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Hard sphere fluids in random fiber networks

Matthias Schmidt®
Soft Condensed Matter, Debye Institute, Utrecht University, Princetonpin 5, 3584 CC Utrecht,
The Netherlands

Joseph M. Brader
Institute of Physiology, University of Bern, Buehlplatz 5, 3012 Bern, Switzerland

(Received 11 March 2003; accepted 12 May 2003

We investigate an annealed hard sphere fluid in contact with a rigid, random fiber network modeled
by quenched, vanishingly thin hard needles. For this model a quenched-annealed density functional
theory is presented that treats arbitrary spatially inhomogeneous situations, in particular anisotropic
and spatially varying needle distributions. As a test case we consider the structure of the hard sphere
fluid at the surface of an isotropic fiber network and find good agreement of the theoretical density
profiles with our computer simulation results. For high needle densities the surface acts like a rough
impenetrable wall. In the limit of infinite needle density the behavior near a smooth hard wall is
recovered. Results for the partition coefficient agree well with existing dat20@3 American
Institute of Physics.[DOI: 10.1063/1.1588993

I. INTRODUCTION rod densities are typically well below the Onsager nematic—
isotropic transitior?. Under equilibrium conditionsi.e., such
The properties of fluids adsorbed in porous media can behat rods are mobilealso mixtures have been considered,
drastically different from those of the same substance ire.g., silica spherésvere added and also immersed in suspen-
bulk.! Among the wide range of disordered adsorbents ongions of rod-like fd bacteriophage virusésFor a simple
particular class are aggregates of mesoscopic fibers, such teoretical model of hard spheres and vanishingly thin
those present in paper and in colloidal suspensididue to  needles the phase behavior was obtained with computer
their geometrical properties the solid volume fraction of fibersimulations and perturbation thedryFluids in contact with
networks can be remarkably low. Experimentally, suspena singlé®!” and several strictly aligné@irod-like obstacles
sions of rods can be prepared such that the particles are pragere treated theoretically finding intriguing adsorption
tically immobilized (e.g., by sedimentation or coagulatjon behavior® A molecular model of adsorption in a semiflex-
producing a random network of fibers. The resulting gels ofible porous network was simulat€édtaking into account
clusters of colloidal rods or fibers were found to exhibit bothstructural response of the adsorbent.
homogeneous and heterogenedis., fracta) structures The pore size distribution in a random fiber network was
One prominent material where the structure of the rod getlerived by Ogston in his classical wéPk(see Ref. 21 for
has been investigated is aqueous dispersions of colloiddirief personal recollectionsThis solution rules the adsorp-
boehmite> Other examples of gels of fairly well-defined col- tion probability of an infinitely diluted hard sphere fluid in a
loidal rods are iron hydroxide rods, clay particles, and imo-bulk fiber network. In the present work we are interested in
golite rods(see Ref. 4 Further very promising particles are the adsorption of a dense fluid in a random network of rods.
etched silicon rodS. We treat an annealed hard sphere fluid immersed in a
Fiber networks provide genuine model porous mediaquenched network of vanishingly thin hard needles. This
that can be used to address various relevant physical quegodel can be viewed as the quenched-anne@ed analog
tions like the self-diffusion and sedimentation @ifacej  of the above equilibrium sphere-needle mixttitén particu-
spheres. Particularly striking is the efficiency of randomly lar we address the question how the geometry of the
distributed thin rods to cage a test sph&&phere caging is quenched particles affects the properties of such a network to
relevant for the random dense sphere pacRifignse rod —act as an adsorbent.
packing has been investigated and a random contact equation We use density-functional theofpFT),?223which is a
was found to be relevan?,and packings of spherocylinders powerful tool to study inhomogeneous fluids. In particular,
were simulated recently by mechanical contractioifur-  Rosenfeld’s fundamental measure the¢®MT) for hard
thermore, the spatial statistics of pore sizes in stochastic fibephere mixtureéd is known for its high accuracyfor very
networks was investigatéd:*® recent work see, e.g., Refs. 25 and.2Bosenfeld general-
Experimental rod aspect ratidsf length-to-thickness  ized his approach to nonspherical particles} albeit with-
can be as high as 25 for silica coated boehmite rods, and thaut incorporating the exact low-densityecond virial limit.
Introducing angular convolutions into the theory enabled this
30n leave from: Institut fu Theoretische Physik I, Heinrich-Heine- exact limit to be r'ecoyered' n blnary r,mxg‘g”es of ,hard sphere
Universita Dissseldorf, UniversitmstraRe 1, D-40225Bseldorf, Ger- and hard rods with either ide&anishing™ or residual ex-
many; Electronic mail: mschmidt@thphy.uni-duesseldorf.de cluded volume interactiongOnsager limit*® Using this
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theory interesting orientational order at the free fluid—fluid e—
interface between demixed phases was fotlndnd later O\O: O Q
supported by computer simulation restifts. 7 Q Q

To investigate the response of fluids to external confine- Q @ O
ment there are two main theoretical routes: First, one relies \ O
on idealized pore geometries, i.e., slit-like, cylindrical, or —_— @\:\ OO
spherical pores with smooth wafl§The insights gained here L
are then related to the behavior in random media by identi-
fying typical pore sizes that are characteristic of the amorfiG. 1. Model of an adsorbate fluid of hard spheres with diametar a
phous void structure. An example of this strategy is Fanti andporous matrix of quenched, vanishingly thin hard needles of lehgtfihe
Glandt's investigation of the partitioning of spherical par- needle orientations are assumed to be isotropically distributed and their
ticl into fib tri é& h th bl f inal midpoints to be confined to the halfspazec0. This generates a semi-

!C es_ln 0 Tibrous m_a_nc where the problem or a SIngl€ e porous matrix with surface perpendicular to thaxis and located at

fiber is solved explicitly and then related to a network of z=0: the model considered is three-dimensional.

fibers via a superposition approximation. The second ap-

proach is to model the porous medium by immobilized con- ' . . . .

figurations of model fluids. Then an adsorbate component i§f the density functional theory. Section IV gives details of

equilibrated(i.e., annealexiin the presence of the model po- the computer simulations. Results are presented in Sec. V

rous medium, that acts like an external potential on the ad@nd we conclude in Sec. VI.

sorbate. One refers to such models as quenched-annealed

(QA) mixtures. While the first approach can be viewed as dl. THE MODEL

raison-d’dre of DFT, the second route was primarily fol- . . .

lowed by use of integral equation theory and application of We_ consider 'c_mnealed hard sphe(lza_ @suesS)_of_dmm- .
. . . . eter o immersed in a quenched matrix of vanishingly thin

the replica trick, e.g., Dongt al. derived the inhomogeneous : . .

. . . : . needlegspeciesN) of lengthL. The model is characterized
replica Ornstein—Zernike equations to treat problems like th

adsorption near a plane boundary of a disordered métrix. ?iy the (threq par |nte_ragt|onsyij between SPecies, |
. =S,N. Due to their vanishing thicknegand hence vanish-
For QA mixtures a DFT framework was proposed

" i . : . -~ ing pair excluded volumethe needles behave as if being
[ecetnt(;y? T:]he blene;ﬂt ?fﬂt]h's QAk? ';T '(‘;‘ tha_tt thg. ‘1‘?8 r(t:i_er IS fjdeal, hence interactions between needles vanish for all sepa-
tLeeaqeuer?cr:]he des;\e/f:ie(; ra?hgp?r;a?] gs sncsoln):plilcszz;tleg E)?[e? ration distances and orientationgyy=0. The interaction
. ) i ’ ) . tw h 14 = if th tiorr bet
field (like, e.g., in Ref. 18 The one-body density ha@ een spheres Msdr)=x if the separatiorr between

tvpical situati h simol tial d d th sphere centers is less than and zero otherwise. The pair
ypical situa |on'§a a much simpler spatial dependence than,q 4 ction petween a sphere and a need\sig= <, if both
the corresponding external potential that is exerted by th

%verlap, and zero otherwise.

matrix particles on the adsorbate. As an illustration we re- As thermodynamic variables we use the sphere packing
mark that in a(bulk) matrix that is uniform on average over fraction 7=ma3pg6, and a dimensionless needle density
the disorder, the matrix one-body density is just a constant. 3

n thi K A DET for th i ¢ pno, Wherep; ,i=S,N is the number density of species
n this work we propose a Q or the mixture o The size ratid_/ o is a further(geometrig¢ control parameter.

annealed spheres and quenched needles and test it again%eneral the one-body density distributions will be inhomo-

our con_wputgr 5|mulat|on results. As a generic |nh.omoge- eneous. In the case of spheres, dependence is on space point
neous situation we consider the surface of an isotropic need hencep(r). For needles the dependence is also on orien-
network. We bring a dense hard sphere fluid in contact Witl}étionﬂ (a unit vectoy, hencep(r, Q).

this surface and investigate the structure that is built up as a  aq 4 generic inhor%ogeneity ’we will consider the surface

response to the quenched needles. Comparing theoretical aggly needle matrix modeled as a step-function density distri-
simulated results we find that the plateau values away fromy +ion

the matrix surface deviate somewhat, but the detailed oscil- o
latory structure at the interface is captured very well by the ~ Pn(12)=pNO(—2), (1)

DFT. For high needle densities the network becomes practiyhere is the spatial coordinate perpendicular to the matrix
cally impenetrable for the spheres, and the surface acts assgface !l is the needle density “inside” the matrix, and we

rough wall. Within the QA DFT the surface roughness isconsider the(simplest case where the needles are isotropi-
treated very easily, in particular it is not necessary to treat theg|ly gistributed. See Fig. 1 for an illustration of the situa-
lateral structure of the surface explicitly. Hence the compusyjgn.

tational effort is similar to that for treating a smooth wall. We

find that thg surface rogghness decreases W|th |ncre.a5|qﬁ' DENSITY FUNCTIONAL THEORY

needle density and effectively a hard smooth wall is obtained

in the limit of infinite needle density. Furthermore we check ~ We seek a theory to determine the adsorbagherg

that our results for the partition coefficient compare reasonedensity distributionpg(r) (as well as associated thermody-

ably to previous Monte Carlo resufté. namic quantities and correlation functigri®r given one-
The remainder of the paper is organized as follows: Inbody density distribution of needlegy(r,Q). As the

Sec. Il we define the model of hard spheres in a random fibemeedles are treated as being idgg|(r,€) can be trivially

network more explicitly. Section Il is devoted to an outline obtained from a corresponding external potential acting on
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needles(before quenching Within a DFT framework and
following Ref. 34 we write the grand potential of the present
QA mixture as

Opsipl=keT | drpsnln(psr)AD—1]
+ Fexc[PS(r);PN(rrﬂ)]

+f dr ps(NIVEY(r) — usl, 2

wherekg is the Boltzmann constant, is absolute tempera-
ture, Ag is the thermal wavelengthy s is the chemical po-
tential of spheres, and2(r) is a deterministi¢nonrandom
external potential acting on the spheres. The first term on the
right-hand side of Eq(2) is the ideal gas free energy func-
tional for spheres; the second terk,., is the excess free
energy descrlblng the contributions from 'nterpart'de Inter'FIG. 2. Snapshot from computer simulation of the adsorbate hard sphere

actions. In the present QA case it contains the interactionfiuid in contact with a random fiber network. The fiber network is modeled
between adsorbate particlespheres and sphedess well as  as randomly and isotropically distributed vanishingly thin hard needles.

contributions from interactions between adsorbate and mainy the left part of théperiodio simulation box is filled with needles; this
. . acts as a model for the surface of a porous medium. The size ratio of needle
trix particles(spheres and need)es

; > o . lengthL and sphere diameter is L/o=2; particle numbers ar® s= My
To obtain the adsorbate density distributipr(r), ina  =s12.

given needle matrixpy(r’,€2), the minimization condition
is

50 we find that the FMT approximation fd¥.,. is equalto the

=0, 3 excess free energy of the fully annealed sphere-needle mix-
ture given in Ref. 29. The main features of this theory are
density-independent, geometrically motivated weight func-
tions that are used to build weighted densities by convolu-
tions with the bare one-body densities. The excess free en-
ergy is then obtained as an integral that runs over space and
orientation, the integrand being an excess free energy density
that is a function of the weighted densities. For explicit ex-

§p5(r) PN(V’,Q)

where py(r',Q) is treated as a fixed input quantity. Note
that, in contrast to the case of an equilibrigimlly annealed
binary mixture, the minimization is to be performed only
with respect to the annealed component.

In order to obtain a working theory an approximation for

the unknown quantity in Eg2), the Helmholtz excess free X fer th der directl
energy functionalF.,., is required. Recently, this was ac- pressions we refer the reader directly to fkempact pre-

complished for spherical particles in a geometrical frame-Sentation in Ref. 29; many more technical details and explicit

work. This provides a means to generate a three—dimensiongfa‘lcmat'OnS in simple geometries can be found in Ref. 30.
excess free energy functional from an idealized strongly con-
fined S|tuat|_on, the zero—dmgnspr{ﬁl?) limit. The OD limit V. COMPUTER SIMULATIONS
can be envisaged as a cavity situation that leads to strongly
localized particle positions. The simplification that is due to  In order to assess the quality of the DFT results we have
the localization enables one to solve the many-body problerarried out canonical Monte CarlgMC) simulations. We
exactly and to obtain the corresponding OD free energy. Foused particle numbertMs=My=128, 512, and a cubic
the present case, it was shown that for a binary system afimulation box with length. and periodic boundary condi-
hard spheregone annealed and one quenched spgcies.  tions. The size ratio was fixed 1o/ o= 2. Needle configura-
is (practically equal to the fully equilibrated case with only tions were generated by randomly and isotropically placing
annealed species. The only difference is a shift by a triviaheedles in the left{ L/2<z<0) half of the simulation box.
constant, FeQXAO[pO,pl]: FEXQ([pO,pl]— FSS[pO], where the Due to the periodic boundary conditiotvso matrix surfaces
subscript (1) refers to the quenche@nnealeficomponent. are generated. As an illustration we display in.Figa ray-
Note that the presence efFEJ] p,] on the right-hand side is traced snapshot from the simulation. For the state points con-
necessary to fulfilF &y py,p1—0]=0, i.e., the(over disor-  sidered the two surfaces are not completely decoupled, hence
der averagedfree energy vanishes in the absence of adsorwe merely deal with a periodic succession of slabs filled
bate particles. However, this does not change the minimizawith needles and slabs free of needles. Hence the “free slab”
tion condition, as the functional derivative is only performedhas thicknes4./2 and the “matrix slab” has also thickness
with respect to thennealedcomponent, cf. Eq(3). L/2. For Mg=128 and »=0.15, 0.3, the box lengths
For the present case of quenched needles and annealate L/o=7.64491, 6.067 77, respectively. Fdfs=512,
spheres an additional simplification arises, because thand 7»=0.15, 0.3 the box lengths aré/oc=12.1355,
needles behave as ideal particles due to their geometry. TH®631 98, respectively. As we consider equal numbers of
excess free energy of an ideal gas of rotators vanishes, henparticles, Ms=My, the relation between densities jg
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FIG. 3. One-body density distribution of spherpg(z) o°, as a function of  FIG. 4. Same as Fig. 3, but for larger systems witg= M =512 particles.

the (scaled distance from the matrix surfac#,o. Results from DFT(solid

lines) and MC simulationgdashed linesare shown forp=0.15, 0.3(from

bottom to top. The particle numbers in the simulated system Mre= M,

=128. outside. The theory predicts weak oscillations inside the ma-

trix, those cannot be identified from the simulation profiles—

the statistical uncertainties being too large.

= 3 . - . - .
ZIWS/(U ;]T/ﬁc)’ }th’]ﬁreéhe factor 2 C(_)n;ez from tgle fgcrt] that  |1aving gained confidence in the theory, we consider a

only one half of theé box IS occupied by needies, encesingle surface of the fiber network, hence consider the case

pno°=0.572958, anghyo”=1.145 92. where the needles are distributed homogeneously and isotro-

In the starting configuration all spheres are placed in th"'f)ically in the halfspace<0. We bring this surface into con-
half-spacez>0, then half of the total number of particle tact with a hard sphere fluid of bulk packing fraction
moves are discarded for equilibration and subsequently datgo_4 atz—. The size ratio is. as before. fixed tdo
are collected for the sphere density profile. Typical run_, ro heedie densityyo®=10 r;ractically n(,) spheres can
lengths are 1DMC moves per particle and averages over theenter inside the matrix, angs(z<0) vanishes on the scale
disorder are taken by using about 100 matrix realizations. IQ)f the plot, Fig. 5. The behavior gf«(z) near the surface
the case ofp=0.3, Mg=128 we performed OMC moves ’ s ’

for 100 ind q dl i ) ina i 10 0<z<a/2, is reminiscent of that of the hard sphere fluid at
or Indepen er_1t needle configurations totaling | a soft repulsive wall. For largez typical oscillations that
MC moves per particle.

decay withz are observed. Those possess a small amplitude,

given the relatively high sphere packing fraction. Increasing

V. RESULTS the needle densitgresults forpyo®=100,1000, 10000 are

To obtain the same situation as in the simulation WeShOWn in Fig. 5 gradually Sh'ftSPS(Z.) to largerz and in-

. S : creases the amplitude of the oscillations. These effects can be

imposed the same periodicity on the DFT profiles. The . .

sphere packing fraction was matched to that in theattrlbuted to the denser, more “hairy” needle structure at the
surface. It is evident that in the limjty— o the situation of

simulation by adjusting the sphere chemical potential, . : " .
s in Eq. (2), such that the integrated sphere densityan effective hard wall is encountered. The position of this

. : . - “effective hard wall is such thgtg(z) drops to zero atz
correspcs)nds _ltouzthe simulated - packing fraction, I'e"z(LJra)/Z (for the present size ratio=1.50), which is the
”:(WU.IG)L J=12d2ps(2), where,=0.15,0.3, .., limiting distance where spheres touch needli®se with

In Fig. 3 we show results for the smaller system with

M=M= 128 particles. For=0.15 there occurs a smooth orientation strictly perpendicular to the surface

crossover from the plateau value inside<(Q) to the plateau

value outside £>0) the matrix. There is almost perfect

agreement between the simulated and the theoretical density 2

profiles. Foryp= 0.3 there occur oscillations both outside and

also inside the matrix, albeit smaller in amplitude inside. The 15k

wavelength of oscillations is of the order of hence caused

by sphere packing effects. The shape of the theoretical re- b

sults outside is very similar to the simulation result, however, a

it is shifted toward lower density. The opposite behavior is

found inside the matrix, where the theoretical profile lies 0.5}

above the simulation result. Part of this may be due to still

insufficient equilibration in the simulations, despite the con- 0

siderably large number of MC moves performed. -0 1
In Fig. 4 we show results at the same state points, but for

a Ia_rger system wittMs=My= 5]f2 parFICIeS' Forr;=0.1_5 FIG. 5. Theoretical results for the density profifegr® as a function ot/

again the agreement between simulation and theory is Vefyom prT for 7=0.4, L/o=2, andpyo®= 10, 100, 1000, 10 00Grom left

good. For»=0.3 there is an increased number of layersto right). Also shown is the result at a hard smooth wlshed ling
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We emphasize that the high needle densities considered 1 SRS
here are somewhat artificial and only allowed by the present

idealization of vanishing particle thickness. Networks of
more realistic fibers with small, bdinite thickness possess
an upper bound in density for random isotropic packitfgs.
This upper bound was estimated @g_?D mw/4~5.4, where
D is the rod thicknes¥ In experimental realizations aspect
ratios are typically limitef to L/D<100. If we assume this
boundary (and L/o=2) then realistically (abouy pyo®
<100. So the higher densities should be seen merely as an 0 . .
idealized crossover to the smooth hard wall behavior provid- 0 0.1 0.2 0.3
ing a convenient check for the theory. n

We fm.ISh Wlth.a QISCUSSIQH of the adsqrptlon of the hardFIG. 6. Partition coefficienk = 5/ " of spheres of packing fractionin the
sphere fluid deep inside the fiber network, i.e., away from th¢andom fiber network in chemical equilibrium with a pure hard sphere res-
surface. The hard sphere fluid outside the matrix acts as @voir of packing fractiory" for size ratiol/o= and scaled needle den-
reservoir, and we denote its packing fractiondly We seek sri]tieSp?.oi;:I_O-ls, 05,1, 21{fr0rg top '\;I% bqttorlmt_Resgltf frOmethfe (;;rrent

i i ilikri i 1l eory(solid lineg are compared to sSimulation data o0 er. m-

:i()or?b;?nnsitgg g]ogrﬁ]iaﬁgdrspi?:gl?;grgsg Tgr(e:o?]if;:g dfers?bols) and the single-fiber superposition approximation of Ref.(d&éshed

lines).
sity fields we find that the free energy per system volume is

BO=ps(IN(psA3) — 1)+ BPys(7)
curves overestimate the MC results #r This effect, that
+pul —In(1= )+ Ly 4) the DFT gives slightly too weak partitioning, was also appar-
20(1—7n))’ ent in the plateau values of the inhomogeneous density pro-
files above. The agreement of our results with the MC data of
Ref. 17 and that of the results from single-fiber superposition
approximation of Ref. 16 is comparable, although the current
approach fares somewhat better in predicting the curvature
97%(2—17) 67 correctly, especially at high matrix densities.
BPus= . g 3IN(1-7). 5 We return to the case of fibers with finite length and
n)° wo . g : :
display results in Fig. 7 foK as a function ofy" for size
Then the sphere chemical potential is obtained @y ratio L/c=2 and over a broad range of densiti%a3
=d®/dpg. Clearly, the situation is determined by chemical =0.1, 0.2, 0.5, 1, 2, 5, 10. For high needle densities remark-
equilibrium of spheres outside and inside the matrix, henceble crossover behavior is observed. Considﬁb-3:5,
we solveus(n,pn)=us(n',pn=0) for » once " andpy  where for small packing fractions7<0.1) practically no
are prescribed. This is an easy numerical task. Before prespheres will enter, but fop>0.2 a pronounced increase with
senting results for high packing fractions we investigate they" occurs. Using such a porous medium as an efficient filter
behavior for »—0. It is straightforward to show that the for the hard sphere fluid would require one to keep the res-
leading order in this limit is Bus=In(psAd+mpyo(2  ervoir fraction below this crossover region.
+3L/0)/12. This is equivalent to Ogston’s exact resflite., It turns out that a natural measure for the needle density
the free volume fraction of a sphere in the needle matrix igs p\&sy. For the needle densities above corresponding nu-
obtained as the ratio of fugacitiesosAglexp(ﬁ,us)
=explnEsn), Where &gy is the pair-excluded volume be-
tween sphere and needle, given &g= mo°/6+ wlLo?/4.
(In Ref. 20 the derivative with respect tois given) We next
turn to the case of a dense adsorbate.
A common measure is the partition coefficient, that is
defined as the ratio of adsorbed density and that in blk,
=yl n". We first consider the case of infinitely long needles, M
L/o—0, where benchmark results exist in the literattfr¥.
In Fig. 6 we plotK as a function ofy" for scaled needle
densitiespyLo?=0.1, 0.5, 1, 2, 3. For all densities consid-
eredK is a monotonically increasing function af , hence '
the partitioning decreasdse., the densities in the network 0 0.1 0.2 0.3 04
and in bulk become more similawith increasing adsorbate "
density. Clearly the partitioning increases for denser matri-
ces, i.e., with increasingN(r3. Also shown in Fig. 6 are the FIG. 7. Same as Fig. 6 but for size ratido=2 and needle densities

MC simulation results of Fanti and GlandtReasonable P =01 02 05 1, 2,5, 1gsolid lines, from top to bottom For
’ comparison also the corresponding results fdrr=0 and L/oc= are

agreement \{Vith the C.U”ent theoretical curves can l?e OBshown; densities are such that the needle density times the sphere-needle
served. Deviations exist for high', where the theoretical pair excluded volumepyEsy, is the same as for the curves foko=2.

where 8= 1/kgT, and® s is the excess free energy density
in the Percus—Yevick compressibilittand scaled-particle
theory) approximation, given by
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merical values arepyEsy=0.20944, 0.418879, 1.0472, work. This opens further possibilities to study fiber networks
2.0944, 4.18879, 10.472, 20.944. We now change the siz&cting as mesoscopic filters.

ratio L/ o while keepingpnEsy constant. An almost complete

data collapse is obtained, see Fig. 7 for results for the exACKNOWLEDGMENTS

treme casek/o=0,0. The size ratid./o=0 corresponds to M.S. thanks Albert Philipse, Patrick Johnson, Bob

a matrix of randomly distributed hard point particles. Inter- Evans, and Andy Archer for inspiring discussions and ac-

estingly, the corresponding adsorption, is only slightly | q\edges support from the DFG through the Transregio
larger than that fot./o'=2 over the entire;' range consid- g TRe, The work of M.S. is part of the Research Program
ered. The curves for infinitely long neediels/o=cc, lie ot ihe Stichting voor Fundamenteel Onderzoek der Materie
slightly below the corresponding results flofo= 2, but this (FOM), which is financially supported by thilederlandse

is also only a small effect. We conclude that the adsorptiorbrganisatie voor Wetenschappelijk OnderzoRivO).
behavior of the hard sphere fluid inside a random fiber net-

work is ruled by the needle densnyN, scaled with the L. D. Gelb, K. E. Gubbins, R. Radhakrishnan, and M. Sliwinska-

sphere-needle pair excluded volunsgy. Bartkowiak, Rep. Prog. Phy§2, 1573(1999.
2G. A. Vliegenthart and H. N. W. Lekkerkerker, J. Chem. PHyiL, 4153
VI. CONCLUSIONS (1999.

3G. H. Koenderink, G. A. Vliegenthart, S. G. J. M. Kluijtmans, A. van
In conclusion, we have developed and tested a DFT for Blaaderen, A. P. Philipse, and H. N. W. Lekkerkerker, Langraijr4693
the hard sphere fluid adsorbed in a quenched matrix of vanZ(Al9§9l-3h_l, dA M. Wi . 4, 49 (1998
. . . . . . . . P lHipse an . . lerenga, Langm y .
ishingly thin needles. We find that theoreUcaI densn_y profiless ,’ Wierenga, A. P. Philipse, H. N. W. Lekkerkerker, and D. V. Bogner,
near the surface of a needle matrix agree well with results | angmuir14, 55 (1998.
from our computer simulations. This demonstrates that®P. M. Johnson and C. M. van Katprivate communication
within the geometrically based DFT different extensi(ms's— ’S. G. J. M. Kluiftmans, G. H. Koenderink, and A. P. Philipse, Phys. Rev.
. 0 ) E 61, 626 (2000.

entational degrees of freeddii” and treating quenched- s 5 phiipse and s. G. J. M. Kiuijtmans, Physic®#4, 516 (1999,
annealed mixturé®) can be systematically combined. 9E. A. J. F. Peters, M. Kollmann, T. A. O. M. Barenbrug, and A. P. Philipse,

We have dealt with the most simplistic model in the Phys. Rev. B63 021404(2001.

; ; ; 10A. P. Philipse, Langmuid2, 1127(1996, 12, 5971(1996.
context using randomly placed needles and disregarding theHS_ Williams and A. P. Philipse, Phys. Rev.62, 051301(2003.

explicit connectivity. In a real fiber network, contacts _bg- 12C. T J. Dodson and W. W. Sampson, Appl. Math. Lé@, 87 (1997.
tween neighboring fibers lead to mechanical stability,’*c. T. J. Dodson and W. W. Sampson, J. Stat. PBgs447 (1999.
whereas in the present model, the needles are somewhat é“rgéé-égfz-o% Crocker, A. C. Zeri, and A. G. Yodh, Phys. Rev. L&,
tificially frozen in space. N.evertheless, we expect this simplqg,P. Bolhéis aﬁd D. Frenkel, J. Chem. Phge1, 9869(1994.
model to capture the main effects. Note that the excludedk; a Fanti and E. D. Glandt, J. Colloid Interface StB5, 385 (1990.
volume that is not accessible to a test sphere will have &L. A. Fanti and E. D. Glandt, J. Colloid Interface S&B5 397 (1990.
connected pore structure due to overlapping sphere-need”l%t- J-Etrlrj]k, PAh. G. Scalln(?er, MMPiéeeirzsié].?gb\(l)\lzemhold, and A. L. Frisch-
. necnt, J. S.. condens. Mal 3 .

excluded yolumes from d|_ﬁerent needles. Furthermore W& Shen and ,¥_ A. Monson, Mol. Phy00, 2031(2002.
haye also |gnored correlations pe.tween rods that stem frompa G, ogston, Trans. Faraday Sd#, 1754(1958.
finite rod diameter and hence finite rod—rod excluded voI-iA. G. Ogston, Biophys. Chen&7, 3 (1995.
ume. This is a common assumption. One could however, R £vans, A?V'-:Phgsza 1t4~?(19f7?-h Fuidsdited by b
treat rod—rod interactions on the Onsagsecond virial - Svans: In Pindainentas ol hromogeneous Huicsdited by L.

) ) ; - HendersonDekker, New York, 1999 p. 85.
level using the techniques developed in Ref. 30, i.e., angulary, Rosenfeld, Phys. Rev. Let3, 980 (1989.
convolutions to build weighted densities. R. Roth, R. Evans, A. Lang, and G. Kahl, J. Phys.: Condens. Mader

Our theory can treat nonisotropic fiber distributions. By 26}2263(’:(525(12-Y Martinez-Raton, and P. Tarazona, J. Phys.: Condens. Mat

assuming a_need_le one-body distribution that expl!cnly de- o 14, 11965(2002.
pends on orientation one could model, e.g., brush-like strucZy. Rosenfeld, Phys. Rev. B0, R3318(1994).

tures. Also mixtures of needles with different lengths shouldzgY- Rosenfeld, Mol. Phys86, 637 (1995.

: : ; ; ; 9M. Schmidt, Phys. Rev. B3, 050201R) (2001).
be readily accessible. Further very interesting questions congy Brader, A Esztermann. and M. Schmict, Phys. ReG5E031401

cern phase transitions like the demixing phase behavior of a ;g9
binary fluid confined in random fiber networks. We expect3!p. G. Bolhuis(private communication
this to be accessible within the current DFT framew(ske *R. Evans, J. Phys.: Condens. Mat#18989 (1990.

: : : : 33W. Dong, E. Kierlik, and M. L. Rosinberg, Phys. Rev5H, 4750(1994).
Ref. 35. Another interesting question concerns the size Sy, Schmidt, Phys. Rev. B6, 041108(2002.

lectivity that should occur when immersing twor more 35M. Schmidt, E. SchibPaschinger, J. Kiinger, and G. Kahl, J. Phys.:
differently sized hard sphere fluids in the random fiber net- Condens. Mattet4, 12099(2002.

Downloaded 05 Aug 2003 to 131.211.32.45. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



