phous void structure. An example of this strategy is Fanti a
Glandt’s investigation of the partitioning of spherical pa
ticles into fibrous matrices16 where the problem of a singl
fiber is solved explicitly and then related to a network
fibers via a superposition approximation. The second
proach is to model the porous medium by immobilized co
figurations of model fluids. Then an adsorbate componen
equilibrated~i.e., annealed! in the presence of the model po
rous medium, that acts like an external potential on the
sorbate. One refers to such models as quenched-ann
~QA! mixtures. While the first approach can be viewed a
raison-d’être of DFT, the second route was primarily fo
lowed by use of integral equation theory and application
the replica trick, e.g., Donget al.derived the inhomogeneou
replica Ornstein–Zernike equations to treat problems like
adsorption near a plane boundary of a disordered matrix33

For QA mixtures a DFT framework was propose
recently.34 The benefit of this QA DFT is that the disorder
treated on the level of the one-body density distribution
the quenched species, rather than as a complicated ext
field ~like, e.g., in Ref. 18!. The one-body density has~in
typical situations! a much simpler spatial dependence th
the corresponding external potential that is exerted by
matrix particles on the adsorbate. As an illustration we
mark that in a~bulk! matrix that is uniform on average ove
the disorder, the matrix one-body density is just a consta

In this work we propose a QA DFT for the mixture o
annealed spheres and quenched needles and test it a
our computer simulation results. As a generic inhomo
neous situation we consider the surface of an isotropic ne
network. We bring a dense hard sphere fluid in contact w
this surface and investigate the structure that is built up a
response to the quenched needles. Comparing theoretica
simulated results we find that the plateau values away f
the matrix surface deviate somewhat, but the detailed os
latory structure at the interface is captured very well by
DFT. For high needle densities the network becomes pra
cally impenetrable for the spheres, and the surface acts
rough wall. Within the QA DFT the surface roughness
treated very easily, in particular it is not necessary to treat
lateral structure of the surface explicitly. Hence the com
tational effort is similar to that for treating a smooth wall. W
find that the surface roughness decreases with increa
needle density and effectively a hard smooth wall is obtai
in the limit of infinite needle density. Furthermore we che
that our results for the partition coefficient compare reas
ably to previous Monte Carlo results.17

The remainder of the paper is organized as follows:
Sec. II we define the model of hard spheres in a random fi
network more explicitly. Section III is devoted to an outlin
Downloaded 05 Aug 2003 to 131.211.32.45. Redistribution subject to A
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of the density functional theory. Section IV gives details
the computer simulations. Results are presented in Se
and we conclude in Sec. VI.

II. THE MODEL

We consider annealed hard spheres~speciesS) of diam-
eter s immersed in a quenched matrix of vanishingly th
needles~speciesN) of lengthL. The model is characterize
by the ~three! pair interactionsVi j between speciesi , j
5S,N. Due to their vanishing thickness~and hence vanish
ing pair excluded volume! the needles behave as if bein
ideal, hence interactions between needles vanish for all s
ration distances and orientations,VNN50. The interaction
between spheres isVSS(r )5` if the separationr between
sphere centers is less thans, and zero otherwise. The pa
interaction between a sphere and a needle isVSN5`, if both
overlap, and zero otherwise.

As thermodynamic variables we use the sphere pack
fraction h5ps3rS/6, and a dimensionless needle dens
rNs3, wherer i ,i 5S,N is the number density of speciesi .
The size ratioL/s is a further~geometric! control parameter.
In general the one-body density distributions will be inhom
geneous. In the case of spheres, dependence is on space
r , hencerS(r ). For needles the dependence is also on ori
tation V ~a unit vector!, hencer~r ,V!.

As a generic inhomogeneity we will consider the surfa
of a needle matrix modeled as a step-function density dis
bution,

rN~r ,V!5rN
inQ~2z!, ~1!

wherez is the spatial coordinate perpendicular to the mat
surface,rN

in is the needle density ‘‘inside’’ the matrix, and w
consider the~simplest! case where the needles are isotro
cally distributed. See Fig. 1 for an illustration of the situ
tion.

III. DENSITY FUNCTIONAL THEORY

We seek a theory to determine the adsorbate~sphere!
density distributionrS(r ) ~as well as associated thermod
namic quantities and correlation functions! for given one-
body density distribution of needles,rN(r ,V). As the
needles are treated as being ideal,rN(r ,V) can be trivially
obtained from a corresponding external potential acting

FIG. 1. Model of an adsorbate fluid of hard spheres with diameters in a
porous matrix of quenched, vanishingly thin hard needles of lengthL. The
needle orientations are assumed to be isotropically distributed and
midpoints to be confined to the halfspacez,0. This generates a semi
infinite porous matrix with surface perpendicular to thez axis and located at
z50; the model considered is three-dimensional.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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needles~before quenching!. Within a DFT framework and
following Ref. 34 we write the grand potential of the prese
QA mixture as

V@rS ;rN#5kBTE drrS~r !@ ln~rS~r !LS
3!21#

1Fexc@rS~r !;rN~r ,V!#

1E dr rS~r !@VS
ext~r !2mS#, ~2!

wherekB is the Boltzmann constant,T is absolute tempera
ture, LS is the thermal wavelength,mS is the chemical po-
tential of spheres, andVS

ext(r ) is a deterministic~nonrandom!
external potential acting on the spheres. The first term on
right-hand side of Eq.~2! is the ideal gas free energy func
tional for spheres; the second term,Fexc, is the excess free
energy describing the contributions from interparticle int
actions. In the present QA case it contains the interacti
between adsorbate particles~spheres and spheres!, as well as
contributions from interactions between adsorbate and
trix particles~spheres and needles!.

To obtain the adsorbate density distribution,rS(r ), in a
given needle matrix,rN(r 8,V), the minimization condition
is

dV

drS~r !
U

rN(r8,V)

50, ~3!

where rN(r 8,V) is treated as a fixed input quantity. No
that, in contrast to the case of an equilibrium~fully annealed!
binary mixture, the minimization is to be performed on
with respect to the annealed component.

In order to obtain a working theory an approximation f
the unknown quantity in Eq.~2!, the Helmholtz excess fre
energy functionalFexc, is required. Recently, this was ac
complished for spherical particles in a geometrical fram
work. This provides a means to generate a three-dimensi
excess free energy functional from an idealized strongly c
fined situation, the zero-dimensional~0D! limit. The 0D limit
can be envisaged as a cavity situation that leads to stro
localized particle positions. The simplification that is due
the localization enables one to solve the many-body prob
exactly and to obtain the corresponding 0D free energy.
the present case, it was shown that for a binary system
hard spheres~one annealed and one quenched species!, Fexc

is ~practically! equal to the fully equilibrated case with on
annealed species. The only difference is a shift by a triv
constant, Fexc

QA@r0 ,r1#5Fexc
EQ@r0 ,r1#2Fexc

EQ@r0#, where the
subscript 0~1! refers to the quenched~annealed! component.
Note that the presence of2Fexc

EQ@r0# on the right-hand side is
necessary to fulfillFexc

QA@r0 ,r1→0#50, i.e., the~over disor-
der averaged! free energy vanishes in the absence of ads
bate particles. However, this does not change the minim
tion condition, as the functional derivative is only perform
with respect to theannealedcomponent, cf. Eq.~3!.

For the present case of quenched needles and ann
spheres an additional simplification arises, because
needles behave as ideal particles due to their geometry.
excess free energy of an ideal gas of rotators vanishes, h
Downloaded 05 Aug 2003 to 131.211.32.45. Redistribution subject to A
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we find that the FMT approximation forFexc is equal to the
excess free energy of the fully annealed sphere-needle
ture given in Ref. 29. The main features of this theory a
density-independent, geometrically motivated weight fun
tions that are used to build weighted densities by convo
tions with the bare one-body densities. The excess free
ergy is then obtained as an integral that runs over space
orientation, the integrand being an excess free energy den
that is a function of the weighted densities. For explicit e
pressions we refer the reader directly to the~compact! pre-
sentation in Ref. 29; many more technical details and exp
calculations in simple geometries can be found in Ref. 3

IV. COMPUTER SIMULATIONS

In order to assess the quality of the DFT results we h
carried out canonical Monte Carlo~MC! simulations. We
used particle numbersMS5MN5128, 512, and a cubic
simulation box with lengthL and periodic boundary condi
tions. The size ratio was fixed toL/s52. Needle configura-
tions were generated by randomly and isotropically plac
needles in the left (2L/2,z,0) half of the simulation box.
Due to the periodic boundary conditionstwo matrix surfaces
are generated. As an illustration we display in Fig. 2 a ray-
traced snapshot from the simulation. For the state points c
sidered the two surfaces are not completely decoupled, he
we merely deal with a periodic succession of slabs fil
with needles and slabs free of needles. Hence the ‘‘free s
has thicknessL/2 and the ‘‘matrix slab’’ has also thicknes
L/2. For MS5128 and h50.15, 0.3, the box lengths
are L/s57.644 91, 6.067 77, respectively. ForMS5512,
and h50.15, 0.3 the box lengths areL/s512.1355,
9.631 98, respectively. As we consider equal numbers
particles, MS5MN , the relation between densities isrN

in

FIG. 2. Snapshot from computer simulation of the adsorbate hard sp
fluid in contact with a random fiber network. The fiber network is mode
as randomly and isotropically distributed vanishingly thin hard need
Only the left part of the~periodic! simulation box is filled with needles; this
acts as a model for the surface of a porous medium. The size ratio of ne
lengthL and sphere diameters is L/s52; particle numbers areMS5MN

5512.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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52hS /(s3p/6), where the factor 2 comes from the fact th
only one half of the box is occupied by needles; hen
rNs350.572 958, andrNs351.145 92.

In the starting configuration all spheres are placed in
half-spacez.0, then half of the total number of particl
moves are discarded for equilibration and subsequently
are collected for the sphere density profile. Typical r
lengths are 106 MC moves per particle and averages over
disorder are taken by using about 100 matrix realizations
the case ofh50.3, MS5128 we performed 107 MC moves
for 100 independent needle configurations totaling in 19

MC moves per particle.

V. RESULTS

To obtain the same situation as in the simulation
imposed the same periodicityL on the DFT profiles. The
sphere packing fraction was matched to that in
simulation by adjusting the sphere chemical potent
mS in Eq. ~2!, such that the integrated sphere dens
corresponds to the simulated packing fraction, i
h5(ps3/6)L21*2L/2

L/2 dzrS(z), whereh50.15,0.3.
In Fig. 3 we show results for the smaller system w

MS5MN5128 particles. Forh50.15 there occurs a smoot
crossover from the plateau value inside (z,0) to the plateau
value outside (z.0) the matrix. There is almost perfec
agreement between the simulated and the theoretical de
profiles. Forh50.3 there occur oscillations both outside a
also inside the matrix, albeit smaller in amplitude inside. T
wavelength of oscillations is of the order ofs, hence caused
by sphere packing effects. The shape of the theoretica
sults outside is very similar to the simulation result, howev
it is shifted toward lower density. The opposite behavior
found inside the matrix, where the theoretical profile li
above the simulation result. Part of this may be due to s
insufficient equilibration in the simulations, despite the co
siderably large number of MC moves performed.

In Fig. 4 we show results at the same state points, but
a larger system withMS5MN5512 particles. Forh50.15
again the agreement between simulation and theory is
good. Forh50.3 there is an increased number of laye

FIG. 3. One-body density distribution of spheres,rS(z)s3, as a function of
the ~scaled! distance from the matrix surface,z/s. Results from DFT~solid
lines! and MC simulations~dashed lines! are shown forh50.15, 0.3~from
bottom to top!. The particle numbers in the simulated system areMS5MN

5128.
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outside. The theory predicts weak oscillations inside the m
trix, those cannot be identified from the simulation profiles
the statistical uncertainties being too large.

Having gained confidence in the theory, we conside
single surface of the fiber network, hence consider the c
where the needles are distributed homogeneously and is
pically in the halfspacez,0. We bring this surface into con
tact with a hard sphere fluid of bulk packing fractionh
50.4 at z→`. The size ratio is, as before, fixed toL/s
52. For needle densityrNs3510 practically no spheres ca
enter inside the matrix, andrS(z,0) vanishes on the scal
of the plot, Fig. 5. The behavior ofrS(z) near the surface
0,z,s/2, is reminiscent of that of the hard sphere fluid
a soft repulsive wall. For largerz typical oscillations that
decay withz are observed. Those possess a small amplitu
given the relatively high sphere packing fraction. Increas
the needle density~results forrNs35100, 1000, 10 000 are
shown in Fig. 5! gradually shiftsrS(z) to largerz and in-
creases the amplitude of the oscillations. These effects ca
attributed to the denser, more ‘‘hairy’’ needle structure at
surface. It is evident that in the limitrN→` the situation of
an effective hard wall is encountered. The position of t
effective hard wall is such thatrS(z) drops to zero atz
5(L1s)/2 ~for the present size ratioz51.5s), which is the
limiting distance where spheres touch needles~those with
orientation strictly perpendicular to the surface!.

FIG. 4. Same as Fig. 3, but for larger systems withMS5MN5512 particles.

FIG. 5. Theoretical results for the density profilesrSs3 as a function ofz/s
from DFT for h50.4, L/s52, andrNs3510, 100, 1000, 10 000~from left
to right!. Also shown is the result at a hard smooth wall~dashed line!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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We emphasize that the high needle densities consid
here are somewhat artificial and only allowed by the pres
idealization of vanishing particle thickness. Networks
more realistic fibers with small, butfinite thickness posses
an upper bound in density for random isotropic packings.10,11

This upper bound was estimated asrNL2Dp/4'5.4, where
D is the rod thickness.10 In experimental realizations aspe
ratios are typically limited11 to L/D,100. If we assume this
boundary ~and L/s52) then realistically ~about! rNs3

,100. So the higher densities should be seen merely a
idealized crossover to the smooth hard wall behavior prov
ing a convenient check for the theory.

We finish with a discussion of the adsorption of the ha
sphere fluid deep inside the fiber network, i.e., away from
surface. The hard sphere fluid outside the matrix acts a
reservoir, and we denote its packing fraction byh r . We seek
to obtain the corresponding equilibrium sphere packing fr
tion h inside the matrix. Applying the DFT to constant de
sity fields we find that the free energy per system volume

bF5rS~ ln~rSLS
3!21!1bFHS~h!

1rNS 2 ln~12h!1
3Lh

2s~12h! D , ~4!

whereb51/kBT, andFHS is the excess free energy dens
in the Percus–Yevick compressibility~and scaled-particle
theory! approximation, given by

bFHS5
9h2~22h!

ps3~12h!2 2
6h

ps3 ln~12h!. ~5!

Then the sphere chemical potential is obtained bymS

5]F/]rS . Clearly, the situation is determined by chemic
equilibrium of spheres outside and inside the matrix, he
we solvemS(h,rN)5mS(h r ,rN50) for h onceh r and rN

are prescribed. This is an easy numerical task. Before
senting results for high packing fractions we investigate
behavior for h→0. It is straightforward to show that th
leading order in this limit is bmS5 ln(rSLS

3)1prNs3(2
13L/s)/12. This is equivalent to Ogston’s exact result,20 i.e.,
the free volume fraction of a sphere in the needle matrix
obtained as the ratio of fugacitiesrSLS

3/exp(bmS)
5exp(rNESN), where ESN is the pair-excluded volume be
tween sphere and needle, given asESN5ps3/61pLs2/4.
~In Ref. 20 the derivative with respect tos is given.! We next
turn to the case of a dense adsorbate.

A common measure is the partition coefficient, that
defined as the ratio of adsorbed density and that in bulkK
5h/h r . We first consider the case of infinitely long needle
L/s→0, where benchmark results exist in the literature.16,17

In Fig. 6 we plotK as a function ofh r for scaled needle
densitiesrNLs250.1, 0.5, 1, 2, 3. For all densities consi
eredK is a monotonically increasing function ofh r , hence
the partitioning decreases~i.e., the densities in the networ
and in bulk become more similar! with increasing adsorbat
density. Clearly the partitioning increases for denser ma
ces, i.e., with increasingrNs3. Also shown in Fig. 6 are the
MC simulation results of Fanti and Glandt.16 Reasonable
agreement with the current theoretical curves can be
served. Deviations exist for highh r , where the theoretica
Downloaded 05 Aug 2003 to 131.211.32.45. Redistribution subject to A
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curves overestimate the MC results forK. This effect, that
the DFT gives slightly too weak partitioning, was also app
ent in the plateau values of the inhomogeneous density
files above. The agreement of our results with the MC data
Ref. 17 and that of the results from single-fiber superposit
approximation of Ref. 16 is comparable, although the curr
approach fares somewhat better in predicting the curva
correctly, especially at high matrix densities.

We return to the case of fibers with finite length a
display results in Fig. 7 forK as a function ofh r for size
ratio L/s52 and over a broad range of densities,rNs3

50.1, 0.2, 0.5, 1, 2, 5, 10. For high needle densities rema
able crossover behavior is observed. ConsiderrNs355,
where for small packing fractions (h,0.1) practically no
spheres will enter, but forh.0.2 a pronounced increase wit
h r occurs. Using such a porous medium as an efficient fi
for the hard sphere fluid would require one to keep the r
ervoir fraction below this crossover region.

It turns out that a natural measure for the needle den
is rNESN. For the needle densities above corresponding

FIG. 6. Partition coefficientK5h/h r of spheres of packing fractionh in the
random fiber network in chemical equilibrium with a pure hard sphere r
ervoir of packing fractionh r for size ratioL/s5` and scaled needle den
sitiesrNs2L50.1, 0.5, 1, 23~from top to bottom!. Results from the current
theory ~solid lines! are compared to MC simulation data of Ref. 17~sym-
bols! and the single-fiber superposition approximation of Ref. 16~dashed
lines!.

FIG. 7. Same as Fig. 6 but for size ratioL/s52 and needle densities
rNs350.1, 0.2, 0.5, 1, 2, 5, 10~solid lines, from top to bottom!. For
comparison also the corresponding results forL/s50 and L/s5` are
shown; densities are such that the needle density times the sphere-n
pair excluded volume,rNESN , is the same as for the curves forL/s52.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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merical values arerNESN50.209 44, 0.418 879, 1.0472
2.0944, 4.188 79, 10.472, 20.944. We now change the
ratio L/s while keepingrNESN constant. An almost complet
data collapse is obtained, see Fig. 7 for results for the
treme casesL/s50,̀ . The size ratioL/s50 corresponds to
a matrix of randomly distributed hard point particles. Inte
estingly, the corresponding adsorption,h, is only slightly
larger than that forL/s52 over the entireh r range consid-
ered. The curves for infinitely long needles,L/s5`, lie
slightly below the corresponding results forL/s52, but this
is also only a small effect. We conclude that the adsorpt
behavior of the hard sphere fluid inside a random fiber n
work is ruled by the needle density,rN , scaled with the
sphere-needle pair excluded volume,ESN.

VI. CONCLUSIONS

In conclusion, we have developed and tested a DFT
the hard sphere fluid adsorbed in a quenched matrix of v
ishingly thin needles. We find that theoretical density profi
near the surface of a needle matrix agree well with res
from our computer simulations. This demonstrates t
within the geometrically based DFT different extensions~ori-
entational degrees of freedom29,30 and treating quenched
annealed mixtures34! can be systematically combined.

We have dealt with the most simplistic model in th
context using randomly placed needles and disregarding
explicit connectivity. In a real fiber network, contacts b
tween neighboring fibers lead to mechanical stabil
whereas in the present model, the needles are somewh
tificially frozen in space. Nevertheless, we expect this sim
model to capture the main effects. Note that the exclu
volume that is not accessible to a test sphere will hav
connected pore structure due to overlapping sphere-ne
excluded volumes from different needles. Furthermore
have also ignored correlations between rods that stem f
finite rod diameter and hence finite rod–rod excluded v
ume. This is a common assumption. One could howe
treat rod–rod interactions on the Onsager~second virial!
level using the techniques developed in Ref. 30, i.e., ang
convolutions to build weighted densities.

Our theory can treat nonisotropic fiber distributions. B
assuming a needle one-body distribution that explicitly
pends on orientation one could model, e.g., brush-like st
tures. Also mixtures of needles with different lengths sho
be readily accessible. Further very interesting questions c
cern phase transitions like the demixing phase behavior
binary fluid confined in random fiber networks. We expe
this to be accessible within the current DFT framework~see
Ref. 35!. Another interesting question concerns the size
lectivity that should occur when immersing two~or more!
differently sized hard sphere fluids in the random fiber n
Downloaded 05 Aug 2003 to 131.211.32.45. Redistribution subject to A
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work. This opens further possibilities to study fiber networ
acting as mesoscopic filters.
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