
PHYSICAL REVIEW E 68, 061404 ~2003!
Capillary condensation and interface structure of a model colloid-polymer mixture
in a porous medium
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We consider the Asakura-Oosawa model of hard sphere colloids and ideal polymers in contact with a porous
matrix modeled by immobilized configurations of hard spheres. For this ternary mixture a fundamental mea-
sure density functional theory is employed, where the matrix particles are quenched and the colloids and
polymers are annealed, i.e., allowed to equilibrate. We study capillary condensation of the mixture in a small
sample of matrix as well as demixing and the fluid-fluid interface inside a bulk matrix. Density profiles normal
to the interface and surface tensions are calculated and compared to the case without matrix. Two kinds of
matrices are considered:~i! colloid-sized matrix particles at low packing fractions and~ii ! large matrix particles
at high packing fractions. These two cases show fundamentally different behavior and should both be experi-
mentally realizable. Furthermore, we argue that capillary condensation of a colloidal suspension could be
experimentally accessible. We find that in case~ii !, even at high packing fractions, the main effect of the matrix
is to exclude volume and, to high accuracy, the results can be mapped onto those of the same system without
matrix via a simple rescaling.
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I. INTRODUCTION

Bringing a fluid in contact with a porous medium has
profound influence on its characteristics and phase beha
@1,2#. Due to abundance of surfaces and their necessary p
imity, surface-fluid interactions as well as capillarity effec
play a prominent role. Moreover, the system may be trap
in locally stable states, and its behavior governed by hys
esis. Apart from the above fundamental questions, the s
of adsorbates in porous media is also of great interes
applied fields ranging from industrial and geophysical to b
medical and pharmaceutical systems@2,3#.

Many natural porous materials are tremendously comp
on a microscopic scale: irregularly shaped pores build a c
nected void space that percolates throughout the sam
@4,5#. In contrast, to facilitate systematic studies, one of
relies on model pores like slitlike, cylindrical or spheric
pores ~see Refs.@1,2# and references therein!. The pore is
then described conveniently in terms of a single paramete
its size. A different class of idealized system makes use
immobilized arrangements of fluid particles~i.e., a quenched
hard sphere fluid! to model a porous medium~see Ref.@2#
and references therein!. In turn, this is characterized throug
its density and the size of the spheres. However, the rele
difference to idealized pores is the presence ofrandomcon-
finement.

*Electronic address: wessels@thphy.uni-duesseldorf.de
†On leave from Institut fu¨r Theoretische Physik II, Heinrich

Heine-Universita¨t Düsseldorf, Universita¨tsstraße 1, 40225 Du¨ssel-
dorf, Germany.
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The study of porous media has been focused so far ma
on atomic liquids. In a colloidal fluid, length and time scal
are much larger, facilitating, e.g., studies in real space
time @6#. We believe that the use of colloidal suspensions
model systems to study the behavior of adsorbates in po
media can be as beneficial as their use to study many o
phenomena in condensed matter. However, the experime
challenge lies in constructing three-dimensional porous m
dia suitable for colloidal suspensions.

Colloidal two-dimensional~2D! porous media have bee
prepared by Cruz de Leo´n and co-workers@7,8# by confining
a suspension of large colloids between parallel glass pla
Then, these served as a porous matrix to a fluid of sma
particles which remained mobile and of which they me
sured the structure and effective potentials. To our kno
edge, no experiment similar in spirit has been performed
three dimensions to date. On the other hand, Kluijtmans
co-workers constructed 3D porous glasses of silica sph
@9,10# and silica rods@11#, but studied the dynamics of iso
lated tracer colloids in these media. Weron´ski et al. studied
transport properties in porous media of glass beads@12#.
Still, such glassy arrangements of spherical colloids ar
direct candidate for porous media suitable for colloidal s
pensions. Sediments of large and heavy colloids as use
Refs.@9,10,12# could be brought in contact with a suspensi
of smaller density-matched~to the solvent! colloids of which
the local structure could be determined@7,8#. However, the
size ratio of the two species is a crucial control paramete
has to be large enough (*10) such that the small particle
can penetrate the void space, but should still be small eno
such that no complete separation of length scales occ
©2003 The American Physical Society04-1
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Another way to realize such porous media would be to
laser tweezers. In a binary colloid mixture of which one
the species possesses the same index of refraction a
solvent~via index matching! and the other type has a high
index of refraction, the second species could be trap
while the first would still remain mobile. Using multipl
traps at random positions in space~mimicking a fluid! one
could then realize a model porous matrix@13#. The advan-
tages of this method are the accessibility of very low ma
packing fractions and the full control of the confineme
However, the number of trapped colloids in such setup
typically limited to the order of 100—probably too little t
approach real macroscopic porous media, but in the r
regime to be able to compare to computer simulations, wh
similar numbers are accessible. The crucial advantage
these setups over the use of ‘‘natural’’ porous media is th
model character arising from the use of well-defined mo
disperse matrix spheres, while these still possess the ess
features of random confinement and a highly interconnec
void structure.

One prominent phenomenon that is induced by confi
ment is capillary condensation: A liquid inside the poro
medium is in equilibrium with its vapor outside the medium
In order for a substance to phase separate into a dense l
and a dilute gas phase, a sufficiently long-ranged and s
ciently strong attraction between the constituting particle
necessary. It is well known that the addition of nonadsorb
polymers to colloidal dispersions induces an effective attr
tion between the colloids. The polymer coils are deple
from a shell around each colloid and overlap of these~deple-
tion! shells generates more available volume to the polym
yielding an effective attraction between the colloids. Con
quently, these colloid-polymer mixtures may separate int
colloid-poor~gas! phase and a colloid-rich~liquid! fluid @14#.

The most simplistic theoretical model that has been
plied for the study of such colloid-polymer mixture is th
Asakura-Oosawa~AO! model@15–17# that takes the colloids
to be hard spheres and the polymers to be ideal spheres
are excluded from the colloids. The bulk phase behavio
this model was studied with a variety of techniques, such
effective potentials@18,19#, free volume theory@20#, density
functional theory~DFT! @21,22#, and simulations@19,23,24#.
Recent work has also been devoted to inhomogeneous
ations, i.e., the free interface between demixed fluid pha
@25–28# and the adsorption behavior at a hard wall, where
particular a novel type of entropic wetting was foun
@24,27,28# and the behavior in spatially periodic external p
tentials@29#. The surface tension between demixed collo
polymer systems has been measured experimentally an
tablished to be much lower than for atomic systems@30–33#.
Further, recent experiments confirm wetting of the collo
rich liquid at a hard wall@34,35#.

DFT @36# can be used in two ways to treat adsorbates
porous media. The first is the~conceptually! straightforward
approach via treating the porous medium as an external
tential ~see, e.g., Refs.@37–39#! and to solve for the one
body density distributions of the fluid species. Those can
complicated spatial distributions, hence this approach
computationally demanding, but also yields information
06140
e
f
the

d

x
.
is

ht
re
of
ir
-
tial
d

-

.
uid
fi-
is
g
-

d

s,
-
a

-

hat
f
s

tu-
es
n

-
es-

-

n

o-

e
is

out-of-equilibrium behavior, such as hysteresis in adsorpt
and desorption curves@40–42#.

A recently proposed alternative is to describe t
quenched component on the level of its one-body den
distribution@43#. Following the fundamental measure theo
~FMT! of hard spheres@44–46#, an explicit scheme was ob
tained to generate an approximate excess free energy for~not
necessarily additive! hard-sphere mixtures in contact wit
hard-sphere matrices@43#. Applied to the AO model, the re
sults were compared with those from solving the so-cal
replica-Ornstein-Zernike~ROZ! equations @47–50# and
found to be in good agreement@51#. Meanwhile, this
quenched-annealed~QA! DFT has been compared to com
puter simulations@52# and extended to hard-rod matrice
@53# and lattice fluids@54,55#. FMT in combination with
mean field theory has also been applied to fluids ins
model pores@56,57#.

In this paper, we revisit the AO model in contact with
hard-sphere matrix using the QA DFT of Refs.@43,51#. We
study capillary condensation in a small sample of matrix
well as the fluid-fluid interface inside a bulk matrix. For bo
these phenomena, we distinguish two cases of matrices~i!
matrix particles having the same size as the colloids and~ii !
where they are much larger. These correspond to the
possible experimental realizations we discussed earlier in
Introduction, but also serve as representative cases bec
their behavior is fundamentally different. Concerning cap
lary condensation, we focus on the possible experime
realization and consider a bulk mixture in contact with
small sample of matrix. Furthermore, we elaborate if a
how capillary condensation could be observable in such
periments. Concerning the fluid-fluid interface, we study
interfacial profiles as well as the surface tensions inside
matrix. For the case of small matrix particles~i!, we deter-
mine the nature of decay~monotonic or periodic! of the in-
terfaces which we compare with the bulk pair correlatio
For the case of large matrix particles~ii !, we observe a
simple rescaling of the bulk as well as the interface res
with respect to the case without matrix. Inhomogeneous s
ations such as the fluid-fluid interface are treated within Q
DFT in a direct fashion, in contrast to, e.g., the ROZ equ
tions. Fluid-fluid interfaces have been studied before
Lennard-Jones systems in contact with porous media u
the Born-Green-Yvon equation as well as computer simu
tions @58,59# and we briefly compare to results of our pr
files.

The paper is organized as follows. In Sec. II we define
theoretical model explicitly. The QA DFT approach is r
viewed in Sec. III, and the results are presented in Sec.
We first consider capillary condensation in a small sam
and then demixing the interfacial profiles and tensions ins
a matrix. We conclude with a discussion in Sec. V.

II. MODEL

We consider a three-component mixture of colloids~de-
noted byc), polymers (p), and immobile matrix particles
(m). Each of these particles are spherical objects with ra
Ri and i 5c,p,m and corresponding number densitiesr i
4-2
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CAPILLARY CONDENSATION AND INTERFACE . . . PHYSICAL REVIEW E 68, 061404 ~2003!
5Ni /V, whereNi is the total number of molecules of speci
i and V is the system volume. All of these components a
modeled as hard bodies, meaning that they cannot ove
but otherwise do not interact with each other, except for
polymer-polymer interaction, which is taken to be ideal, s
Fig. 1. Consequently, whenr is the mutual distance, the pa
potentials become

ui j ~r !5H ` if r ,Ri1Rj

0 if r>Ri1Rj

for i , j 5c,p,m except for i 5 j 5p, ~1!

and concerning the polymer-polymer interaction, this sim
becomes

upp~r !50 for all r . ~2!

As all interactions are either hard core or ideal, the~phase!
behavior is governed by entropic~packing! effects and the
temperatureT does not play a role. The only thermodynam
parameters are the colloid and polymer packing fracti
hc54pRc

3rc/3 and hp54pRp
3rp/3, respectively. The re

maining model parameters are two size ratiosq5Rp /Rc and
s5Rm /Rc and the packing fraction of matrix particles (hm

54pRm
3 rm/3). It has to be mentioned that due to the fa

that the polymers can freely overlap, the ‘‘polymer packi
fraction’’ can easily be larger than one~Fig. 1!. The mixture
of hard spheres with these last-mentioned ideal polym
~i.e., without the matrix particles! is called the AO mixture
@15,16#.

III. DENSITY FUNCTIONAL THEORY

A. Zero-dimensional limit

In this section we derive the zero-dimensional~0D! Helm-
holtz free energy for the three-component system of the
colloid-polymer mixture in contact with quenched ha
spheres. This 0D free energy is used as an input to cons
the fundamental measure theory in the following secti
Here, we give only a brief derivation, a more extensive v
sion with more comments is given in Refs.@43,51#. The es-

FIG. 1. Sketch of the ternary mixture of mobile colloids~dark!,
mobile polymers ~transparent!, and immobile matrix particles
~gray!. The polymer coils can freely overlap. There are three mo
parameters, i.e., the packing fraction of matrix particles (hm), and
two size ratiosq5Rp /Rc ands5Rm /Rc , whereRi is the radius of
particles of speciesi. The packing fractions of colloids and poly
mers,hc andhp , respectively, are the thermodynamic paramete
06140
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sential ingredient is that we need to perform the so-ca
‘‘double average’’ which refers to the statistical average o
all fluid configurations and subsequently over all matrix
alizations. To that end we consider a 0D cavity which eith
does or does not contain a matrix particle. Hence, the
partition sum is that of a simple hard-sphere fluid,

J̄m511 z̄m , ~3!

where z̄m5z exp(bm̄m) is the fugacity of the hard sphere
Further,b51/kBT with kB Boltzmann’s constant andm̄m the
chemical potential. The irrelevant prefactorz scales with the
vanishing volume of the cavity but has no effect to the fin
free energy and will not be discussed further. In general,
use an overbar to refer to quantities of 0D systems. With

grand potential,bV̄m52 ln J̄m, the average number of ma

trix particles ish̄m52 z̄m]bV̄m /] z̄m5 z̄m /(11 z̄m).
Next, we consider the colloid-polymer mixture in conta

with the matrix in zero dimensions. If the cavity is occupie
by a matrix particle, no colloid, or polymer can be prese
On the other hand, if there is no matrix particle, it can eith
be empty, occupied by a single colloid, or an arbitrary nu
ber of polymers. Hence,

J̄5H 1 ~matrix particle in cavity!

z̄c1exp~ z̄p! ~no matrix particle in cavity!,
~4!

where z̄c and z̄p are the colloid and polymer fugacities, re

spectively. Then, the contribution2 ln J̄ to the grand poten-
tial should contain the appropriate statistical weight for ea

of the cases, i.e.,z̄m /J̄m for the first and 1/J̄m for the sec-
ond,

bV̄52
ln@ z̄c1exp~ z̄p!#

11 z̄m

. ~5!

Average particle numbers are again readily obtained viah̄ i

52 z̄i]bV̄/] z̄i for i 5c,p ~not for m). The Helmholtz free
energy can then be calculated using a standard Lege

transformationbF̄5bV̄1( i 5c,ph̄ i ln(z̄i), and we obtain for
the excess part,bF̄exc5bF̄2( i 5c,ph̄ i@ ln(h̄i)21#,

bF̄exc~ h̄c ,h̄p ;h̄m!5~12h̄c2h̄p2h̄m!ln~12h̄c2h̄m!

1h̄c2~12h̄m!ln~12h̄m!. ~6!

This result can be shown to be equal from that which wo
be obtained using the so-called ‘‘replica trick’’@50#.

B. Fundamental measure theory

FMT is a nonlocal density functional theory, in which th
excess part of thethree-dimensionalfree energyFexc is ex-
pressed as a spatial integral over the free energy densityF,

bFexc@$r i~r !%#5E dr F„$nn
i ~r !%…. ~7!

l

.

4-3
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WESSELS, SCHMIDT, AND LÖWEN PHYSICAL REVIEW E68, 061404 ~2003!
This free energy density in turn is assumed to depend on
full set of weighted densities$nn

i (r )%,

nn
i ~r !5E dr 8 wn

i ~r2r 8!r i~r 8!,

5~wn
i

^ r i !~r !, ~8!

which are convolutions~denoted with^ ) with the single-
particle distribution functionsr i(r ) for speciesi 5c,p,m.
The weight functions are obtained from the low-density lim
where the virial series has to be recovered,

w3
i ~r !5u~Ri2r !,

w2
i ~r !5d~Ri2r !, wv2

i ~r !5d~Ri2r !r /r ,

w1
i ~r !5d~Ri2r !/~4pr !, wv1

i ~r !5d~Ri2r !r /~4pr 2!,

w0
i ~r !5d~Ri2r !/~4pr 2!, ~9!

with again i 5c,p,m being one of the three components,u
the Heaviside function, andd the Dirac delta function. There
are four scalar weight functions, with 3 to 0, correspond
to the volume of the particles, the surface area, the m
curvature, and the Euler characteristic, respectively,
these are the so-called ‘‘fundamental measures’’ of
sphere. The two weights on the right-hand side of Eq.~9! are
vector quantities. Often a seventh tensorial weight is use
the context of freezing but this will not be used he
@21,22,46#. The dimensions of the weight functionswn

i are
(length)n23.

Then, the sole approximation made is thatF is taken to
be afunctionof the weighted densitiesnn

i (r ) whereas most
generally one would expect this to be afunctional depen-
dence. This approximation totally sets the form ofF and
following Refs. @22,43,51# we give the expression forF
5F11F21F3 in terms of the zero-dimensional free ener
derived in the preceding section,

F15 (
i 5c,p,m

n0
i w i~$n3

l %!, ~10!

F25 (
i , j 5c,p,m

~n1
i n2

j 2nv1
i
•nv2

j !w i j ~$n3
l %!, ~11!

F35
1

8p (
i , j ,k5c,p,m

S 1

3
n2

i n2
j n2

k2n2
i nv2

j
•nv2

k Dw i jk~$n3
l %!,

~12!

with

w i 1 , . . . ,i t
~$h̄ j%!5] tbF̄exc~$h̄ j%!/]h̄ i 1

¯ ]h̄ i t
. ~13!

All w i 1 , . . . ,i t
of which more than one indices equalp are zero

due to the form ofbF̄exc. Together, Eqs.~6! to ~13! consti-
tute the excess free energy functional for this QA system
06140
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C. Minimization

Having constructed the excess free energy, we can n
immediately move on to the grand-canonical free ene
functional of the colloid-polymer mixture in contact with
matrix,

V@rc~r !,rp~r !;rm~r !#

5Fexc@rc~r !,rp~r !;rm~r !#1kBT (
i 5c,p

E dr r i~r !

3@ ln„r i~r !D i…21#1 (
i 5c,p

E dr r i~r !@Vi~r !2m i #.

~14!

Here,D i is the ‘‘thermal volume’’ which is the product of the
relevant de Broglie wavelengths of the particles of speciei.
Further,m i is the chemical potential andVi is the ~external!
potential acting on componenti. In this paper, we study bulk
phase behavior and the free fluid-fluid interfaces, so we
Vi50. The equilibrium profiles are the ones that minimi
the functional,

dV

drc~r !
50 and

dV

drp~r !
50. ~15!

This yields the Euler-Lagrange or stationarity equationsi
5c,p),

r i~r !5zi exp@ci
(1)
„$r j~r !%…#, ~16!

with zi5D i
21 exp@bmi# the fugacity of componenti and the

one-particle direct correlation functions given by

ci
(1)~r !52b

dFexc@$r j~r !%#

dr i~r !
52(

n
S ]F

]nn
i

^ wn
i D ~r !.

~17!

Obviously, the functional is not minimized with respect
the matrix distributionrm(r ) as this serves as aninput pro-
file. In principle, as we are dealing with a quenched-annea
system in which the matrix is initially~before quenching! a
hard-sphere fluid,rm(r ) should still minimize the hard-
sphere functional@43,51#. However, as density functiona
theory allows us to generate any distributionrm(r ) by ap-
plying any suited external potential~which we can then re-
move after quenching!, we do not need to go into the schem
of generating matrix profiles. Moreover, in the present pa
we use fluid distributions of the matrix particles which min
mize ~at least locally! the hard-sphere functional without ex
ternal potential for any packing fraction. This restricts t
matrix distribution to be homogeneous, i.e., constant
space,rm(r )5const.

IV. RESULTS

In this section, we show results of the effect of the ha
sphere matrix on the AO colloid-polymer mixture concerni
capillary condensation in a small sample of matrix, a
4-4



ul
th

e

m

e

ge

-

en
-
on

a

o

e

e

ec
th

o
ly-

he
s

of
-

al-
ng
-
m-

ed

ly
ro
e-
y
ix
y-
d to
les

ied

er

This

re-
etc.
rgy
he-
rth

e.g.,

the
se
he
ich

CAPILLARY CONDENSATION AND INTERFACE . . . PHYSICAL REVIEW E 68, 061404 ~2003!
phase behavior and free fluid-fluid interfaces inside a b
matrix. Throughout this section, we distinguish between
colloid-sized matrix particles (s51) and the large matrix
particles~we uses550). In the first case, as we will see, on
is limited to small matrix packing fractions~up to hm of the
order of 0.2) as for high packing fractions the pores beco
too small for the colloids and the polymers to constitute
real fluid in the matrix. For the large matrix particles, high
matrix packing fractions are accessible~up to hm50.5). Fi-
nally, in all cases we useq50.6, for which size ratio the AO
model has a stable fluid-fluid demixing area~with respect to
freezing, which we do not consider!.

A. Bulk fluid free energy

In the fluid phase, the densities are spatially homo
neous, and the constant distributionsr i(r )5r i solve the sta-
tionarity Eqs.~16! and ~17!. Therefore, we only have to in
tegrate the weights over space,*dr wn

i , and the weighted
densities become

n3
i 5h i ,

n2
i 53h i /Ri ,

n1
i 53h i /~4pRi

2!,

n0
i 53h i /~4pRi

3!,

nv2
i 5nv1

i 50, ~18!

with i 5c,p,m. Substituting these expressions in the free
ergy density, Eqs.~10!–~12!, we obtain an analytical expres
sion for the bulk excess free energy. Defining the dimensi
less bulk free energy density,f 5bFVc /V, with Vc

54pRc
3/3 the volume of a colloid, this becomes

f ~hc ,hp ;hm!5hc~ ln hc21!1
hp

q3
~ ln hp21!1 f 0~hc ,hm!

2
hp

q3
ln a~hc ,hm!, ~19!

with the last two terms being the excess free energy. We h
separated the excess free energy in two terms wheref 0 is the
excess free energy density of a fluid of hard spheres in c
tact with a hard-sphere matrix anda is the fraction of free
volume for the polymers in the presence the hard sph
colloidal fluid and the hard sphere matrix@20,22#. The ex-
pressions forf 0 and a are quite extensive and given in th
Appendix. In going from Eq.~7! to ~19! we have discarded
two terms,hc ln(Dc /Vc) and (hp /q3)ln(Dp /Vp), linear in the
colloid and polymer packing fractions. These have no eff
on the phase behavior. Due to the ideal interactions of
polymers, the excess free energy density is only linear inhp
and the polymer fugacity becomes simply

zpVp5hp /a~hc ,hm!. ~20!
06140
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This relation is trivially invertible, so switching from system
representation@using f (hc ,hp ;hm)] to the polymer reser-
voir representation @in terms of ṽ(hc ,zp ;hm)5 f
2mphp /q3] is straightforwardly done. Moreover, for zer
packing fractions of colloids and matrix particles, the po
mer free volume fraction is trivial,a(0,0)51. Consequently,
the fugacity equals the packing fraction of polymers in t
polymer reservoir,zpVp5hp,r ~where there are no colloid
and matrix particles!, and often, we usehp,r when referring
to the fugacity. Finally, we mention that in the absence
matrix particles,hm50, this theory is equivalent to the free
volume theory for the AO model@20–22#.

Concerning the fluid-fluid demixing, the spinodals are c
culated in the canonical representation, by solvi
det@]2f /]h i]h j #50 with i , j 5c,p, which can be done ana
lytically. Binodals are determined by constructing the co
mon tangents of the semigrand potentialṽ(hc ,hp,r ;hm) at
fixed fugacityhp,r .

When the matrix particles are very large, it is expect
that the excluded volume effects dominate over other~sur-
face or capillary! effects. In particular, if one considers on
one infinitely large particle, still corresponding to a nonze
matrix packing fraction, one would expect normal bulk b
havior of the mixture as most of the mixture is ‘‘far’’ awa
from the matrix particle. Equivalently, for very large matr
particles, the total volume of the surrounding depletion la
ers that are responsible for the surface effects, compare
the actual volume occupied by the matrix particles, sca
with @4p(Rm1Rc)

3rm/32hm#/hm}3/s for the colloids and
@4p(Rm1Rp)3rm/32hm#/hm}3q/s for the polymers, and
these both go to zero fors→`. However, in this limit, we
still need to correct for the volume as this is partly occup
by infinitely large matrix particles, i.e.,V→(12hm)V. In-
deed, applyings→` to the bulk free energy of Eq.~19!, we
reobtain the bulk behavior of the plain AO colloid-polym
mixture without matrix, i.e., it can be shown that

lim
s→`

f ~hc ,hp ;hm!5~12hm! f S hc

12hm
,

hp

12hm
;0D ,

~21!

where the free energy density has to be rescaled as well.
term can be considered to be the zeroth in a 1/s expansion of
the free energy of which higher order terms should cor
spond to effects due to surfaces, capillarity, curvature,
However, because of the formidable form of the free ene
it is a daunting task to connect every term to a certain p
nomenon and we leave this to future investigation. It is wo
mentioning that a power series in 1/s is only a simple model
dependence. In general, there can be nonanalyticities,
arising from wetting phenomena around curved surfaces@60#
of matrix particles.

B. Capillary condensation in a small sample of porous matrix

A porous matrix of quenched hard-spheres stabilizes
colloid-rich phase with respect to the colloidal gas pha
@51#. This is called capillary condensation and it is due to t
attractive depletion potential between the colloids, wh
4-5
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also acts between colloids and matrix particles. In this s
tion we present capillary condensation in a representa
which is appropriate to compare with experiments. In an
perimental setup one typically has a canonical ensemble,
a test tube, of colloid-polymer mixture. By adding a sm
sample of porous material, the bulk mixture in the test tu
acts as a colloid-polymer reservoir to the sample, but v
versa, if the sample is small enough, its state will not ha
any effect on that of the bulk mixture@see Fig. 2~inset!#. In
the colloid-poor~and polymer-rich! part of the phase dia
gram, on approaching bulk coexistence, the conditions
coexistence in the porous sample are reached before tho
bulk, i.e., capillary condensation in the sample occu
Hence, capillary condensation appears as a line in the sy
representation terminating in a capillary critical point. This
shown in Figs. 2 and 3 for the case ofs51 and s550,
respectively, and various densities of the matrix. The co
istence of the bulk colloid-polymer mixture appears in t
usual system representation, where tie lines connect coe
ing states. For each of the matrix densities, a capillary
runs along the bulk binodal in the colloid-poor part of t
phase diagram.

First, we determine the conditions for coexistence ins
the matrix, i.e., we compute the combinations of chemi
potentialsmc,coex

porous and mp,coex
porous, for which demixing occurs

within the porous sample. These are fixed by the chem
potentials of the bulk colloid-polymer mixture,mc

bulk and
mp

bulk , so solving

FIG. 2. Phase diagram of a bulk AO colloid-polymer mixtu
(q50.6) in chemical contact with a small sample of porous ma
rial (s51). Concerning the bulk mixture: the thick full curve is th
binodal, the dashed is the spinodal, the large filled circle~where
they meet! is the critical point, and the straight~thin! lines are the
tie lines connecting coexisting state points. The capillary lines~full
curves! appear in the upper left~colloid-poor! part of the phase
diagram and each terminates in a capillary critical point~small filled
circles!. From lower right to upper left, the curves correspond to
increasing packing fraction of the matrix,hm50.05,0.1,0.15,0.2
~the last one is practically on the vertical axis nearhp50.8). The
inset shows a sketch of the setup: a test tube is sealed at the to
filled with the colloid-polymer mixture~densitieshc andhp) and at
the bottom lies the small sample of porous matrix.
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bulk~hc ,hp!5mc,coex

porous,

mp
bulk~hc ,hp!5mp,coex

porous ~22!

for hc and hp , we obtain the capillary lines in the phas
diagram in system representation. The trend can be spo
from Figs. 2 and 3, increasing the matrix packing fraction
the sample, the capillary line moves away from the bu
binodal but at the same time the capillary critical point shi
away from the bulk critical point. Qualitatively, this applie
to both thes51 and s550 cases. However, in thes550
case the capillary lines extend to much closer to the b
critical point, but they are hardly distinguishable from th
bulk binodal. Concerning the colloid-sized matrix particle
s51, these capillary lines are well separated from the b
binodal, but the capillary critical points are located mu
deeper into the colloidal gas regime.

Next, we briefly discuss the implications this has for po
sible experiments. Focusing on the case of the large ma
particles,s550, we take as an examplehm50.5. In this case
the difference in chemical potential at coexistence of
mixture in bulk and inside the porous sample at const
polymer fugacity is of the order,bDmc

coex;0.1, and it scales
roughly with 1/s. This difference is very small and brings u
the question if this~i.e., capillary condensation! is observable
in experiments. Typically, the effect of gravity is reduced
density matching the colloids with the solvent, i.e., cancel
gravity by means of buoyancy. However, this density mat
ing is never perfect, and the length scale (bmcg)21 is a
measure for its success~at infinity it is perfect!. Hereg is the
gravitational acceleration andmc5(rcolloid2rsolvent)Vc the
effective mass of the colloid in solution, withrcolloid and
rsolvent the mass densities inside the colloid and of the s
vent, respectively. Therefore this length scale is strongly
pendent on the colloid size, (bmcg)21}Rc

23 , and can range
from micrometers~large colloids! to meters~small colloids!
in experiments@32#. Typically, polymers are much less se

-

n

and

FIG. 3. Same as in Fig. 2, but now for a sample of porous ma
with s550. Here the matrix packing fractions increase as follow
hm50.1,0.2,0.3,0.4,0.5~again from lower right to upper left!. The
inset is the magnification of the area with the capillary critic
points.
4-6



e
n
th
to
r

u

p
t,

th
in
he
n
e
s
a
w

n
c.

.,
a

ix
he
c-

ed
-
the
rix
e

the
k-
to
t

si-
ly

ich
and
les
e
ex-
(1

ls
l

cal
n-

he
he
nd
rated
-

by
ns
s,
one

are

e

e

om
e

is
e

e
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sitive to gravity as long as the solvent is good. When ther
coexistence inside a test tube, there is only real coexiste
at the liquid-gas interface, whereas below and above,
colloids have slightly different chemical potentials due
their gravitational energy. Consequently, moving upwa
from the interface, sayDz, the colloid chemical potential is
(bmcg)Dz lower than at coexistence. By placing the poro
sample withinDz* 5bDmc

coex/(bmcg) of the interface, cap-
illary condensation should take place. Taking as an exam
bDmc

coex;0.1 and (bmcg)21;1 m, it becomes clear tha
within the context of this~idealized! model, values ofDz*
;0.1 m should be accessible in experiments, meaning
capillary condensation could in principle be observed. Us
smaller matrix particles, with size similar to the size of t
colloids ~our cases51), the effect of capillary condensatio
becomes much more pronounced and it should therefor
observable in a similar way as for large matrix particle
From an experimental point of view, however, we think th
it is a much larger effort to produce such matrices with lo
enough packing fractions~see Fig. 4, where we discusshm
&0.2) in order to be penetrable to the mobile colloids a
polymers. We recall the possible realization given in Se
using laser tweezers.

C. Phase behavior inside a bulk porous matrix

We now return to the full ternary mixture in bulk, i.e
where in the preceding section, the matrix was only a sm
sample immersed in a large system of colloid-polymer m
ture, in this and the following sections we consider t
colloid-polymer mixture in a system-wide matrix. In this se

FIG. 4. Fluid-fluid binodals of an AO colloid-polymer mixtur
(q50.6) inside a bulk porous matrix (s51). Tie lines connecting
coexisting state point are not drawn but run horizontal. The low
~thicker! curve is the result in the absence of any matrix,hm50.
For the other curves, the matrix packing fraction increases fr
bottom to top,hm50,0.05,0.1,0.15,0.2. The filled circles are th
critical points~large,hm50). The dotted line is the Fisher-Widom
line for hm50, below which the decay of correlations in the fluid
oscillatory and above which these are monotonic. The point wh
the FW line hits the binodal is marked by a~large! star. The FW
lines for the other matrix packing fractions are not shown, only th
crossings with the binodals~small stars!.
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tion, we revisit the demixing phase behavior which we ne
in the following sections where we study the fluid-fluid in
terface inside a matrix. Figure 4 is the phase diagram in
polymer-reservoir representation for colloid-sized mat
particles,s51, for various matrix densities. Increasing th
matrix packing fraction, there is less volume available to
colloids and the critical point shifts to smaller colloid pac
ing fractions. At the same time, the porous matrix acts
keep the mixture ‘‘mixed’’ and therefore, the critical poin
shifts to higher polymer fugacities. For the case ofs51, we
cannot go to much higher packing fractions thanhm;0.2 as
then the critical fugacity shoots up dramatically to unphy
cally large values. This may be partly due to the relative
large depletion shells around the matrix particles wh
cause the pore sizes to become too small for the colloids
polymers to enter the matrix. In case of large matrix partic
(s550, see Fig. 5!, the latter effect is negligible and the por
sizes are always large enough. Consequently, only the
cluded volume remains and rescaling the binodals with
2hm) is very effective practically mapping the binoda
onto each other, Fig. 5~inset!. This rescaling is unsuccessfu
for s51 as can be directly seen from the fact that the criti
fugacities in Fig. 4 are different for each of the matrix de
sities.

In addition, we have determined the nature of t
asymptotic decay of pair correlations of the fluid inside t
matrix @61#. These can either be monotonic or periodic a
the corresponding regions in the phase diagram are sepa
by the Fisher-Widom~FW! line, at which both types of de
cay are equally long range. This line can be determined
studying the pole structure of the total correlation functio
hi j in Fourier space@61#. In the present case of QA system
rather than using the usual Ornstein-Zernike equations,
has to use the replica-Ornstein-Zernike~ROZ! equations
@50#. Neglecting correlations between the replicas, these

hmm~r !5cmm~r !1rm~cmm^ hmm!~r !,

hi j ~r !5ci j ~r !1 (
t5c,p,m

r t~cit ^ ht j !~r !, ~23!

r

re

ir

FIG. 5. Same as in Fig. 4, but now fors550. Matrix packing
fractions increase from right to left,hm50,0.1,0.2,0.3,0.4,0.5. In-
set: same curves now rescaled, i.e.,hp,r vs hc /(12hm).
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WESSELS, SCHMIDT, AND LÖWEN PHYSICAL REVIEW E68, 061404 ~2003!
with i , j 5c,p,m except i 5 j 5m. Here, for i j Þmm, the
ci j (r )52d2Fexc/dr i(r )dr j (r ) are the direct correlation
functions for which we obtain analytic expressions by diffe
entiating Eq.~7!. The matrix structure is determined befo
the quench, socmm and hmm are those of the normal hard
sphere fluid at densityrm ~Percus-Yevick-compressibility
closure, see Refs.@43,51#!. This analysis follows closely tha
of Ref. @22# in which more details are given. In view of ou
subsequent interface study, we focus on the point where
FW line meets the binodal. In Fig. 4 (s51), these are de
noted by stars, and we observe that the shifts due to
matrices follow the same trend as the critical points. In c
of s550, we have not determined the FW lines, but there
no reason to expect the simple rescaling of the case with
matrix to fail in this case. Furthermore, concerning the d
sity profiles~in the following section,s550), we stay well
within the oscillatory regime.

D. Fluid-fluid profiles inside a bulk porous matrix

We have calculated density profiles at coexistence nor
to the colloidal gas-liquid interface. In this case of plan
interfaces, the density distribution is only a function of o
spatial coordinatez; i.e., r i(r )5r i(z). The only dependence
on the other two degrees of freedom is in the weights
this can be integrated out, to obtain projected weigh
w̃n

i (z)5*dx dy wn
i (r ) ~see, e.g., Ref.@62#!. The profiles are

discretized and calculated via an iteration procedure, i.e.
insert profiles on the right hand side of Eq.~16! and then
obtain new profiles on the left hand side, which are th
reinserted on the right. Using step functions as iterat
seeds, this procedure converges in the~local! direction of the
lowest free energy. We normalize the densities as in b
i.e., we plotr i(z)Vi so thatr i(6`)Vi5h i

(I,II) , with I and II
referring to the coexisting phases. The zero ofz is set at the

FIG. 6. Colloid density profiles (Vc5
4
3 pRc

3) normal to the free
fluid-fluid interface for increasing matrix packing fractions at fix
polymer fugacity. Parameters areq50.6, s51, andhp,r51 ~see
Fig. 4!. The matrix packing fraction increases from top~thick pro-
file, hm50) to bottom:hm50,0.05,0.1,0.15,0.2. Inset: correspon
ing polymer profiles (rpVp vs z/Rc , with Vp5

4
3 pRp

3) for the same
values of the matrix packing fractions~also increasing from top to
bottom!.
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location of the interface, defined through the Gibbs div
ing surface of the colloids: *2`

0 dz@rc(z)2rc(2`)#
1*0

`dz@rc(z)2rc(`)#50.
In Figs. 6 and 7, we have plotted the colloid profiles no

mal to the interface fors51 ands550, respectively. Colloid
profiles are shown for increasing densities of the matrix
fixed fugacity,hp,r51, corresponding to the bulk binoda
in Figs. 4 and 5. For the case ofs51, this means that, as th
critical point shifts to higher fugacities, the profiles are e
fectively taken at fugacities closer to the critical value. W
observe this well-known behavior in Fig. 6; close to the cr
cal point the profiles are smoother and modulations less
nounced. Away from the critical point, the interface is sha
but the periodic modulations due to the surface extend fa
the bulk fluid. The inset of Fig. 6 shows the correspond
polymer profiles. In Ref.@58#, the main result is that the
interface widens due to the porous medium. The same h
pens here and is due to fact that one is effectively close
the critical point.

In Fig. 7, as we saw for the bulk phase diagram, there
simple rescaling at work and the profiles merely differ by
factor (12hm). The inset in Fig. 7 shows the same collo
profiles but now rescaled, and we have zoomed in on
region close to the interface. Clearly, even the modulati
follow the case without matrix with the same accuracy as
bulk coexistence values in the inset of Fig. 5.

We have also studied the asymptotic decay of correlati
with the interface via the density profiles. These must be
the same nature as the decay of the direct correlations in
~determined via the ROZ equations, see the preceding
tion!, i.e., either monotonic or periodic@61#. However, deter-
mining the crossing points of the FW line with the binoda
using the interfacial profiles yields a systematic shift aw
from the critical point, compared to the bulk calculatio
(;5%). Probably, this is due to numerical limits. Close
this crossing point both~the periodic and the monotonic!
modes of decay are equally strong, so only far away from

FIG. 7. Same as in Fig. 6 but now fors550. Other parameters
are q50.6 andhp,r51 ~see Fig. 5!. The matrix packing fractions
increase from top ~thick profile, hm50) to bottom: hm

50,0.1,0.2,0.3,0.4,0.5. Inset: magnification of therescaledprofiles
for the same curves, i.e.,rcVc /(12hm) vs z/Rc ~where again, ma-
trix packing fractions increase from top to bottom!.
4-8
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interface truly asymptotic behavior may be observed. Ho
ever, there, the periodic modulations may have become
small to be observable. Furthermore, our numerical rou
has no real incentive to minimize the tails of the profiles
the gain in free energy is very low.

E. Fluid-fluid surface tension inside a bulk porous matrix

The presence of the matrix also affects the surface ten
between the colloidal liquid and gas phases. The interfa
or surface tensiong of planar interfaces in the grand canon
cal ensemble is defined through

gA5V inh1PV, ~24!

where A is the amount of surface area,V inh is the grand
potential for the inhomogeneous system, andP the pressure
~i.e., 2PV is the grand potential for the homogeneous b
system!. With our numerical scheme we calculate dens
profiles inz direction so it makes sense to write the surfa
tension as an integral,

g5E dz@v~z!1P#, ~25!

with

v~z!5kBT (
i 5c,p

r i~z!@ ln„r i~z!D i…21#2 (
i 5c,p

m ir i~z!

1kBTF„$nn
i ~z!%…. ~26!

The quantityv(z) is a ‘‘local’’ grand potential density whose
average over space yields the actual grand potential per

FIG. 8. Fluid-fluid surface tensions vs the difference in collo
packing fractions of the two fluid phases forq50.6, s51, and
various values of the matrix packing fraction. The matrix pack
fractions increase from right (hm50, thick curve! to left, hm

50,0.05,0.1,0.15,0.2. Each curve is computed from the crit
point, hp,r5hp,r

(crit) ~where g50) until twice the critical fugacity,
hp,r52hp,r

(crit) .
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of volume V inh /V. In Figs. 8 and 9 we have plotted th
surface tension versus the colloidal density difference in
two phases fors51 ands550, respectively. In both case
the effect of the matrix is that the surface tensions incre
faster with the differenceuhc

(II) 2hc
(I) u which is of course due

to the fact that the coexistence area becomes less wide a
coexisting packing fractions themselves become smaller
the inset of Fig. 9, we show the same curves rescaled w
(12hm), and the rescaled graphs fall almost on top of t
original one without any matrix. Here, we note that also t
surface tension has been rescaled with (12hm); this is
needed from Eq.~21! as the free energy densityv(z) needs
to be rescaled as well. Again, this rescaling procedure is
successful fors51.

Often, the surface tension is plotted against the rela
distance to the critical point, (hp,r /hp,r

(crit)21) @27#. However,
this does not improve the rescaling fors51 and this can be
seen from the fact that the end points of the curves in Fig
and 9 are all at twice the critical fugacity,hp,r52hp,r

(crit) , and
the surface tensions~rescaled or not! are at quite different
values at the end points.

V. CONCLUSION

We have considered the full ternary system of ha
spheres and ideal polymers~represented by the AO model! in
contact with a quenched hard-sphere fluid acting as a po
matrix. Using a QA DFT in the spirit of Rosenfeld’s funda
mental measure approach, we studied capillary condensa
in a small sample of matrix as well as the fluid-fluid interfa
inside a bulk matrix. The results have been presented
terms of two types of matrices:~i! colloid-sized matrix par-
ticles ~size ratios51) being a reference system and~ii ! ma-
trix particles which are much larger than the colloids~size
ratio s550). The case of small matrix particles is limited
relatively low packing fractions (hm;0.2), whereas in the
second case, much higher matrix packing fractions are ac

l

FIG. 9. Same as in Fig. 8 but now fors550. Again, matrix
packing fractions increase from right (hm50, thick curve! to left,
hm50,0.1,0.2,0.3,0.4,0.5. Each curve is computed from the crit
point, hp,r5hp,r

(crit) ~where g50) until twice the critical fugacity,
hp,r52hp,r

(crit) . Inset: the same~but rescaled! curves are shown, i.e.
bgRc

2/(12hm) vs uhc
(II) 2hc

(I) u/(12hm).
4-9
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WESSELS, SCHMIDT, AND LÖWEN PHYSICAL REVIEW E68, 061404 ~2003!
sible (hm;0.5), the pores of the matrix being much larg
Additionally, we have suggested that case~i! as well as~ii !
could in principle be realized experimentally in 3D, i.e., u
ing laser tweezers and colloidal sediments, respectively
serve as a model porous medium for colloidal suspensio

We have shown that in the limit of infinitely large matr
particles, the standard AO results~without matrix! are recov-
ered via a simple rescaling. In case ofs550 our bulk but
also the interface results can be mapped onto the case
out matrix with high accuracy. However, in the case of sm
matrix particles (s51) this mapping fails, which is due to
the more complex~and smaller! pore geometry on the col
loidal scale.

Assuming a more ‘‘experimental’’ point of view, we hav
considered a small sample of porous matrix immersed
large system of colloid-polymer mixture. When the flui
fluid binodal is approached in the colloid-poor region of t
phase diagram, capillary condensation occurs in the sam
This transition appears as a capillary line in the phase
gram ~in system representation! extending along the binoda
and ending in a capillary critical point. In case of small m
trix particles, the capillary lines~for various densities of the
matrix! are well separated from the bulk binodal but the ca
illary critical points lie deep into the colloidal gas regim
Concerning the large matrix particles, these capillary criti
points are located closer to the bulk critical point, howev
the capillary lines are also very close to the binodal. S
using density-matched colloidal suspensions, we argue
capillary condensation may be observable in experiment

We have computed fluid-fluid profiles inside the poro
matrix as well as the corresponding surface tensions. Fs
550, these can be mapped onto the case without matrix
for s51 the critical point shifts to higher polymer fugacitie
Therefore, increasing the density of the matrix, profiles
come smoother due to effective approach of the criti
point. Solving the ROZ equations, we have also determi
the crossover between monotonic and periodic decay of
correlations of the mixture inside the matrix fors51. Com-
paring these with the decay of the interfacial correlations
find a small discrepancy which is probably due to numeri
limits.

It should be noted that we do not expect our current
proach to satisfactorily describe the~subtle! phenomena as
sociated with wetting of the curved surfaces of the ma
particles by the colloidal liquid@60,63#. Especially for s
550 close to the critical point in the complete wetting r
gime, we can well imagine that the growths of thick films
colloidal liquid on the matrix spheres have a profound infl
ence on the occurrence and precise location of the capi
condensation transition and on the structure of the fluid-fl
interface inside the matrix. We do not expect this effect to
included in our current treatment. Note that in order to obt
the wetting transition at a hard wall@27,28# and at a curved
surface@63# inhomogeneous density profiles need to be c
culated, which we do not do in our present method of inv
tigation of the bulk phase behavior.

We also note that the attraction between colloids, as w
as that between colloids and matrix particles~which is gen-
erated by the polymers!, arises naturally from our DFT treat
06140
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ment. This depletion attraction, however, has a many-b
character for the size ratio considered (q50.6) as multiple
overlap between one polymer and three or more colloids
occur; for a discussion of how to obtain an effective Ham
tonian for the colloids by integrating out the polymer degre
of freedom in the equilibrium binary AO model, see Re
@64#. The presence of many-body effective interactions ha
profound influence on phase behavior inside a porous ma
For a detailed comparison of the bulk phase behavior
tained via the present treatment including all polym
induced many-body interactions, and one, based on the R
equations, that only retains the pairwise contribution to
effective Hamiltonian, see Ref.@51#. A more detailed study
of the present approach compared to findings for simple
ids interacting with pairwise attractive forces would be ve
interesting, but is beyond the scope of the present work.

Concerning the fluid profiles, we have only considered
homogeneous background of matrix particles in this pape
would be interesting to use inhomogeneous matrix real
tions, as, e.g., a step function of zero and nonzero ma
packing fraction~i.e., the interface of empty space and m
trix! or a constant matrix background in contact with a ha
wall. Both types could give rise to interesting and subst
tially modified wetting behavior. Additionally, one could als
consider other types of matrices, e.g., quenched polymer
combinations of quenched colloids with quenched polym
@43,51#. These are maybe less realistic from an experime
point of view but still interesting due to the competition
capillary condensation with evaporation.

As we have mentioned in the Introduction, there are
experiments concerning phase behavior of colloidal susp
sions in contact with 3D porous media to our knowledge.
hope that the accumulating results@7–12,43,51#, including
those in this paper, may encourage more experimental eff
in that direction. It is important to keep in mind that a su
able porous matrix is a compromise between length sca
large enough to allow penetration of the colloids into t
void space, but small enough to retain significant surface
capillary effects. In colloidal fluids in general, these la
mentioned effects are known to be much smaller than
atomic systems, thus providing a formidable challenge
experimentalists aiming to observe, e.g., capillary conden
tion of a colloidal suspension in a porous matrix.
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APPENDIX: BULK FLUID FREE ENERGY

The bulk free energy of the colloid-polymer mixture
contact with a homogeneous hard-sphere porous matri
given in Eq.~19! is
.

ic

a,

g-

e,

e

M

06140
as

f ~hc ,hp ,hm!5hc~ ln hc21!1
hp

q3
~ ln hp21!1 f 0~hc ,hm!

2
hp

q3
ln a~hc ,hm!. ~A1!

We note the occurrence of only third and lower powers ofs
in both f 0 anda, which are given by
f 0~hc ,hm!5
hm

s3
ln~12hm!2S hm

s3
1hcD ln~12hc2hm!1

3hchm
2 @21hc~hm22!22hm#

2s3~12hm!2~12hc2hm!2

1
3hc

2s3~12hc2hm!2
$hm~222hc1hm!s1hm~21hc22hm!s21hc~22hc22hm!s3% ~A2!

and

ln a~hc ,hm!5 ln~12hc2hm!2
q

2s3~12hc2hm!3
ˆ2hm@11hc

21hm1hm
2 2hc~21hm!#q2

23hmq@221hm1hm
2 12hc

2~211q!2hc~241hm12q14hmq!#s

16hm@~12hc2hm!213hc~12hc2hm!q1hc~112hc2hm!q2#s2

1hc$2hc~12hm!@121~322q!q#12~12hm!2@31q~31q!#1hc
2@61q~2312q!#%s3

‰. ~A3!
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