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Entropic wetting of a colloidal rod-sphere mixture
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PACS. 64.70.Ja – Liquid-liquid transitions.

Abstract. – We investigate the behavior of a model colloidal mixture of hard spheres and
rod-like particles near a planar hard wall using density functional theory. For small size ratios of
rod length and sphere diameter we find that the colloidal liquid phase wets the wall completely
upon approaching the fluid demixing binodal from the colloidal gas side, provided the density
of the rods lies below the wetting point. Using an effective one-component description based on
the pairwise depletion potential for higher density of rods, a finite sequence of layering phase
transitions is found. For large rod-to-sphere size ratios, using a binary treatment, thick films
are obtained even close to the triple point.

Purely repulsive interactions between the constituent mesoscopic particles may lead to
surprisingly rich bulk phase behavior of multi-component colloidal suspensions. Such systems
are often viewed as a primary system of colloids with added “depletant agents” that mediate
an effective interaction between the particles of the primary component. Adding depletant
agents to a colloidal hard-sphere dispersion may, under appropriate conditions, drive a fluid-
fluid demixing phase transition, which is reminiscent of the gas-liquid transition in atomic and
molecular fluids: The phase that is poor in colloids (and rich in depletants) corresponds to the
gas and the phase that is rich in colloids (and poor in depletants) corresponds to the liquid
phase. Among the broad range of depletant agents notable examples are smaller-sized spheres
and globular non-adsorbing polymers. Another case of intriguing depletants are elongated
particles, like colloidal rods or stretched polymers. One reason for such depletants being very
interesting is the possibility of liquid-crystalline order, which will further enrich the bulk phase
behavior [1] and the correlations between spheres [2].

For conditions where the density of rods is well below the onset of nematic order, much
work has been devoted to understanding the bulk phase behavior of rod-sphere mixtures [3–8].
Among the different techniques employed are computer simulations [3], free-volume [3,4] and
liquid integral equation [5] theories, as well as experiments with silica spheres mixed with
silica-coated bohemite rods [4, 6] or (semi-flexible) polymeric rods [7, 8]. It can be concluded
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that the gas, fluid, and solid phase are thermodynamically stable and that the density of rods
(often one uses the density in a hypothetical reservoir of rods) plays a role similar to that of
inverse temperature in simple fluids. The second control parameter is the ratio of rod length
L and sphere diameter σ; for large enough values stable bulk fluid-fluid demixing occurs.

One approach to describe such complex systems is based on the depletion picture where
the depletants are regarded as mediating an effective interaction between the spheres [9–13].
Theoretically, one integrates out the depletant degrees of freedom in the partition sum [9,13]
to obtain the effective interactions, which have, in general, a many-body character. Under
suitable conditions one may take into account only the one- and two-body contributions.
Experimentally, one can measure the forces directly, e.g., between two spheres [10] or between
a sphere and a wall [12] immersed in a sea of rods.

Despite the considerable interest in the bulk properties of rod-sphere mixtures little is
known about their behavior at interfaces. This is in contrast to the case of mixtures of
colloidal spheres and globular non-adsorbing polymer, where recent results [14–16] indicate
surprisingly rich behavior at a simple hard wall. Theoretical predictions of wetting and lay-
ering surface phase transitions [14] have been validated by computer simulations [15] and,
partly, experimentally [16,17], in particular by light microscopy in a mixture of silica spheres
and poly(dimethyl siloxane) dispersed in cyclohexane [16]. The emerging picture is that the
colloidal liquid wets the wall completely for sufficiently low polymer concentrations (on the
gas-branch of the gas-liquid binodal). For higher polymer concentrations, partial wetting oc-
curs via an unusual (finite) sequence of layering transitions, which has been attributed to the
presence of many-body effective depletion interactions between the colloidal spheres [14, 15].
The layering behavior has not yet been experimentally confirmed.

In this letter we report on density functional [18] results for the interface behavior of a
model rod-sphere mixture exposed to a hard wall. For equally sized species we find that the
colloidal liquid wets the wall completely upon approaching the gas branch of the demixing
binodal for low rod densities. There occurs a first-order wetting transition to the partial-
wetting regime for higher rod densities. In the partial-wetting regime we can identify a finite
number of distinct lines where a jump in the adsorption occurs. These results are obtained by a
treatment that only includes the pair-wise contribution to the depletion interaction, and hence
questions the above conjecture that many-body terms are a prerequisite for the occurrence of
a finite sequence of layering transitions in the partial-wetting regime. We test the robustness
of these results: Complete wetting remains upon including all higher body interactions, i.e.
treating the full mixture. For longer rod-sphere size ratios, thick films result even for high rod
densities, i.e. close to the triple point.

We use a model proposed in [3] and employed by others [5,9,13,19,20] that can be viewed
as the most simplistic binary mixture that still captures the essentials: Hard spheres (species
S) of diameter σ are mixed with hard needle-like rods (species N) of length L and vanishing
thickness. The one-body density distributions are denoted by ρS(r) and ρN(r, ω̂), where r is
the space coordinate and the unit vector ω̂ is the (rod) orientation. This mixture is exposed to
a planar smooth hard wall described by external hard-core potentials, V S

ext(r) and V N
ext(r, ω̂).

Due to the symmetries of fluid states the only two relevant variables are the component of r
perpendicular to the wall, z, and the angle between ω̂ and the surface normal.

In the following a brief overview of the theory is given. In the binary treatment the grand
potential is expressed as a functional of the density fields of both species,

Ωbin[ρS, ρN] = Fid[ρS] + Fid[ρN] + F hs
exc[ρS] + F SN

exc [ρS, ρN] +

+
∫

drρS(r)
(
V S

ext(r) − µS

)
+

∫
dr dω̂ρN(r, ω̂)

(
V N

ext(r, ω̂) − µN

)
, (1)
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where the ideal-gas contribution is for spheres Fid[ρS] = kT
∫

drρS(r)(ln(ρS(r)Λ3
S) − 1) and

for rods Fid[ρN] = kT
∫

dr dω̂ρN(r, ω̂)(ln(ρN(r, ω̂)Λ3
N)− 1), where k is Boltzmann’s constant,

T is temperature, and Λi is the thermal wavelength of species i = S, N. The excess (over ideal
gas) parts are Rosenfeld’s functional [21] for hard spheres, F hs

exc[ρS], and the rod-sphere con-
tribution, F SN

exc [ρS, ρN], of refs. [19,20]. Clearly, the minimization of the grand potential needs
to be performed with respect to both species, i.e. we solve simultaneously δΩbin/δρS(r) = 0
and δΩbin/δρN(r, ω̂) = 0. For practical reasons the angle between ω̂ and the surface normal
of the wall is discretized in 60 steps, hence the latter condition is in fact a set of equations
indexed by ω̂, see [20] for further details about the numerical strategy. This treatment takes
into account all effective many-body terms, but is computationally demanding.

In the effective one-component description depletion potentials between spheres, WSS, and
between a sphere and the wall, WSW, are obtained by integrating out the rod degrees of
freedom [13]. Then the grand potential depends only on the sphere density distribution,

Ωeff [ρS] = Fid[ρS] + F hs
exc[ρS] +

1
2

∫
dr dr′ρS(r)K(|r − r′|)ρS(r′) +

+
∫

drρS(r)
(
V S

ext(r) + WSW(r) − µS

)
, (2)

where the depletion attraction is treated in a mean-field–like manner [22]: The convolution
kernel is K(r) = WSS(r) for r ≥ σ, and K(r) = WSS(σ+) for r < σ. Note that this is a
particularly clean application of the framework: No mapping of a soft repulsion onto a hard-
sphere reference system is to be performed; σ is the true physical particle size and WSS(σ+) is
the minimal value of the pair potential. The particular choice of K(r < σ) to treat attractive
interactions has been empirically found to improve the agreement between DFT and other
theories. Due to the rod ideality, the depletion potentials WSW and WSN depend linearly on
ρr
N, which is the density in an (ideal) reservoir of needles that is in chemical equilibrium with

the system. ρr
N thus plays a role analogous to that of inverse temperature in simple fluids.

Due to the particle geometries higher than two-body contributions vanish only for size ratios
L/σ < 1− (2

√
3−3)1/2 = 0.31875. The crucial benefit of the one-component approach is that

one has to deal with only one single minimization condition: δΩeff/δρS(r) = 0.
From either approach the bulk free energy for fluid states is obtained by assuming the

density field(s) to be constant. As thermodynamic variables we use the sphere packing fraction
η = πρSσ3/6 and a scaled rod reservoir density, ρr

NL2σ. The conditions of equal pressure
and chemical potentials of both species yield the phase diagram as a function of η and ρr

N,
as displayed in fig. 1 for L/σ = 1, which is large enough (> 0.3) so that a liquid phase
exists [3]. For ρr

N above the critical point, phase separation occurs into a gas phase that
is dilute in spheres and a liquid phase that is dense in spheres; phase coexistence is along
horizontal tie lines at constant ρr

N. The free energy obtained from the binary treatment [19]
is the same as that of [3], and was shown to give good account of the simulated coexistence
curve [3]. The binodal from the effective treatment has the same qualitative behavior, the
critical point, and accordingly the whole binodal, being shifted slightly toward lower densities.
Comparing structure at two statepoints in the mixed region away from coexistence yields a
further comparison of the consistency of both approaches; see fig. 2 for results for ρS(z) at a
hard wall. As a reference, corresponding profiles for the pure hard-sphere case (for the same
values of η) are displayed. Clearly, the addition of rods leads to a strong increase near contact
with the wall, 0.5 < z/σ < 0.7, as well as an increase in the contact value, ρS(σ+/2), itself
—the manifestation of the depletion effect. Remarkably, the results from both approaches
are identical on the scale of the plot, except for a slightly higher contact value of the one-
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Fig. 1 Fig. 2

Fig. 1 – Fluid-fluid demixing phase diagram for the rod-sphere mixture as a function of the sphere
packing fraction, η, and scaled needle reservoir density, ρr

NL2σ, for size ratio L/σ = 1. The binodal
(lines) and critical point (dots) from the binary and the effective one-component DFT are shown.
Coexistence is along horizontal tie lines (not shown). The crosses mark statepoints where wall density
profiles from both theories are compared in fig. 2. The arrow indicates a path along which wetting
profiles are presented in fig. 3. The rectangle near the vertical axis indicates the region where the
surface phase transitions near a hard wall are investigated in figs. 4 and 5.

Fig. 2 – Sphere density profiles, ρS(z)σ
3, at a hard wall as a function of the scaled distance, z/σ, from

the wall for size ratio L/σ = 1 at two statepoints (marked by crosses in fig. 1): η = 0.2, ρr
NL2σ = 5

and η = 0.3, ρr
NL2σ = 10 (shifted upwards one unit for clarity). For comparison, the corresponding

hard-sphere results (for the same values of η but ρr
N = 0) are displayed. Except for the region very

near to contact with the wall (z/σ ≈ 0.5) in the case of the higher packing fraction, the results from
both theories are indistinguishable on the scale of the plot.

component treatment for the statepoint with higher densities. The good overall agreement for
phase behavior and structure thus provides a solid basis for our subsequent interface study.

We first approach the gas branch of the fluid demixing binodal not too far from the critical
point at ρr

NσL2 = 16 and increasing η, as indicated by the arrow in the phase diagram, fig. 1. A
representative set of wall density profiles approaching coexistence is depicted in fig. 3 obtained
from the one-component (upper panel) and binary (lower panel) treatments. Close to the wall,
pronounced oscillations appear that can be attributed to packing effects of the spheres. For
increasing z, the crossover to the low gas bulk density occurs via an intermediate plateau
value of liquid-like density. The thickness of this region grows, and eventually diverges, upon
approaching coexistence. The wall is wet completely by the colloidal liquid phase. The profiles
from the one-component treatment possess a markedly thinner wetting film and a sharper
interface of the liquid-gas part than those from the binary treatment. This is consistent with
the difference in bulk phase diagrams. For the fixed value of ρr

N, the binary theory is relatively
closer to its critical point, hence thicker films and broader liquid-gas interfaces are expected.
We can, however, get similar wetting film thicknesses from the one-component treatment by
going even closer to coexistence; an example of ρS(z) is shown in fig. 3 (dashed line). Both
theories consistently predict complete wetting, differences in the detailed structure can be
fully understood from the differences in the respective bulk phase diagrams.

Having gained confidence into the one-component description, we use this computation-
ally efficient approach to calculate the full surface phase diagram. As a first path we scan the
phase diagram right at coexistence along the gas branch of the binodal by decreasing ρr

N (and
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Fig. 3 Fig. 4

Fig. 3 – Wetting density profiles, ρS(z)σ
3, as a function of the scaled distance from the wall, z/σ,

for needle reservoir density ρr
NL2σ = 16 following the path marked in fig. 1 and obtained from the

one-component (upper panel) and the binary (lower panel) treatment. The profiles are for (ηcoex −
η)/ηcoex = 0.01305, 0.004894, 0.001631, 0.001305 (from left to right); coexistence is at ηcoex = 0.06130
(binary), 0.02994 (one-component). The dashed line in the upper panel indicates the one-component
result even closer to coexistence, (ηcoex − η)/ηcoex = 5.77 · 10−6.

Fig. 4 – Sequence of sphere density profiles, ρS(z)σ
3, as a function of the scaled distance from the

wall, z/σ, obtained from the one-component treatment for statepoints at coexistence moving down the
gas-branch of the fluid demixing binodal. Density profiles from left to right correspond to increasing
η and decreasing ρr

NL2σ, spaced in steps of ∆ρr
NL2σ = 0.04 (dashed lines). Five pronounced jumps

occur, the corresponding density profiles at these layering transitions are indicated by solid lines. The
inset shows the corresponding adsorption Γσ2 as a function of η.

accordingly increasing η). Our aim is to stay below the triple point, which is obtained from per-
turbation theory at ρr

N ≈ 25 [3]. For high ρr
N the excess adsorption, Γ =

∫
dz(ρS(z)− ρS(∞)),

is finite at coexistence, i.e. the liquid wets the wall partially. Decreasing ρr
N continuously

leads to several (five) jumps in the density profiles and correspondingly in Γ, see fig. 4. The
sixth jump is that to a bulk liquid, i.e. the wetting point. Along our chosen path all layering
transitions and the wetting transition are first order.

To reveal the full surface phase diagram we have covered the region of stability of the gas
phase in the phase diagram on a fine grid. From anomalies in the density profiles, i.e. from
jumps in Γ, the full surface phase diagram is constructed, see fig. 5 for the result. Due to our
method of locating the interfacial transitions, their exact location is subject to some hysteresis
effects. By calculating the adsorption along the reverse path, i.e. along the binodal from low
ρr
N to high ρr

N, we could confirm that these effects are very small. We find that the five
layering transitions all extend into the bulk gas region. Moving away from coexistence along
such a layering line the jump in the adsorption decreases in magnitude and eventually ends
in a critical point. The first layering transition is very pronounced, the subsequent transition
lines decrease in length. The transition point on the binodal closest to the critical point is
the wetting point; for rod densities below the corresponding value (and above the critical
point), complete wetting occurs. We could not find the corresponding prewetting line where a
transition from a thin to a thick line appears, and conclude that it is too small to be identified
within our current numerical accuracy.

The whole pattern of surface phase transitions found from this description using pair poten-
tials is very similar to that recently found in a related model colloid-polymer mixture taking
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Fig. 5 Fig. 6

Fig. 5 – Surface phase diagram of the rod-sphere mixture at a hard wall as a function of the sphere
packing fraction, η, and scaled needle reservoir density, ρr

NL2σ, for size ratio L/σ = 1 obtained
from the one-component theory. Shown are the bulk fluid demixing binodal (dashed line), layering
transition points on the binodal (open circles), layering transition lines (solid lines), layering critical
points (crosses), and wetting point (filled circle). The plot range corresponds to the rectangle in fig. 1.

Fig. 6 – Sphere density profiles ρS(z)σ
3 as a function of the distance z/σ from the wall for size ratio

L/σ = 5, needle reservoir density ρr
∗ = 100 and increasing bulk colloid packing fraction η = 1.04 ·10−5

(dashed line), 1.06 · 10−5 (dotted line) and 1.065 · 10−5 (full line) obtained from the binary theory.
Coexistence is at ηcoex = 1.077 · 10−5. The inset shows the fluid demixing binodal as a function of η
and needle reservoir density ρr

∗ for L/σ = 5.

into account all many-body interactions between colloids, i.e. treating the full binary mix-
ture [14,15]. In that case, the inclusion of many-body terms is crucial; no layering transitions
were found from a pair-wise treatment [14].

We believe that the occurrence of layering phase transitions is due to a subtle interplay
between the relative strength of the particle-particle and the particle-wall attractions. Due to
the particle geometries for the present case of rod depletants, the particle-wall attraction is rel-
atively stronger than in the case of spherical (polymer) depletants. In that case a similar (rel-
ative) strengthening of the wall-particle attraction can happen due to the many-body terms.
As a test for this hypothesis we have rescaled the wall-particle attraction, i.e. used λWSW(z),
0 ≤ λ ≤ 1, which artificially interpolates between the actual physical situation (λ = 1) and a
(hypothetical) wall without depletion attraction (λ = 0). Indeed we find for λ = 0.5 complete
wetting without any indications of layering transitions anywhere in the partial-wetting regime.

As a final investigation we consider a case of markedly longer rods: L/σ = 5. We expect
many-body terms in the effective Hamiltonian to be important and that the effective one-
component description with pair-wise interactions only will break down. In fact the phase
diagram resulting from the one-component treatment is no longer comparable to the still
rather accurate [3] binary treatment. From the binary DFT we find that thick films can be
obtained even far away from the critical point, see fig. 6 for profiles close to the triple point
at ρr

NL2σ = 100 [23]. Hence for observing thick films in experiment large L/σ are suitable.
In conclusion, we have investigated the adsorption properties of a colloidal mixture of rods

and spheres at a hard wall. We find that for low rod densities the sphere liquid wets the
wall completely upon approaching the fluid-fluid demixing binodal from the gas side. For
high rod densities, above the wetting point, partial wetting occurs via a finite sequence of
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layering phase transitions, where the adsorption jumps by finite increments. We argue that
the crucial parameter for the occurrence of such layering transitions is the relative strength
of wall-particle and particle-particle depletion interactions.

Colloidal mixtures of rods and spheres can be prepared so that they closely resemble the
model system of hard spheres and needles [12] considered here. Therefore, our findings should
be experimentally observable. In particular, it would be highly interesting to observe thick
wetting films in the complete-wetting regime, e.g. with light [16] or confocal microscopy.
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