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We consider the Asakura-Oosawa model of hard sphere colloids and ideal polymers in contact with a porous
matrix modeled by immobilized configurations of hard spheres. For this ternary mixture a fundamental mea-
sure density functional theory is employed, where the matrix particles are quenched and the colloids and
polymers are annealed, i.e., allowed to equilibrate. We study capillary condensation of the mixture in a small
sample of matrix as well as demixing and the fluid-fluid interface inside a bulk matrix. Density profiles normal
to the interface and surface tensions are calculated and compared to the case without matrix. Two kinds of
matrices are considere@) colloid-sized matrix particles at low packing fractions diglarge matrix particles
at high packing fractions. These two cases show fundamentally different behavior and should both be experi-
mentally realizable. Furthermore, we argue that capillary condensation of a colloidal suspension could be
experimentally accessible. We find that in cégg even at high packing fractions, the main effect of the matrix
is to exclude volume and, to high accuracy, the results can be mapped onto those of the same system without
matrix via a simple rescaling.
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[. INTRODUCTION The study of porous media has been focused so far mainly
on atomic liquids. In a colloidal fluid, length and time scales
Bringing a fluid in contact with a porous medium has aare much larger, facilitating, e.g., studies in real space and
profound influence on its characteristics and phase behaviaime [6]. We believe that the use of colloidal suspensions as
[1,2]. Due to abundance of surfaces and their necessary proxnodel systems to study the behavior of adsorbates in porous
imity, surface-fluid interactions as well as capillarity effects media can be as beneficial as their use to study many other
play a prominent role. Moreover, the system may be trappe@henomena in condensed matter. However, the experimental
in locally stable states, and its behavior governed by hystelgpalienge lies in constructing three-dimensional porous me-
esis. Apart from the above fundamental questions, the studyi; suitable for colloidal suspensions.

of alfjsdo;bfliées in por?us ”?egia i_s lals% of grﬁat_intlerets; N Colloidal two-dimensiona(2D) porous media have been
applied fields ranging from industrial and geophysical to bio-y.enared by Cruz de Lecand co-worker§7,8] by confining

medical and pharmaceutical systef@s3). a suspension of large colloids between parallel glass plates.

Many natural porous materials are tremendously complexr . .
; . . : hen, these served as a porous matrix to a fluid of smaller
on a microscopic scale: irregularly shaped pores build a con- P

Féarticles which remained mobile and of which they mea-

[4,5]. In contrast, to facilitate systematic studies, one oftensgred the struqture an_d ﬁﬁepnve_pothentliajls. To othr knc:jvx{l-
relies on model pores like slitlike, cylindrical or spherical €99€, N0 experiment similar in spirit has been performed In

pores(see Refs[1,2] and references ther@inThe pore is three dimensions to date. On the other hand, Klgi_jtmans and
then described conveniently in terms of a single parameter—CO-workers constructed 3D porous glasses of silica spheres
its size. A different class of idealized system makes use of9,10] and silica rod411], but studied the dynamics of iso-
immobilized arrangements of fluid particlése., a quenched lated tracer colloids in these media. Wesknhet al. studied
hard sphere fluidto model a porous mediursee Ref[2]  transport properties in porous media of glass bedds.
and references thergirin turn, this is characterized through Still, such glassy arrangements of spherical colloids are a
its density and the size of the spheres. However, the relevaulirect candidate for porous media suitable for colloidal sus-
difference to idealized pores is the presenceasidomcon-  pensions. Sediments of large and heavy colloids as used in
finement. Refs.[9,10,17 could be brought in contact with a suspension
of smaller density-matche(to the solventcolloids of which
the local structure could be determingt8]. However, the
*Electronic address: wessels@thphy.uni-duesseldorf.de size ratio of the two species is a crucial control parameter: It
'On leave from Institut fu Theoretische Physik I, Heinrich- has to be large enoughe(10) such that the small particles
Heine-Universita Dusseldorf, UniversitsstraBe 1, 40225 Bsel-  can penetrate the void space, but should still be small enough
dorf, Germany. such that no complete separation of length scales occurs.
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Another way to realize such porous media would be to useut-of-equilibrium behavior, such as hysteresis in adsorption
laser tweezers. In a binary colloid mixture of which one ofand desorption curvggl0—432.

the species possesses the same index of refraction as theA recently proposed alternative is to describe the
solvent(via index matchingand the other type has a higher quenched component on the level of its one-body density
index of refraction, the second species could be trappe#istribution[43]. Following the fundamental measure theory
while the first would still remain mobile. Using multiple (FMT) of hard spheref44—46, an explicit scheme was ob-
traps at random positions in spatimicking a fluid one  tained to generate an approximate excess free energgdor
could then realize a model porous matf3]. The advan- necessarily addlt[\aehard—sphgre mixtures in contact with
tages of this method are the accessibility of very low matrix@rd-sphere matriceg3]. Applied to the AO model, the re-
packing fractions and the full control of the confinement.Sults were compared with those from solving the so-called

However, the number of trapped colloids in such setups i£Plica-Ornstein-Zernike(ROZ) - equations [47-50 and
typically limited to the order of 100—probably too little to found to be in good agreemeribl]. Meanwhile, this

approach real macroscopic porous media, but in the righiuenched-anneale@A) DFT has been compared to com-

regime to be able to compare to computer simulations, WherflJter simulations52] and extended to hard-rod matrices
similar numbers are accessible. The crucial advantage ¢P3l and lattice fluids[54,55. FMT in combination with
these setups over the use of “natural” porous media is theif€an field theory has also been applied to fluids inside
model character arising from the use of well-defined mono/model pore456,57. _ _

(In this paper, we revisit the AO model in contact with a

disperse matrix spheres, while these still possess the essentéa , i
features of random confinement and a highly interconnectefa"d-sphere matrix using the QA DFT of Refé3,51). we
study capillary condensation in a small sample of matrix as

void structure. d S S .
One prominent phenomenon that is induced by confineWell as the fluid-fluid interface inside a bulk matrix. For both

ment is capillary condensation: A liquid inside the porousth®S€ phenomena, we distinguish two cases of matrices:
medium is in equilibrium with its vapor outside the medium, Matrix particles having the same size as the colloids (@hd

In order for a substance to phase separate into a dense liqujf1ere they are much larger. These correspond to the two
and a dilute gas phase, a sufficiently long-ranged and suffRossible experimental realizations we discussed earlier in the
ciently strong attraction between the constituting particles idntroduction, but also serve as representative cases because
necessary. It is well known that the addition of nonadsorbingn€ir behavior is fundamentally different. Concerning capil-
polymers to colloidal dispersions induces an effective attract@y_condensation, we focus on the possible experimental
tion between the colloids. The polymer coils are depleted€@lization and consider a bulk mixture in contact with a
from a shell around each colloid and overlap of thetple- small sample of matrix. Furthermore, we elaborate if and
tion) shells generates more available volume to the polymerd!°W capillary condensation could be observable in such ex-
yielding an effective attraction between the colloids. ConsePeriments. Concerning the fluid-fluid interface, we study the
quently, these colloid-polymer mixtures may separate into dnterfacial profiles as well as the surface tensions inside the
colloid-poor(gas phase and a colloid-rictliquid) fluid [14].

matrix. For the case of small matrix particlé$, we deter-
The most simplistic theoretical model that has been apMN®€ the nature of decaymonotonic or periodicof the in-
plied for the study of such colloid-polymer mixture is the

terfaces which we compare with the bulk pair correlations.

Asakura-OosawéA0) model[15—17 that takes the colloids FOF the case of large matrix particlgs), we observe a

to be hard spheres and the polymers to be ideal spheres tf%_mple rescaling of the bqlk as well as the interface resglts
are excluded from the colloids. The bulk phase behavior ofVIth respect to the case without matrix. Inhomogeneous situ-
this model was studied with a variety of techniques, such gations such as the fluid-fluid interface are treated within QA

effective potential§18,19, free volume theory20], density ~DFT in @ direct fashion, in contrast to, e.g., the ROZ equa-

functional theory(DFT) [21,24, and simulation$19,23,24 tions. Fluid-fluid mterfac_es have be_en studied before in

Recent work has also been devoted to inhomogeneous sith€Nnard-Jones systems in contact with porous media using

ations, i.e., the free interface between demixed fluid phasdg€ Born-Green-Yvon equation as well as computer simula-

[25—29 and the adsorption behavior at a hard wall, where inflons [58,59 and we briefly compare to results of our pro-

particular a novel type of entropic wetting was found "€S: _ , ,
[24,27,28 and the behavior in spatially periodic external po- '€ Paper is organized as follows. In Sec. Il we define our
tentials[29]. The surface tension between demixed colloid-th€oretical model explicitly. The QA DFT approach is re-
polymer systems has been measured experimentally and adewed in Sec. I, and the results are presented in Sec. IV.

tablished to be much lower than for atomic systdBG-33. We first consider capillary condensation in a small sample
Further, recent experiments confirm wetting of the colloig-and then demixing the interfacial profiles and tensions inside
rich quL;id at a hard wal[34,35. a matrix. We conclude with a discussion in Sec. V.

DFT [36] can be used in two ways to treat adsorbates in
porous media. The first is tHegonceptually straightforward Il. MODEL
approach via treating the porous medium as an external po-
tential (see, e.g., Refd.37-39) and to solve for the one- We consider a three-component mixture of colloids-
body density distributions of the fluid species. Those can b&oted byc), polymers ), and immobile matrix particles
complicated spatial distributions, hence this approach igm). Each of these particles are spherical objects with radii
computationally demanding, but also yields information onR; and i=c,p,m and corresponding number densitips
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sential ingredient is that we need to perform the so-called
“double average” which refers to the statistical average over
all fluid configurations and subsequently over all matrix re-
alizations. To that end we consider a 0D cavity which either
does or does not contain a matrix particle. Hence, the 0D
partition sum is that of a simple hard-sphere fluid,

B =1+27, (3)

where z,,=  exp(Bun) is the fugacity of the hard spheres.

FIG. 1. Sketch of the ternary mixture of mobile colloi@ark), Further, 8= 1/kgT with ks Boltzmann’s constant and,, the
P B B m

mobile polymers (transparent and immobile matrix particles ; . > !
(gray). The polymer coils can freely overlap. There are three modef:he_m'(_:al potential. The |rrelgvant prefactscales with th?
parameters, i.e., the packing fraction of matrix particles), and vanishing volume of the cavity but has no effect to the final

two size ratiosy =R, /R ands=R;,/R;, whereR, is the radius of free energy and will not be discussed further. In general, we
particles of species The packing fractions of colloids and poly- US€ an overbar to refer to quantities of OD systems. With the
mers, 7, and 77,,, respectively, are the thermodynamic parametersgrand potential 3Q,,= —In Z,,, the average number of ma-
trix particles isnn=—2ndBLAm!9Zm=2n/(1+2y).

Next, we consider the colloid-polymer mixture in contact
ith the matrix in zero dimensions. If the cavity is occupied

=N;/V, whereN; is the total number of molecules of species

i andV is the system volume. All of these components are

modeled as hard bodies, meaning that they cannot overl . . ;

but otherwise do not interact with each other, except for th y & matrix part|c|ez no CO'!O'd’ or pollymer can .be present.
On the other hand, if there is no matrix particle, it can either

polymer-polymer interaction, which is taken to be ideal, seeb i ied b indl loid bit
Fig. 1. Consequently, whenis the mutual distance, the pair 2€ €MPY, 0CCUpied by a Singie colloid, or an arbitrary num-
ber of polymers. Hence,

potentials become

% if <R 4R — [ 1 (matrix particle in cavity
_ iR E={_ 4
ujj(r)= 0 if r=R+R, z.+expzp) (no matrix particle in cavity, @
for i,j=c,p,m exceptfori=j=p, (1) wherez, and?p are the colloid and polymer fugacities, re-

spectively. Then, the contribution In Z to the grand poten-

and concerning the polymer-polymer interaction, this simply;ja| should contain the appropriate statistical weight for each

becomes L= '
of the cases, i.ez,/E, for the first and 1£,, for the sec-

Upp(r)=0 forall r. (2) ond,

As all interactions are either hard core or ideal, thhase — In[z.+exp(zp)]
behavior is governed by entropipacking effects and the Q=- ?
temperaturd does not play a role. The only thermodynamic m
parameters are the colloid and polymer packing fraction
1c=4mRpc/3 and n,=47Rp,/3, respectively. The re-
maining model parameters are two size ratiesR,/R; and
s=R,,/R. and the packing fraction of matrix particles o s
=47R3p/3). It has to be mentioned that due to the facttransformation3F =B8Q+3;_. 7 In(z), and we obtain for
that the polymers can freely overlap, the “polymer packingthe excess parBFex=BF —2i—¢ p 7l In(7)—1],

fraction” can easily be larger than oriEig. 1). The mixture o L o

of hard spheres with these last-mentioned ideal polymers BF ¢ 7¢,7p: 7m)=(1— 7= 75— 7m)IN(1— 9= 71,)
(i.e., without the matrix particless called the AO mixture _ _ _

[15,16]. + 7¢= (1= ) IN(1— 7). (6)

This result can be shown to be equal from that which would
be obtained using the so-called “replica trick30].

©)

%verage Earticle numbers are again readily obtained;(ia

=—27B0/dz for i=c,p (not for m). The Helmholtz free
energy can then be _calculated using a standard Legendre

IIl. DENSITY FUNCTIONAL THEORY

A. Zero-dimensional limit

In this section we derive the zero-dimensio(@D) Helm- B. Fundamental measure theory

holtz free energy for the three-component system of the AO FMT is a nonlocal density functional theory, in which the
colloid-polymer mixture in contact with quenched hard excess part of théhree-dimensionafree energyF.,. is ex-
spheres. This 0D free energy is used as an input to construgtessed as a spatial integral over the free energy dedsity
the fundamental measure theory in the following section.

Here, we give only a brief derivation, a more extensive ver- _ i

sion with more comments is given in Refd3,51. The es- BFed {pi(N}]= | dr &(n,(r)}). @)
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This free energy density in turn is assumed to depend on the

full set of weighted densitien’ (r)},

nL<r>=fdr'wL(r—r'>pi<r'>,
=(W,®p;)(r), ®)

which are convolutiongdenoted with®) with the single-
particle distribution functiong;(r) for speciesi=c,p,m.

The weight functions are obtained from the low-density limit

where the virial series has to be recovered,
wh(r)=6(Ri—r),
Wh(r)=38(Ri—T), Wo(r)= (R —r)r/r,
Wh(r)=38(Ri—r)/(4mr),  W(r)=8(R—r)r/(4mr?),
wo(r)=8(Ri—r)/(4mr?), )

with againi=c,p,m being one of the three components,

PHYSICAL REVIEW E68, 061404 (2003

C. Minimization

Having constructed the excess free energy, we can now
immediately move on to the grand-canonical free energy
functional of the colloid-polymer mixture in contact with a
matrix,

Qpc(r),pp(r);pm(r)]

=Fexipcu),pp(r);pm(rmkBTi_ECpfdrpmr)

Xn(pr)3)-11+ 3 [ dr Vi =l
19

Here,A; is the “thermal volume” which is the product of the
relevant de Broglie wavelengths of the particles of species
Further, u; is the chemical potential and, is the (external
potential acting on componentin this paper, we study bulk
phase behavior and the free fluid-fluid interfaces, so we use
V;=0. The equilibrium profiles are the ones that minimize
the functional,

the Heaviside function, andthe Dirac delta function. There

are four scalar weight functions, with 3 to 0, corresponding o0 —0 and o0 -0
to the volume of the particles, the surface area, the mean Spc(r) Spp(r)
curvature, and the Euler characteristic, respectively, and

these are the so-called “fundamental measures” of thelhis yields the Euler-Lagrange or stationarity equations (

(19

sphere. The two weights on the right-hand side of @yare

vector quantities. Often a seventh tensorial weight is used in
the context of freezing but this will not be used here

[21,22,48. The dimensions of the weight functiom.{, are
(lengthy 3.
Then, the sole approximation made is tdatis taken to

be afunction of the weighted densitiesiv(r) whereas most

generally one would expect this to befanctional depen-
dence. This approximation totally sets the form dfand
following Refs.[22,43,5] we give the expression foib

=®,+ o, + D5 in terms of the zero-dimensional free energy

derived in the preceding section,

®1= 2 owi({ns). (10
Dy= > (mnb—n,-nl)epngh), (1D
I,J=c,p,m
1 1. o
®3:§i,j,k=c,p,m §n'2n12n§—n'2n{)2-n‘v‘2 @ijk({nla})a
(12)
with

i, i AmH=dBFed{mDlon - am. (13
All o itof which more than one indices equmére zero

------

due to the form of,BEeXC. Together, Eqs(6) to (13) consti-

tute the excess free energy functional for this QA system.

=¢,p),

pi(n) =z exd ¢V ({py(N}], (16)
with z=A; * ex Bui] the fugacity of componeritand the
one-particle direct correlation functions given by

o
&_i®WV
n

v

(r).
17

Obviously, the functional is not minimized with respect to
the matrix distributionp,(r) as this serves as anput pro-

file. In principle, as we are dealing with a quenched-annealed
system in which the matrix is initiallybefore quenchinga
hard-sphere fluid,p,(r) should still minimize the hard-
sphere functiona[43,51. However, as density functional
theory allows us to generate any distributipg(r) by ap-
plying any suited external potentiavhich we can then re-
move after quenchingwe do not need to go into the scheme
of generating matrix profiles. Moreover, in the present paper
we use fluid distributions of the matrix particles which mini-
mize (at least locally the hard-sphere functional without ex-
ternal potential for any packing fraction. This restricts the
matrix distribution to be homogeneous, i.e., constant in
spacepy(r)=const.

Ci(l)(l’)= _Igw: _2

opi(r)

IV. RESULTS

In this section, we show results of the effect of the hard-
sphere matrix on the AO colloid-polymer mixture concerning
capillary condensation in a small sample of matrix, and
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phase behavior and free fluid-fluid interfaces inside a bulkThis relation is trivially invertible, so switching from system
matrix. Throughout this section, we distinguish between theepresentatiodusing f(#.,7,;7m)] to the polymer reser-

CO”Oid'SiZed matriX pal’tiC|ESS(=l) and the Iarge matriX VOoir representation [|n terms of Z)(nc,zp;nm):f
partiCleS(We uses—= 50) In the first case, as we will see, one _/J’pnp/qB] is Straightforward|y done. Moreover, for zero
is limited to small matrix packing fraction@ip to »,, of the  packing fractions of colloids and matrix particles, the poly-
order of 0.2) as for high packing fractions the pores becomener free volume fraction is triviaky(0,0)= 1. Consequently,
too small for the colloids and the polymers to constitute athe fugacity equals the packing fraction of polymers in the
real fluid in the matrix. For the Iarge matrix partiCIeS, higherp()'ymer reservoirzpvp: 77pr (Where there are no colloids
matrix packing fractions are accessiljlgp to 7, =0.5). Fi-  and matrix particles and often, we usey, , when referring
nally, in all cases we usg=0.6, for which size ratio the AO o the fugacity. Finally, we mention that in the absence of
model has a stable fluid-fluid demixing ar@ith respect to  matrix particles,,=0, this theory is equivalent to the free-

freezing, which we do not consider volume theory for the AO modéR0—23.
Concerning the fluid-fluid demixing, the spinodals are cal-
A. Bulk fluid free energy culated in the canonical representation, by solving

2 _ . . s .
In the fluid phase, the densities are spatially homoge??.w”f/&g‘&”é]l_o W'tg 't'J_(.:’p’dV‘éh'Ch catn b?. do?ﬁ ana-
neous, and the constant distributignér) = p; solve the sta- ytically. Binodals are determined by constructing the com-

tionarity Eqs.(16) and (17). Therefore, we only have to in- Mon tangents of the semigrand potentily. , 7, ; 7m) at
tegrate the weights over spacijr w',, and the weighted fixed fugacity 7, .

v

densities become When the matrix particles are very large, it is expected
that the excluded volume effects dominate over oflseir-
”i3: i face or capillary effects. In particular, if one considers only
one infinitely large particle, still corresponding to a nonzero
ni2:377i IR;, matrix packing fraction, one would expect normal bulk be-

havior of the mixture as most of the mixture is “far” away
from the matrix particle. Equivalently, for very large matrix
particles, the total volume of the surrounding depletion lay-
ers that are responsible for the surface effects, compared to
the actual volume occupied by the matrix particles, scales
i i with [47(Ry+ Re)2pm/3— 7mll nm3/s for the colloids and
n,,=n,;=0, (18 [47(Rp+Ry)3pm/3— 7mll nm=3als for the polymers, and
o o ) ) these both go to zero fa—o<. However, in this limit, we
with i=c,p,m. Substituting these expressions in the free enstjll need to correct for the volume as this is partly occupied
ergy density, Eqs10)—(12), we obtain an analytical expres- py infinitely large matrix particles, i.eV— (1—7,,)V. In-
sion for the bulk excess free energy. Defining the dimensiongeed, applying— = to the bulk free energy of Eq19), we
less bulk free energy densityf=pBFV./V, with V¢  reobtain the bulk behavior of the plain AO colloid-polymer

ni=37%;/(47R?),

ny=37%;/(47R%),

=4mRY/3 the volume of a colloid, this becomes mixture without matrix, i.e., it can be shown that
. . Tp . . —(1_ e M .
f(7]C17]p s 7m) = 1c(Inpc— 1)+ ?(ln Mo~ 1)+ fo(7e, 7m) s'Tlf(ﬂcJ?p s 7m) = (1= ) f 1-— 7, 1— 77m,0 '
(21)
n
- q—gln a(ne, 7m), (199  where the free energy density has to be rescaled as well. This

term can be considered to be the zeroth inssekpansion of

. . the free energy of which higher order terms should corre-
with the last two terms being the excess free energy. We hay, 9y g

ted th ¢ o t oth Epond to effects due to surfaces, capillarity, curvature, etc.
separated the excess free energy in two terms whgiethe However, because of the formidable form of the free energy

excess free energy density O.f a fluiq of hard s_pheres in CONt is a daunting task to connect every term to a certain phe-
tact with a hard-sphere matrix ardis the fraction of free  ,,h0n0n and we leave this to future investigation. It is worth
fhentioning that a power series irsli only a simple model
dependence. In general, there can be nonanalyticities, e.g.,
arising from wetting phenomena around curved surf§66k

of matrix particles.

colloidal fluid and the hard sphere matri)20,22. The ex-
pressions forf, and @ are quite extensive and given in the
Appendix. In going from Eq(7) to (19) we have discarded
two terms, 7. In(A./V,) and (np/q3)ln(Ap/Vp), linear in the
colloid and polymer packing fractions. These have no effect , . i
on the phase behavior. Due to the ideal interactions of the>: Capillary condensation in a small sample of porous matrix

polymers, the excess free energy density is only lineay,in A porous matrix of quenched hard-spheres stabilizes the
and the polymer fugacity becomes simply colloid-rich phase with respect to the colloidal gas phase
[51]. This is called capillary condensation and it is due to the

Z,Vp=npla(ne, nm). (20 attractive depletion potential between the colloids, which
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FIG. 2. Phase diagram of a bulk AO colloid-polymer mixture  FIG. 3. Same as in Fig. 2, but now for a sample of porous matrix
(g=0.6) in chemical contact with a small sample of porous mate-with s=50. Here the matrix packing fractions increase as follows:
rial (s=1). Concerning the bulk mixture: the thick full curve is the 5,=0.1,0.2,0.3,0.4,0.5again from lower right to upper IeftThe
binodal, the dashed is the spinodal, the large filled cifoleere  inset is the magnification of the area with the capillary critical
they meel is the critical point, and the straigkithin) lines are the  points.
tie lines connecting coexisting state points. The capillary liifiels
curvesg appear in the upper leftcolloid-poon part of the phase ,U«bmk(ﬁ 7p) = juPor0uS
diagram and each terminates in a capillary critical p@ntall filled ¢ e e.coex
f:ircles)._From Iov_ver right _to upper left, the_ curves correspond to an bulk _ porous
increasing packing fraction of the matrix;,,=0.05,0.1,0.15,0.2 Hp (7/c'7/p)_r“~p,coex (22)

(the last one is practically on the vertical axis nege=0.8). The
inset shows a sketch of the setup: a test tube is sealed at the top afat 7. and »,, we obtain the capillary lines in the phase
filled with the colloid-polymer mixturédensitiesy, and,) and at ~ diagram in system representation. The trend can be spotted
the bottom lies the small sample of porous matrix. from Figs. 2 and 3, increasing the matrix packing fraction in
the sample, the capillary line moves away from the bulk
also acts between colloids and matrix particles. In this secb'rIOdaI but at the same time the cap|lla_1ry 'cr|t|cal point sr_nfts
tion we present capillary condensation in a representatioﬁway from the bulk critical point. Quahtatlvely_, this applies
which is appropriate to compare with experiments. In an ex© both thes=1 ands=50 cases. However, in the=50

. . . . case the capillary lines extend to much closer to the bulk
perimental setup one typically has a canonical ensemble, i.e

a test tube, of colloid-polymer mixture. By adding a Smallchtlcal point, but they are hardly distinguishable from the

le of terial. the bulk mixture in the test tub bulk binodal. Concerning the colloid-sized matrix particles,
sampie of porous material, the bulk mixiure n the test tu =1, these capillary lines are well separated from the bulk

acts as a colloid-polymer reservoir to the sample, but vicgy,qa) put the capillary critical points are located much
versa, if the sample is small enough, its state will not havedeeper into the colloidal gas regime.

any effect on that of the bulk mixtutisee Fig. Zinset]. In Next, we briefly discuss the implications this has for pos-
the colloid-poor(and polymer-rich part of the phase dia- sjple experiments. Focusing on the case of the large matrix
gram, on approaching bulk coexistence, the conditions foparticless=50, we take as an exampig,=0.5. In this case
coexistence in the porous sample are reached before thosetiie difference in chemical potential at coexistence of the
bulk, i.e., capillary condensation in the sample occursmixture in bulk and inside the porous sample at constant
Hence, capillary condensation appears as a line in the systegalymer fugacity is of the ordeBA u°**~0.1, and it scales
representation terminating in a capillary critical point. This isroughly with 1. This difference is very small and brings up
shown in Figs. 2 and 3 for the case s1 ands=50, the question if thigi.e., capillary condensatioiis observable
respectively, and various densities of the matrix. The coexin experiments. Typically, the effect of gravity is reduced by
istence of the bulk colloid-polymer mixture appears in thedensity matching the colloids with the solvent, i.e., canceling
usual system representation, where tie lines connect coexigjravity by means of buoyancy. However, this density match-
ing states. For each of the matrix densities, a capillary lineng is never perfect, and the length scajen(.g) ! is a
runs along the bulk binodal in the colloid-poor part of the measure for its succesat infinity it is perfec}. Hereg is the
phase diagram. gravitational acceleration anth.= (pcolioid— Psolvend Ve the
First, we determine the conditions for coexistence insideffective mass of the colloid in solution, with.,,iq and
the matrix, i.e., we compute the combinations of chemicap, ..the mass densities inside the colloid and of the sol-
potentials uf Toey and uh%oex. for which demixing occurs  vent, respectively. Therefore this length scale is strongly de-
within the porous sample. These are fixed by the chemicabendent on the colloid sizeﬁ(ncg)_locRc_3, and can range
potentials of the bulk colloid-polymer mixturg:2 and  from micrometerglarge colloids to meters(small colloidg

,ug“'k, so solving in experimentd 32]. Typically, polymers are much less sen-
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FIG. 4. Fluid-fluid binodals of an AO colloid-polymer mixture FIG. 5. Same as in Fig. 4, but now fer=50. Matrix packing
(g=0.6) inside a bulk porous matrixs€& 1). Tie lines connecting fractions increase from right to lefty,,=0,0.1,0.2,0.3,0.4,0.5. In-
coexisting state point are not drawn but run horizontal. The lowerset: same curves now rescaled, i, Vs 7¢/(1— 7).

(thicken curve is the result in the absence of any matuj%,=0.
For the other curves, the matrix packing fraction increases frontion, we revisit the demixing phase behavior which we need
bottom to top,»,=0,0.05,0.1,0.15,0.2. The filled circles are the in the following sections where we study the fluid-fluid in-
critical points(large, 7,=0). The dotted line is the Fisher-Widom terface inside a matrix. Figure 4 is the phase diagram in the
line for 7,,=0, below which the decay of correlations in the fluid is po|ymer-reservoir representation for colloid-sized matrix
oscillatory and above which these are monotonic. The point Wher%articles,s= 1, for various matrix densities. Increasing the
the FW line hits the binodal is marked by(krge star. The FW  matrix packing fraction, there is less volume available to the
lines f_or the pther me_ltrlx packing fractions are not shown, only their.q|10ids and the critical point shifts to smaller colloid pack-
crossings with the binodalsmall stark ing fractions. At the same time, the porous matrix acts to
keep the mixture “mixed” and therefore, the critical point
sitive to gravity as long as the solvent is good. When there ighifts to higher polymer fugacities. For the casesefl, we
coexistence inside a test tube, there is only real coexistengginnot go to much higher packing fractions thap~0.2 as
at the liquid-gas interface, whereas below and above, thehen the critical fugacity shoots up dramatically to unphysi-
colloids have slightly different chemical potentials due tocally large values. This may be partly due to the relatively
their gravitational energy. Consequently, moving upwardarge depletion shells around the matrix particles which
from the interface, sajz, the colloid chemical potential is cause the pore sizes to become too small for the colloids and
(Bmcg)Az lower than at coexistence. By placing the porouspolymers to enter the matrix. In case of large matrix particles
sample withinAz* = BA u°®7(Bm.g) of the interface, cap- (s=50, see Fig. § the latter effect is negligible and the pore
illary condensation should take place. Taking as an examplesizes are always large enough. Consequently, only the ex-
BAuL~0.1 and Bm.g) 1~1 m, it becomes clear that, cluded volume remains and rescaling the binodals with (1
within the context of thigidealized model, values ofAz* — 7, is very effective practically mapping the binodals
~0.1 m should be accessible in experiments, meaning thainto each other, Fig. Bnse). This rescaling is unsuccessful
capillary condensation could in principle be observed. Usingor s=1 as can be directly seen from the fact that the critical
smaller matrix particles, with size similar to the size of thefugacities in Fig. 4 are different for each of the matrix den-
colloids (our cases=1), the effect of capillary condensation sities.
becomes much more pronounced and it should therefore be In addition, we have determined the nature of the
observable in a similar way as for large matrix particles.asymptotic decay of pair correlations of the fluid inside the
From an experimental point of view, however, we think thatmatrix [61]. These can either be monotonic or periodic and
it is a much larger effort to produce such matrices with lowthe corresponding regions in the phase diagram are separated
enough packing fractiongsee Fig. 4, where we discusg, by the Fisher-Widom{(FW) line, at which both types of de-
=0.2) in order to be penetrable to the mobile colloids andcay are equally long range. This line can be determined by
polymers. We recall the possible realization given in Sec. istudying the pole structure of the total correlation functions
using laser tweezers. hij in Fourier spacg61]. In the present case of QA systems,
rather than using the usual Ornstein-Zernike equations, one
S _ has to use the replica-Ornstein-ZernikBOZ) equations
C. Phase behavior inside a bulk porous matrix [50]. Neglecting correlations between the replicas, these are

We now return to the full ternary mixture in bulk, i.e.,

where in the preceding section, the matrix was only a small Nnm(F) = Com(1) + Pm(Crnm®@ N (1),

sample immersed in a large system of colloid-polymer mix-

ture, in this and the following sections we consider the h. (r)=c;(r)+ E pi(Cii @y )(1) (23)
colloid-polymer mixture in a system-wide matrix. In this sec- ! . t=6pm T U
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FIG. 6. Colloid density profiles\(.= ‘3—'77R§) normal to the free FIG. 7. Same as in Fig. 6 but now fe=50. Other parameters

fluid-fluid interface for increasing matrix packing fractions at fixed areq=0.6 and,,=1 (see Fig. $ The matrix packing fractions
polymer fugacity. Parameters age=0.6, s=1, andy,,=1 (see increase from top (thick profile, 7,=0) to bottom: 7,
Fig. 4). The matrix packing fraction increases from ttpick pro- =0,0.1,0.2,0.3,0.4,0.5. Inset: magnification of thecaledprofiles
file, »,,=0) to bottom:,,=0,0.05,0.1,0.15,0.2. Inset: correspond- for the same curves, i.ep V. /(1— 5,) vs Z/R. (where again, ma-
ing polymer profiles 6,V vs /R, with V,= %ng) for the same  trix packing fractions increase from top to bottbm

values of the matrix packing fractiorfalso increasing from top to

bottorr). location of the interface, defined through the Gibbs divid-

S o - ing surface of the colloids: [°.dZ ps(z)—pe(—=)]

with i,j=c,p,m excepti=j=m. Here, forij#mm, the +[2dZ pe(2) — pe(2)]=0

— 2 . . .
Cij(r)=— 6°Fexc/ 0pi(r) 5py(r) are the direct correlation In Figs. 6 and 7, we have plotted the colloid profiles nor-
functions for which we obtain analytic expressions by differ- 5| 1o the interface fos= 1 ands=50 respectively. Colloid
entiating Eq.(7). The matrix structure is determined before yfiles are shown for increasing densities of the matrix at
the quench, sy and hy,y are those of the normal hard- fiyqq fygacity, , =1, corresponding to the bulk binodals
sphere fluid at density,, (Percus-\(ewck—compreSS|b|I|ty in Figs. 4 and 5. For the case ® 1, this means that, as the
closure, see Ref$43,51)). This analysis follows closely that ¢yitical point shifts to higher fugacities, the profiles are ef-

of Ref.[22] in which more details are given. In view of our ecively taken at fugacities closer to the critical value. We
subsequent interface study, we focus on the point where thgyserye this well-known behavior in Fig. 6; close to the criti-
FW line meets the binodal. In Fig. ¢ 1), these are de- 4| point the profiles are smoother and modulations less pro-
noted by stars, and we observe that the shifts due to thg,nced. Away from the critical point, the interface is sharp
matrices follow the same trend as the critical points. In casgyt the periodic modulations due to the surface extend far in
of s=50, we have not determined the FW lines, but there ispe pylk fluid. The inset of Fig. 6 shows the corresponding
no reason to expect the simple rescaling of the case WIthOLHo|ymer profiles. In Ref[58], the main result is that the
matrix to fail in this case. Furthermore, concerning the densjnierface widens due to the porous medium. The same hap-
sity profiles(in the following sections=50), we stay well  pens here and is due to fact that one is effectively closer to
within the oscillatory regime. the critical point.
In Fig. 7, as we saw for the bulk phase diagram, there is a
D. Fluid-fluid profiles inside a bulk porous matrix simple rescaling at work and the profiles merely differ by a
) , ) factor (1 #n,,). The inset in Fig. 7 shows the same colloid
We have calculated density profiles at coexistence norm:ﬂrof"es but now rescaled, and we have zoomed in on the
to the colloidal gas-liquid interface. In this case of planarieqion close to the interface. Clearly, even the modulations
interfaces, the density distribution is only a function of ON€{pllow the case without matrix with the same accuracy as the
spatial coordinate; i.e., pi(r)=pi(2). The only dependence ik coexistence values in the inset of Fig. 5.
on the other two degrees of freedom is in the weights and " \ye have also studied the asymptotic decay of correlations
this can be integrated out, to obtain projected weightSy;it, the interface via the density profiles. These must be of
w,(2)=[dx dy w(r) (see, e.g., Ref62]). The profiles are the same nature as the decay of the direct correlations in bulk
discretized and calculated via an iteration procedure, i.e., widetermined via the ROZ equations, see the preceding sec-
insert profiles on the right hand side of E3.6) and then tion), i.e., either monotonic or periodj61]. However, deter-
obtain new profiles on the left hand side, which are themmining the crossing points of the FW line with the binodals
reinserted on the right. Using step functions as iteratiorusing the interfacial profiles yields a systematic shift away
seeds, this procedure converges in(beal direction of the  from the critical point, compared to the bulk calculation
lowest free energy. We normalize the densities as in bulk{~5%). Probably, this is due to numerical limits. Close to
i.e., we plotp;(2)V; so thatp;(==)V;=5"", with land Il this crossing point bottithe periodic and the monotonic
referring to the coexisting phases. The zer@ & set at the modes of decay are equally strong, so only far away from the
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FIG. 8. Fluid-fluid surface tensions vs the difference in colloid Fl.G' 9. S_ame as in Fig. 8 bl.n now_f(sr: 5.0' Again, matrix
packing fractions increase from righy=0, thick curve to left,

pagklng fractions of the tv.vo ﬂu'd. phases. fqe=0.6, s=1., and . 17m=0,0.1,0.2,0.3,0.4,0.5. Each curve is computed from the critical
various values of the matrix packing fraction. The matrix packing ‘" (crit)

fractions increase from rights{,=0, thick curvé to left, pom& 27/p,r_: ﬂ,i,r (t\'Nt:ere v=0) t“”t'l tvlwce the C”t'calthQaC!ty’

=0,0.05,0.1,0.15,0.2. Each curve is computed from the criticalg”';{g/(17&r .)r:/s;i.(")e_sat(rl?ﬁlzli_res;a eficurves are shown, i.e.,

point, 7, = 7V (where y=0) until twice the critical fugacity, YRe Tm e e )
_ (crit)

Mpr=27pr - ,
R of volume Q;,,/V. In Figs. 8 and 9 we have plotted the
interface truly asymptotic behavior may be observed. Howsurface tension versus the colloidal density difference in the

ever, there, the periodic modulations may have become toV0 phases fos=1 ands=50, respectively. In both cases
small to be observable. Furthermore, our numerical routinéhe effect of the matrix is that the surface tensions increase

has no real incentive to minimize the tails of the profiles agaster with the differencen(" — #{| which is of course due

the gain in free energy is very low. to the fact that the coexistence area becomes less wide as the
coexisting packing fractions themselves become smaller. In
E. Fluid-fluid surface tension inside a bulk porous matrix the inset of Fig. 9, we show the same curves rescaled with

_ . (1-ny), and the rescaled graphs fall almost on top of the
The presence of the matrix also affects the surface tens'oé‘riginal one without any matrix. Here, we note that also the
between the colloidal liquid and gas phases. The interfacial ,iface tension has been rescaled with-,); this is
or surface tensiorj/ qf planar interfaces in the grand canoni- naaded from Eq(21) as the free energy density(z) needs
cal ensemble is defined through to be rescaled as well. Again, this rescaling procedure is not
successful fos=1.
yA= Qi+ PV, (24) Often, the surface tension is plotted against the relative
distance to the critical pointa, ./ (" — 1) [27]. However,
where A is the amount of surface are;,, is the grand this does not improve the rescaling o+ 1 and this can be
potential for the inhomogeneous system, &the pressure seen from the fact that the end points of the curves in Figs. 8
(i.e., —PV is the grand potential for the homogeneous bulkand 9 are all at twice the critical fugacityp'rzznéc}'t) , and
system. With our numerical scheme we calculate densitythe surface tension@escaled or notare at quite different
profiles inz direction so it makes sense to write the surfacevalues at the end points.

tension as an integral,
V. CONCLUSION

v= f dZ w(z)+P], (25 We have considered the full ternary system of hard
spheres and ideal polymeirepresented by the AO modéh
contact with a quenched hard-sphere fluid acting as a porous
matrix. Using a QA DFT in the spirit of Rosenfeld’s funda-
mental measure approach, we studied capillary condensation
in a small sample of matrix as well as the fluid-fluid interface
inside a bulk matrix. The results have been presented in
‘*’(Z):kBTiZZC Pi(Z)U”(Pi(Z)Ai)_l]_i:EC wipi(2) terms of two types of matricesi) colloid-sized matrix par-
P P ticles (size ratios=1) being a reference system afiid ma-
+ksTO{N (2)}). (26)  trix particles which are much larger than the colloigize
ratio s=50). The case of small matrix particles is limited to
The quantityw(z) is a “local” grand potential density whose relatively low packing fractions #,,~0.2), whereas in the
average over space yields the actual grand potential per ursecond case, much higher matrix packing fractions are acces-

with
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sible (7,,~0.5), the pores of the matrix being much larger. ment. This depletion attraction, however, has a many-body
Additionally, we have suggested that cdgeas well as(ii) character for the size ratio consideregi=0.6) as multiple
could in principle be realized experimentally in 3D, i.e., us-overlap between one polymer and three or more colloids can
ing laser tweezers and colloidal sediments, respectively, toccur; for a discussion of how to obtain an effective Hamil-
serve as a model porous medium for colloidal suspensionstonian for the colloids by integrating out the polymer degrees
We have shown that in the limit of infinitely large matrix of freedom in the equilibrium binary AO model, see Ref.
particles, the standard AO resultsithout matriX are recov- [64]. The presence of many-body effective interactions has a
ered via a simple rescaling. In case 350 our bulk but  profound influence on phase behavior inside a porous matrix.
also the interface results can be mapped onto the case withor a detailed comparison of the bulk phase behavior ob-
out matrix with high accuracy. However, in the case of smalltained via the present treatment including all polymer-
matrix particles $=1) this mapping fails, which is due to induced many-body interactions, and one, based on the ROZ
the more complexand smaller pore geometry on the col- equations, that only retains the pairwise contribution to the
loidal scale. ) _ ) effective Hamiltonian, see Reff51]. A more detailed study
Assuming a more “experimental” point of view, we have f the present approach compared to findings for simple flu-

considered a small sample of porous matrix immersed in &g jnteracting with pairwise attractive forces would be very
large system of colloid-polymer mixture. When the fluid- interesting, but is beyond the scope of the present work.

fluid binodal is approached in the colloid-poor region of the Concerning the fluid profiles, we have only considered a

ph._ase dlag_ram, capillary condengaﬂon oceurs in the Samplﬁ'omogeneous background of matrix particles in this paper. It
This transition appears as a capillary line in the phase dia-

gram(in system representatipextending along the binodal }[/yould be mterestmtg tof usillnho;nogeneo?js matrix real|fg-
and ending in a capillary critical point. In case of small ma- lons, as, €.g., a step function of Zero and nonzero matrix

trix particles, the capillary linefor various densities of the Packing fraction(i.e., the interface of empty space and ma-
matrix) are well separated from the bulk binodal but the cap-fiX) Or @ constant matrix background in contact with a hard
illary critical points lie deep into the colloidal gas regime. Wall. Both types could give rise to interesting and substan-
Concerning the large matrix particles, these capillary criticafially modified wetting behavior. Additionally, one could also
points are located closer to the bulk critical point, however.consider other types of matrices, e.g., quenched polymers or
the capillary lines are also very close to the binodal. Still,combinations of quenched colloids with quenched polymers
using density-matched colloidal suspensions, we argue th&#3,51]. These are maybe less realistic from an experimental
capillary condensation may be observable in experiments. point of view but still interesting due to the competition of
We have computed fluid-fluid profiles inside the porouscapillary condensation with evaporation.
matrix as well as the corresponding surface tensions.sFor ~ As we have mentioned in the Introduction, there are no
=50, these can be mapped onto the case without matrix buixperiments concerning phase behavior of colloidal suspen-
for s=1 the critical point shifts to higher polymer fugacities. sions in contact with 3D porous media to our knowledge. We
Therefore, increasing the density of the matrix, profiles behope that the accumulating resufg-12,43,51, including
come smoother due to effective approach of the criticathose in this paper, may encourage more experimental efforts
point. Solving the ROZ equations, we have also determinegh that direction. It is important to keep in mind that a suit-
the crossover between monotonic and periodic decay of paighle porous matrix is a compromise between length scales:
correlations of the mixture inside the matrix for1. Com-  |arge enough to allow penetration of the colloids into the

paring these with the decay of the interfacial correlations w&,qiq space, but small enough to retain significant surface and
find a small discrepancy which is probably due to numerical5jjary effects. In colloidal fluids in general, these last-

limits. mentioned effects are known to be much smaller than in

o o et i aerans o systems. (s providng a formidable challnge t
sociated with wetting of the curved surfaces of the matrixexperlmentallStS aiming to observe, e.g., capillary condensa-

particles by the colloidal liquid60,63. Especially fors tion of a colloidal suspension in a porous matrix.

=50 close to the critical point in the complete wetting re-

gime, we can well imagine that the growths of thick films of

colloidal liquid on the matrix spheres have a profound influ-

ence on the occurrence and precise location of the capillary ACKNOWLEDGMENTS
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APPENDIX: BULK FLUID FREE ENERGY - q—gln a( e, Mm)- (A1)

The bulk free energy of the colloid-polymer mixture in
contact with a homogeneous hard-sphere porous matrix asle note the occurrence of only third and lower powers ef 1/
given in Eq.(19) is in both f; and @, which are given by

2
Ui 37 2+ ne( Pm—2) = 277m]
_;n+7/c>|n(1_770_ Mm) + Cam 02 i rzn
S 28°(1— 1m) (1= 1c— 1m)

n
fo<nc,nm)=s—§“ln<1—nm>—

37
253(1_ Ne— 77m)2

{77m(2_277c+ Nm)S+ 7m(2+ 77c_277m)52+ ne(2— 77c_277m)53} (A2)

and
IN @7 70) = IN(L= 76— ) = {2 1+ 72+ Gt 7= 72+ ) 10
2s°(1— 9= M)
=370l — 2+ Pt W+ 292(— 1+ Q) = e — 4+ pt 20+ 4700) ]S
+ 69l (1— 7.~ 77m)2+37]c(1_ Ne= M)A+ nc(1+27.— 77m)q2]52
+ el = e(1— pm)[12+(3—20) ]+ 2(1— )3+ a(3+q) ]+ 72 6+a(—3+20)}s®.  (A3)
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