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We describe two strategies for tackling the equilibrium statistical mechanics of inhomogeneous
colloid–polymer mixtures treated in terms of the simple Asakura–Oosawa–Vrij (AO) model, in
which colloid–colloid and colloid–polymer interactions are hard-sphere like, whereas the
polymer–polymer interaction is zero (perfectly interpenetrating polymer spheres). The first
strategy is based upon integrating out the degrees of freedom of the polymer spheres to obtain
an effective one-component Hamiltonian for the colloids. This is particularly effective for
small size ratios q ¼ �p=�c<0:1547, where �p and �c are the diameters of colloid and polymer
spheres, respectively, since in this regime three and higher body contributions to the effective
Hamiltonian vanish. In the second strategy we employ a geometry based density functional
theory (DFT), specifically designed for the AO model but based on Rosenfeld’s fundamental
measure DFT for additive mixtures of hard-spheres, that treats colloid and polymer on an
equal footing and which accounts for the fluid–fluid phase separation occurring for larger
values of q. Using the DFT we investigate the properties of the ‘free’ interface between colloid-
rich (liquid) and colloid-poor (gas) fluid phases and adsorption phenomena at the interface
between the AO mixture and a hard-wall, for a wide range of size ratios. In particular, for
q ¼ 0:6 to 1.0, we find rich interfacial phenomena, including oscillatory density profiles at the
free interface and novel wetting and layering phase transitions at the hard-wall–colloid
gas interface. Where appropriate we compare our DFT results with those from computer
simulations and experiment. We outline several very recent extensions of the basic AO model
for which geometry based DFTs have also been developed. These include a model in which the
effective polymer sphere–polymer sphere interaction is treated as a repulsive step function
rather than ideal and one in which the depletant is a fluid of infinitely thin rods (needles) with
orientational degrees of freedom rather than (non-interacting) polymer spheres. We comment
on the differences between results obtained from these extensions and those of the basic
AO model. Whilst the interfacial properties of the AO model share features in common
with the those of simple (atomic) fluids, with the polymer reservoir density replacing the
inverse temperature, we emphasize that there are important differences which are related to
the many-body character of the effective one-component Hamiltonian.

1. Introduction

It is well established that certain colloidal suspensions
behave as hard-sphere systems. Pioneering studies by

Pusey, van Megen and co-workers in the 1980s estab-
lished that polymethylmethacrylate (PMMA) particles,
sterically stabilized by chemically grafted poly-12-
hydroxystearic acid (PHSA), dispersed in a solvent
whose refractive index matches that of the particles,
exhibit phase behaviour which mimics closely that of
pure hard spheres [1]. In particular, coexistence of
colloidal fluid and crystal phases was found for colloid
packing (volume) fractions, �c, in the range 0:494 <
�c < 0:545, values consistent with computer simulations
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of hard spheres. For �c < 0:494 there is a single fluid
phase in which the diffusive dynamics of the colloidal
particles, as measured by dynamic light scattering, is
consistent with hard-sphere behaviour [1]. Other colloi-
dal systems also behave as hard spheres. For example,
the equation of state, obtained from X-ray measure-
ments of the colloid density profile in a gravitational
field, for charged polystyrene spheres suspended in
water (with HCl) is in excellent agreement with the
hard-sphere equation of state, on both the fluid and
crystal branches [2]. Of course, the effective pair
potential between colloids cannot be perfectly hard;
this cannot jump discontinuously to infinite repulsion
at some precise diameter. However, as the particles
approach each other the effective potential rises by
many kBT over a separation of one or two nanometres
or so—a distance which is very small compared with the
particle diameter (typically 6–700 nm, in the experiments
mentioned above). Entropically driven freezing is
the only phase transition that can occur in a system of
‘hard-sphere’ colloids.
Suppose now that non-adsorbing polymer is added to

the suspension of colloids. The interactions are, in
general, complicated but one can consider the case of
flexible polymer chains under athermal ‘good’-solvent
conditions, where the interactions between all the
species are hard-core repulsive, i.e. polymer chains are
mutually self-avoiding and are excluded from the hard-
sphere colloids. From a statistical mechanics point of
view, only packing constraints are relevant and the
properties of the system, in particular any phase
transitions, are determined by purely entropic effects.
It then comes as something of a surprise to learn that the
phase behaviour of colloid–polymer mixtures can be
very rich. A series of experiments, performed mainly
by groups in Utrecht, Bristol and Edinburgh in the
1980s and early 1990s, confirmed that adding sufficient
non-adsorbing polymers can cause phase separation
into two fluid phases, one rich in colloid and the other
poor; references to the original papers can be found
in [1, 3–5]. In order for fluid–fluid phase separation
to occur there must be a mechanism that generates
an effective attractive interaction between the colloidal
particles. Moreover, this mechanism must be entropic
in origin since all ‘bare’ interactions between species
are hard-core repulsive. An appropriate mechanism
was described as early as 1954 by Asakura and Oosawa
[6] and this is now termed the depletion effect or
depletion attraction. Asakura and Oosawa considered
two big spherical colloidal particles in a ‘sea’ of rigid
macromolecules. The latter were treated as hard
spheres as regards their interaction with the colloids
whereas macromolecule–macromolecule were set to zero,
so that the solution of macromolecules was treated as an

ideal gas. Such an assumption should be appropriate for
a dilute solution or for theta solvents where the second
virial coefficient for macromolecule–macromolecule
interactions vanishes. The centre of a macromolecule
sphere is excluded from the surface of a colloid by a
distance equal to �p=2, so there is a depletion zone (or
excluded volume region) in which there are no macro-
molecule centres of mass. If two colloids approach each
other, so that the depletion zones overlap, then there is
an increase in free volume for the macromolecule
spheres, i.e. an increase in their translational entropy,
leading to an effective attractive (depletion) interaction
between the two colloids. One can also view the
attraction as arising from an unbalanced osmotic
pressure pushing the colloids together as the macro-
molecules are expelled from the gap between the two
colloids. By calculating the volume of the overlap
between the two depletion zones, Asakura and
Oosawa [6] obtained an explicit expression for the
depletion force between two colloids whose centres are
separated by a distance R, immersed in an ideal solution
of macromolecules of fugacity zp. The depletion poten-
tial �AOðR; zpÞ vanishes when the depletion zones no
longer overlap; the attractive potential has a finite
range equal to �p. Increasing the concentration of the
macromolecule sea increases zp and the depth of the
potential well, whereas increasing �p extends the range
and, hence, the integrated strength of the attraction. It
is clear that depletion attraction is a possible mechanism
for driving phase separation. In a second paper, Asakura
and Oosawa [7] focused on the depletion potential
and discussed the possible aggregation of suspended
colloidal particles. By assuming the polymers can be
treated as spherical macromolecules, internal conforma-
tional degrees of freedom are ignored. Independently,
in 1976 Vrij [8] proposed the same depletion mechanism,
deduced the depletion potential between a pair of
colloidal spheres and the associated second virial coeffi-
cient and went an important step further by writing
down an explicit model Hamiltonian for the binary
mixture of hard-sphere colloids and ideal polymer
(macromolecule) spheres; this is the Asakura–Oosawa–
Vrij or AO model—see section 2. Vrij’s paper provides
the basis for a full statistical mechanical treatment
for an (idealized) model of a colloid–polymer mixture.
Vrij pointed out that his interparticle potentials define
a ‘non-additive’ hard-sphere model in the the theory of
liquids. We return to this aspect in section 2. He also
suggested that the colloid–polymer hard-sphere dia-
meter should be ð�c þ �pÞ=2 with �p=2 � Rg, the radius
of gyration of the polymer. The next important
development in the theory was made by Gast et al. [9]
who calculated the phase behaviour of the AO model
using thermodynamic perturbation theories for an
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approximation that assumes an effective colloid–colloid
pair potential, �eff ðR; zpÞ, consisting of the bare hard-
sphere potential plus the attractive depletion potential
�AOðR; zpÞ. Gast et al. predicted that the effect of adding
polymer depends sensitively on the polymer to colloid
size ratio q ¼ �p=�c. For q9 0:3, adding polymer merely
augments, in �c, the colloidal fluid–crystal coexistence
region above the range found for pure hard spheres,
whereas for larger values of q a stable colloidal liquid
phase can exist. In the (�c, zp) plane there is a triple
point where gas, liquid and crystalline colloidal phases
coexist [9] and for q00:6 the phase diagrams resemble
those of simple atomic fluids, with zp playing the same
role as inverse temperature, 1/T. Thus, entropically
driven depletion attraction can become sufficiently
strong and sufficiently long-ranged to generate a van
der Waals-like scenario for the gas-liquid transition.
As noted by Gast et al., one significant drawback to

their approach is that for size ratios q > 0:1547, the
effective one-component Hamiltonian should contain
three- and higher-body effective interactions between
the colloidal particles—see section 2.1; these interactions
are tedious to evaluate and cumbersome to incorporate
into perturbation theories or computer simulations
of the liquid and crystalline phases and are therefore
usually ignored. However, the effects of many-body
effective interactions are not necessarily small and we
shall argue below that these can play a crucial role
for both bulk and interfacial phase behaviour.
An alternative approach to determining the phase

behaviour of the AO model, which does not rely upon
mapping to an effective one-component Hamiltonian
and which does capture some of the effects of many-
body terms, is the so-called free-volume theory of
Lekkerkerker et al. [4]. Some details of this approach
will be given in section 2.2 but the approximation
consists of replacing the exact (average) free volume
available to the ideal polymers by the corresponding
quantity evaluated in the low-density limit, zp ! 0, for
which an analytical approximation is available. Having
an explicit expression for the free volume fraction,
�ð�cÞ, allows one to transform readily from the reser-
voir representation, where zp or, equivalently, �rp, the
packing fraction of ideal polymer is specified, to the
system representation where �p, the packing fraction in
the actual system is specified: �p ¼ ��rp. Experimental
phase diagrams are plotted in the (�c, �p) plane. The
free-volume theory predicts a stable colloidal gas–liquid
transition for q00:32 and the phase diagrams exhibit
similar trends to those from the approach of Gast et al.,
although there are some significant differences—see [10]
for detailed comparisons and [11] for a discussion
of the connections and distinctions between the two
approaches. Subsequently Meijer and Frenkel [3]

performed pioneering Monte Carlo simulations for
two separate models of colloids dispersed in a dilute
polymer solution. The first was a lattice–polymer model
in which polymers are represented by ideal (non-self-
avoiding) chains confined to a cubic lattice. However,
lattice sites occupied by colloidal hard-spheres are
inaccessible to polymer. The second was the AO model,
but with the polymer spheres restricted to a cubic lattice.
Phase diagrams, calculated in the (�c, zp) plane, for the
two models were rather close to each other and for the
size ratios q ¼ 0:5 and 0.7 considered the simulation
results corresponding to the (lattice–polymer) AO model
were in fair agreement with those from free-volume
theory.

To summarize, by 1994 various theoretical and
simulation studies of idealized models had shown that
for small polymer–colloid size ratios the phase diagram
is of the fluid–solid type, whereas for larger size ratios,
where the depletion potential becomes longer ranged
and many-body interactions become important, stable
colloidal gas–liquid phase separation occurs. This trend
in the phase behaviour was consistent with earlier
experimental observations. Subsequent experiments
[5, 12] provided convincing support for the scenario
suggested by theory. In particular, three-phase coex-
istence was reported at certain size ratios for charged
colloidal polystyrene particles mixed with hydroxyethyl
cellulose [12] and for sterically stabilized PMMA
particles mixed with random coil polystyrene (PS) in a
cis-decalin solvent [5]. An admirable account of the
work of the Edinburgh group on the latter system,
which the author describes as a ‘model colloid–polymer
mixture’, is given in the recent topical review by Poon
[13]. We direct readers wishing to learn more about
phase behaviour, equilibrium structure, phase transi-
tion kinetics, gels and glasses in real mixtures to this
illuminating article. Another well-characterized system,
much studied by the Utrecht group, consists of sterically
stabilized silica particles and polydimethylsiloxane
(PDMS) in cyclohexane. Silica has the advantage over
PMMA that small particles are available (diameters
as small as 20 nm) which is important in studies of
interfaces—see section 3.

The thrust of the present article is quite different from
that of Poon. Having established that the simple AO
model captures the main features of the experimental
bulk phase diagrams, here we enquire what are the
properties of inhomogeneous colloid–polymer mixtures,
as described by the same AO model. Inhomogeneous
situations, where the average density profiles of both
species are spatially varying, occur in the context of
adsorption at a solid substrate, at the planar interface
between two coexisting (colloid-rich and colloid-poor)
phases, for mixtures confined in capillaries or porous
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media or, indeed, in a colloidal crystal. Nucleation
phenomena also require a description of the inhomoge-
neous fluid. Our strategy is not to attempt any realistic
modelling of a colloid–polymer mixture which is, of
course, a highly complex system involving multiple
length and time scales, rather we seek to understand the
basic adsorption and interfacial properties that arise in
the context of the simple model fluids. Moreover, we
restrict consideration to equilibrium aspects.Whether the
predictions from the model are relevant to real mixtures
is a separate issue. In defence of our strategy we remark
(as humble theorists!) that without detailed theoretical
and simulation studies of the Lennard-Jones and other
model fluids, we would have little fundamental under-
standing of the properties of simple, atomic liquids at
interfaces or under confinement—the experimentalists
are certainly catching up but experiments on fluid
interfaces are notoriously difficult. One might go further
and argue that studies of the Ising or lattice gas model,
with the substrate treated as an external field, led to a
wealth of predictions for surface phase transitions most
of which were found in adsorption experiments. Let us
be clear, however. We are not suggesting that the AO
model has the same significance in statistical physics as
the Ising model! Nevertheless, the AO model has much
appeal to the theorist. There is only one parameter, the
size ratio q, and by varying q different types of bulk
phase behaviour emerge. Moreover, we find that the
same model predicts striking interfacial phenomena,
some of which are very different from those found for
simple fluids and which reflect the special character of
the effective interactions in the AO model.
Those readers who are interested in recent develop-

ments in the theory of more realistic models of colloid–
polymer mixtures are referred to the topical review by
Fuchs and Schweizer [14] who describe liquid-state
integral equation theories for tackling structural corre-
lations starting at the polymer segment level. The
polymers are treated as connected chains of segments
which experience excluded-volume forces among them-
selves and with the hard-sphere colloids. Although
the integral equation approaches provide much insight
into the nature of correlations for a wide range of size
ratios (including q � 1) and for a variety of polymer
concentrations, they appear to be restricted to homo-
geneous (bulk) fluids and it is difficult to envisage
extensions to inhomogeneous systems or to crystalline
phases, i.e. to the full phase diagram. Very recently,
Bolhuis and co-workers [15] have performed Monte
Carlo simulations of the bulk phase diagram of a model
in which the colloids are treated as hard spheres and
the polymers as self-avoiding walks that are mapped to
an effective pair potential. We shall make reference
to their work in section 5.2, but for more details of

this powerful ‘polymers as soft colloids’ computational
approach readers should consult the original paper and
references therein.

The present article is organized as follows. In
section 2 we describe the AO model Hamiltonian
and two different strategies for tackling its statistical
mechanics. The first is to integrate out the degrees of
freedom of the polymer spheres, thereby obtaining an
effective one-component Hamiltonian for the colloidal
hard spheres. As mentioned above, this approach is
particularly effective for small size ratios, q < 0:1547,
where the one-component Hamiltonian consists of
zero, one and two-body contributions only; there are
no higher-body effective interactions. The second
strategy is to tackle the binary AO mixture directly;
the two components are treated on equal footing by
means of a geometry-based density functional theory
that is specifically designed for the inhomogeneous
AO mixture [16, 17]. The procedure for constructing
the DFT is based on the fundamental measure theory
developed by Rosenfeld [18] for additive hard-sphere
mixtures. For uniform (bulk) fluids the free energy
obtained from the DFT is identical to that given by
the free-volume theory of Lekkerkerker et al. [4]
alluded to above. Section 3 describes an application of
the DFT to the planar interface between demixed fluid
phases, one rich in colloid, the other poor. We find
that for coexisting states well away from the critical
point, at high polymer fugacity, both the colloid
and polymer density profiles exhibit oscillations on
the colloid-rich (liquid) side of the interface. We also
discuss the behaviour of the surface tension comparing
with experimental results. In section 4 we consider
adsorption of the AO mixture at a planar hard wall.
When a colloidal particle is sufficiently close to a hard
wall, such that the two depletion zones overlap, there
is an effective attractive potential between the two
which is similar to the potential, �AO, between two
colloidal particles, i.e. expulsion of polymer induces an
attractive wall–colloid depletion potential �wall

AO whose
range is equal to �p. For small size ratios q, very large
contact densities are found for the colloid profile �cðzÞ,
reflecting the form of �wall

AO ðz; zpÞ. For larger q fluid–
fluid phase separation can occur and we find novel
entropic wetting and layering transitions using the
DFT—see section 4.2. Results of recent computer
simulations of the AO mixture, with q ¼ 1, adsorbed
at a hard wall are described in section 4.3; these also
predict wetting and layering transitions [19]. Section 5
describes a recent extension of the DFT approach that
incorporates, albeit in a simple way, polymer–polymer
interactions [20]. In the ‘soft colloid’ picture [21] of
polymers, segment–segment repulsion, averaged over
conformations of the chains, leads to an effective
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interaction, �pp, between the polymer centres of mass
that is repulsive, soft and penetrable. By making the
crude approximation that �ppðrÞ is a step-function pair
potential of height �, it is possible to construct a
geometry-based DFT for a model that has as its limit-
ing cases: (i) the AO model (� ¼ 0, non-interacting
polymer) and (ii) the binary hard-sphere mixture
(� ! 1). We present results for fluid–fluid phase
separation, comparing with those for the AO model
and with computer simulations. In section 6 we sum-
marize briefly some other recent applications and
extensions of the DFT for the AO model. Several of
these are concerned with bulk properties only but we
also describe recent work on mixtures of hard-sphere
colloids and hard needles, modelling experimentally
realizable stiff colloidal rods, where interfacial proper-
ties were considered [22–24]. This model system shares
many features in common with the AO model—
the needles act as the depletant. It has the additional
feature of orientational degrees of freedom for the
needles which can introduce orientational ordering at
an interface, even though the bulk fluid is isotropic
(the infinitely thin rods cannot interact). We conclude
in section 7 with some remarks and an outlook on
future work.
What follows is not intended to be a review of what

is a large and rapidly developing literature on the
experimental, theoretical and simulation aspects of
colloid–polymer mixtures; we make no attempt to give
a comprehensive overview or an exhaustive list of
references. For example, we concentrate on the
so-called ‘colloid limit’, q91, rather than the equally
important ‘protein or nanoparticle limit’, q � 1, where
the physics is, arguably, less understood. The choice
of material reflects the personal viewpoints of the
authors on the subject area and the presentation is
based, in part, on the Molecular Physics Lecture given
by R. Evans at the Liblice Conference in June 2002.
Although much of the theoretical background has
been published elsewhere, almost all the results
presented in sections 3 and 4 appear for the first
time: they are from the unpublished thesis of Brader
[25]. Section 5.2 also contains new results. A brief
summary of some of the earlier work can be found in
a conference article [26].

2. The Asakura–Oosawa–Vrij model

We consider a suspension of sterically stabilized
colloidal particles immersed together with non-adsorb-
ing polymers in an organic solvent. The interaction
between two sterically stabilized colloidal particles in an
organic solvent is close to that between hard spheres,
whereas dilute solutions of polymers in a theta-solvent
can be represented by non-interacting or ideal polymers.

A simple idealized model for such a colloid–polymer
mixture is the so-called Asakura–Oosawa–Vrij (AO)
model [6–8]. This is an extreme non-additive binary
hard-sphere model in which the colloids are treated as
hard spheres with diameter �c and the interpenetrable,
non-interacting polymer coils are treated as point
particles but which are excluded from the colloids to a
centre-of-mass distance of ð�c þ �pÞ=2. The diameter of
the polymer sphere is �p ¼ 2Rg with Rg the radius of
gyration of the polymer. The pairwise potentials in this
simple model are given by

�ccðRijÞ ¼
1, for Rij < �c,

0, otherwise ,

�

�cpðjRi � rjjÞ ¼
1, for jRi � rjj <

1
2
ð�c þ �pÞ,

0, otherwise,

(

�ppðrijÞ ¼ 0, ð1Þ

where R and r denote colloid and polymer centre-of-
mass coordinates, respectively, with Rij ¼ jRi � Rjj and
rij ¼ jri � rjj. Note that a general non-additive binary
hard-sphere mixture is described by the ‘diameters’ �11,
�22 and �12, where subscripts 1 and 2 denote species 1
and 2. The cross-term is given by �12 ¼ ð�11 þ �22Þ�
ð1þ�Þ=2, where the non-additivity parameter � is zero
for additive mixtures. The AO model corresponds to
�22 ¼ 0 and � ¼ q, the fixed size ratio �p=�c. The
Hamiltonian of the AO model consists of (trivial)
kinetic contributions and a sum of interaction terms:
H ¼ Hccþ Hcp þHpp, where

Hcc ¼
XNc

i<j

�ccðRijÞ,

Hcp ¼
XNc

i

XNp

j

�cpðjRi � rjjÞ,

Hpp ¼
XNp

i<j

�ppðRijÞ ¼ 0 ð2Þ

and we consider Nc colloids and Np ideal polymers in a
volume V at temperature T. The solvent is regarded as
an inert continuum. See figure 1 (a) for an illustration
of the model.

There are several ways of tackling the statistical
mechanics of the AOmodel. Brute force, direct computer
simulations of this model mixture are not straightfor-
ward since problems of slow equilibration and non-
ergodicity can arise for large size asymmetries, where
huge numbers of polymers are required per colloid
particle. Recently, however, simulation studies have been
carried out for several values of the size ratio q ¼ �p=�c
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and we shall report on these in section 4.3. Here we
describe two alternative approaches which have been
successfully employed. The first is most appropriate
for mixtures where the size ratio q � 1; it depends
upon integrating out the degrees of freedom of the
ideal polymer to obtain an effective one-component
Hamiltonian for the colloids. The second approach
employs a density-functional theory designed specifically
for the AO mixture; this treats both species on an equal
footing.

2.1. The effective one-component Hamiltonian
For a general binary mixture it is possible to construct

an effective one-component Hamiltonian for one of the
components—usually the larger species—by integrating
out the degrees of freedom of the other—usually the
smaller species [27]. As usual it is convenient to work
in the semi-grand ensemble where (Nc, zp,V ,T) are
fixed variables, i.e. the fugacity zp ¼ L� 3

p exp ð��pÞ of
a reservoir of polymer is fixed. �p is the chemical
potential, � ¼ 1=kBT and Lp is the thermal de Broglie
wavelength of the polymer. In order to treat inhomo-
geneous fluids it is also convenient to allow the colloids
and polymer to couple independently to two external
fields. Thus one adds to the Hamiltonian H contribu-
tions

Vext
c ¼

XNc

i¼1

Vext
c ðRiÞ, Vext

p ¼
XNp

i¼1

Vext
p ðriÞ, ð3Þ

which can produce inhomogeneous density profiles. It is
straightforward to show that the semi-grand free energy
FðNc,V , zpÞ is given by

exp ð��FÞ ¼
1

Nc!L3Nc
c

Z
dRNc exp ��ðHcc þ Oþ Vext

c Þ
� �

,

ð4Þ

where Lc is the thermal de Broglie wavelength of the
colloid and

exp ð��OÞ ¼
X1
Np¼0

z
Np
p

Np!

Z
drNp exp ��ðHcp þ Vext

p Þ

� �
:

ð5Þ

O is simply the grand potential of the (ideal) polymer in
the presence of the external field arising from (a) a fixed
configuration fRNcg of Nc colloids and (b) any applied
field Vext

p . Provided one can determine O explicitly, or
at least a good approximation to O, the binary
mixture problem is reduced to a simpler one-component
problem: equation (4) describes a system of colloids
interacting through an effective Hamiltonian: Heff ¼

Hcc þ Oþ Vext
c .

In a general mixture O consists of zero, one, two, . . . ,
many-body contributions [28] and the resulting Heff is
unwieldy. However, for the particular case of the AO
model the contributions simplify [10, 11] because the
polymer is ideal, i.e. �pp ¼ 0. Moreover, for a homo-
geneous fluid, with no external potentials, the series
truncates after the two-body term, provided that
q < 2=31=2 � 1 ¼ 0:1547 [9, 10]. For such high asymme-
try there is no triple overlap of excluded volume regions,
even when three colloids are in simultaneous contact.
Thus, for q < 0:1547, geometrical considerations ensure
that there is an exact mapping from the bulk binary
mixture to an effective Hamiltonian that contains only
two-body interactions plus structure (configuration)
independent contributions. The effective pair potential
is given by [9, 10]

�eff ðR; zpÞ ¼ �ccðRÞ þ �AOðR; zpÞ, ð6Þ

where �AOðR; zpÞ is the well-known AO pair (depletion)
potential between two hard-sphere colloids in a sea of
ideal polymer [6, 7], see figure 1 (b) for an illustration.
�AOðR; zpÞ is attractive and has a finite range equal to �p.
Its strength is proportional to zp and it can be expressed
as a polynomial in s ¼ R=�c:

��AOðR; zpÞ

¼

�
p
6
�3
pzpð1þ q�1Þ

3 1�
3s

2ð1þ qÞ
þ

s3

2ð1þ qÞ3

� �
,

1 < s < 1þ q,

0, s > 1þ q:

8>>><
>>>:

ð7Þ

Figure 1. (a) Sketch of the Asakura–Oosawa–Vrij model of
hard spheres (grey circles) with diameter �c and ideal
polymers (white circles) with diameter �p. (b) Depletion
zones (dashed lines) that are inaccessible to polymer
centres. Overlapping depletion zones (light grey shapes)
are indicated in two cases, that between two colloids and
that between a colloid and a hard wall.
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Perhaps more remarkably, Brader et al. [11] showed
that for the AO mixture in contact with a hard wall
defined by the external potentials

Vext
c ðzÞ ¼

1, z < �c=2,

0, z � �c=2,

(

Vext
p ðzÞ ¼

1, z < �p=2,

0 z � �p=2,

( ð8Þ

where z is the centre of the particle measured normal
to the wall, there is also an exact mapping of the
binary mixture to a simple effective Hamiltonian.
Using geometrical considerations (see figure 2 of [11])
they showed that for q < 0:25 all many-body terms On,
with n� 2, are unaltered from their form in the bulk
(homogeneous) fluid by the presence of the hard wall.
For larger values of q the two-body potential becomes
a complicated function of R1 and R2 and is not simply
a function of the separation jR1 � R2j. Specifically, for
q < 0:1547, the effective Hamiltonian for the inhomo-
geneous fluid at the hard wall reduces to

Heff ¼ Hcc þ
XNc

i¼1

Vext
c ðziÞ þ

XNc

i¼1

�wall
AO ðzi; zpÞ

þ Obulk
0 þ Obulk

1 þ
X
i<j

�AOðRij ; zpÞ: ð9Þ

The additional one-body term �wall
AO represents the

attractive AO depletion potential between the colloid
and the planar hard wall. This potential has the same
range, �p, as �AO and it has similar form [11]. In the
absence of the wall equation (9) reduces to the effective
Hamiltonian of the homogeneous system. The structure-
independent terms are given by

��Obulk
0 ¼ zpV ,

��Obulk
1 ¼ �zpNcp ð�c þ �pÞ

3=6 ¼ �zp�cð1þ qÞ3V , ð10Þ

where �c ¼ ðp=6Þ�3
cNc=V is the colloid packing fraction.

Having such a simple effective Hamiltonian for the
homogeneous fluid means that it is straightforward
to perform computer simulations or to implement
standard one-component integral equation closures.
Recall that integral equation approaches for highly asym-
metric mixtures are especially problematical whereas
Percus–Yevick (PY) and similar closures provide a
reliable description of the pair correlation function
for a one-component fluid whose pair potential consists
of a hard core plus an attractive tail. Of course, the usual
issues of thermodynamic inconsistency remain.
Dijkstra et al. [10] carried out extensive investigations

of the properties of the bulk mixture with q ¼ 0:1 using

the effective Hamiltonian. The equilibrium structure,
i.e. the colloid–colloid radial distribution function gccðRÞ
and the structure factor SccðkÞ, is determined solely by
�eff ðR; zpÞ, equation (6), for this size ratio and Monte
Carlo and PY results at various colloid packing fractions
are presented in [10]. Note that since the terms Obulk

0

and Obulk
1 depend linearly on Nc or V they have no effect

on bulk phase equilibria and the latter is, once again,
determined solely by the pair potential �eff ðR; zpÞ [10, 28].
(These terms do contribute to the total pressure and
total compressibility of the mixture, however [29].) The
complete equilibrium phase diagram of the mixture was
determined by simulation of the effective one-component
system for q ¼ 0:1. It is extremely rich, displaying a very
broad, in �c, fluid–solid coexistence curve which lies
at lower polymer densities than a (metastable) fluid–
fluid coexistence region. There is also an isostructural
(fcc) solid–solid transition which is very slightly meta-
stable with respect to the fluid–solid transition [10, 11].
Note that as each term in the effective Hamiltonian is
proportional to zp (� polymer density in the reservoir,
�rp, for ideal polymer) this variable plays the same role as
inverse temperature in simple atomic fluids. Thus, phase
diagrams plotted in the (�c, zp) plane often display
features similar to those plotted in the (density, 1=T)
plane for simple fluids. The simulation results for the
bulk system provide a valuable benchmark against which
approximate theories, e.g. integral equation, density
functional or perturbation theory approaches, can be
tested [10].

Similar remarks apply to the Monte Carlo simula-
tion results obtained using the effective Hamiltonian
(9) for the mixture at a planar hard wall. Brader et al.
[11] considered the AO mixture, with q ¼ 0:1, for two
fixed values of the colloid packing fraction, �c ¼ 0:3
and 0.4, and increasing amounts of polymer. Adding
polymer (increasing zp) leads to increased depletion
attraction for the colloids at the hard wall which
leads, in turn, to pronounced effects on the density
profile near the wall. We shall comment further on
this phenomenon in section 4.1 where we compare
results from density functional theory with those of
the simulations.

We conclude this subsection by making some remarks
about the form of the effective Hamiltonian to be used
for other types of inhomogeneity. If the wall–fluid
potentials are soft or exhibit attractive portions then
the integrating out of the polymer can lead to more
complex contributions, even for small size ratios q. On
the other hand, for spontaneously generated inhomo-
geneities, where the density profiles of colloid and of
polymer are spatially varying in vanishing external
fields, the appropriate effective Hamiltonian is that of
the bulk, homogeneous system [11]. Relevant examples
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are the planar interface between demixed fluid phases,
colloidal crystals where the densities vary periodically,
and the fluid–crystal interface. Although the distribution
of polymer in a colloidal crystal or in the region of
any interface is very different from that in a bulk fluid
this does not give rise to different effective interactions,
in the sense that the effective Hamiltonian needs to be
modified. Since we work in the semi-grand ensemble,
with a reservoir of polymer, it is solely the fugacity zp
that determines all the effective interactions in the
system. As zp is constant throughout the inhomogeneous
system then so too are the effective interactions between
colloids; these do not depend on the local polymer
distribution. Also we note that although the polymer
degrees of freedom have been integrated out it is still
possible, at least in principle, to recover information
about the polymer distribution from properties that
are determined by the effective Hamiltonian. For
example, the polymer density �pðrÞ can be obtained by
functional differentiation of the free energy F with
respect to Vext

p ðrÞ and expressed in terms of n-body
correlation functions of the colloids, which can be
determined using the effective Hamiltonian [11]. When
q < 0:1547 this procedure yields an exact and tractable
formula for the free-volume fraction �ð�c; zpÞ � �p=�

r
p

(the ratio of polymer density in the mixture to that in
the reservoir) of a bulk fluid mixture [11].
Finally, we should remark that the one-dimensional

version of the AO model, in which the colloids are
modelled by hard rods and the polymer by ideal
particles that are excluded from the colloids by a certain
distance, can be solved exactly by mapping the binary
mixture to an effective one-component Hamiltonian
[30]. The construction of the effective Hamiltonian
proceeds as in three dimensions and the effective pair
potential �eff ðX ; zpÞ ¼ �ccðXÞ þ �1D

AOðX ; zpÞ, where the
depletion potential �1D

AO is now the difference in
accessible length for the polymers when the colloids
are separated by a distance jX j and when their separa-
tion is infinite. This potential is linear in jX j, pro-
portional to zp and vanishes for separations beyond
the length of the polymer. Since the mapping reduces
the binary mixture problem to that of a one-component
fluid in one dimension, in which the particles interact via
a nearest-neighbour potential, the statistical mechanics
can be solved using the standard Laplace transform
techniques. Results for the (osmotic) equation of state
and free-volume fraction �ð�c; zpÞ are given in [30],
where they are compared with the corresponding results
from the approximate free-volume theory.

2.2. Density functional approach
We have recently developed a density functional

theory (DFT) for the binary AO model using the

techniques of fundamental measure theory (FMT). Our
new functional [16, 17] treats arbitrary size ratios q and
is thus able to incorporate the effects of many body
interactions which arise in the effective one-component
description at larger values of q, and which represent an
important feature of the model. Unlike DFT treatments
of interfacial phenomena in simple fluids, where the
attractive portion of the fluid–fluid pair potential is
treated separately from the repulsive part in a perturba-
tive fashion that is equivalent to a mean-field treat-
ment (correlations are ignored) [31], here the effective
attractive interactions emerge naturally from the DFT
and are treated non-perturbatively. Of course, the
present DFT is still mean-field like in that bulk critical
fluctuations or, indeed, interfacial fluctuations are not
incorporated. The excess, over ideal, Helmholtz free
energy functional is given by a spatial integral over a
reduced free energy density F which is a function of
a set of species-dependent weighted densities

�FAO
ex ½�cðrÞ, �pðrÞ� ¼

Z
drFðfnc	g, fn

p

gÞ, ð11Þ

where the function F ¼ F1 þ F2 þ F3 consists of three
terms given by

F1 ¼ nc0 � ln ð1� nc3Þ þ
np3

1� nc3

� �
� np0 ln ð1� nc3Þ,

F2 ¼ ðnc1n
c
2 � nc1 	 n

c
1Þ

1

1� nc3
þ

np3
ð1� nc3Þ

2

" #

þ
np1n

c
2 � n

p
1 	 n

c
2 þ nc1n

p
2 � nc1 	 n

p
2

1� nc3
,

F3 ¼
ðnc2Þ

3
� 3nc2ðn

c
2 	 n

c
2Þ

24p
1

ð1� nc3Þ
2
þ

2np3
ð1� nc3Þ

3

" #

þ
ðnc2Þ

2np2 � np2ðn
c
2 	 n

c
2Þ � 2nc2n

c
2 	 n

p
2

8pð1� nc3Þ
2

: ð12Þ

The species-dependent weighted densities are given by
convolutions of the density profiles �iðrÞ, i ¼ c, p, with
weight functions wi

	ðrÞ

ni	ðrÞ ¼

Z
dr0�iðr

0Þwi
	ðr� r0Þ: ð13Þ

The four scalar and two vector weight functions are
functions characteristic of the geometry of the hard
particles

wi
3ðrÞ ¼ �ðRi � rÞ,

wi
2ðrÞ ¼ �ðr� RiÞ,

wi
1ðrÞ ¼

�ðr� RiÞ

4pRi
,
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wi
0ðrÞ ¼

�ðr� RiÞ

4pR2
i

,

wi
v2ðrÞ ¼

r

r
�ðr� RiÞ,

wi
v1ðrÞ ¼

r

r

�ðr� RiÞ

4pRi
, ð14Þ

where Ri denotes the radius of species i so that Rc ¼ �c=2
and Rp ¼ �p=2. �ðrÞ is the Heaviside step function
and �ðrÞ is the Dirac distribution.
The procedure for constructing the DFT is based on

the successful FMT developed by Rosenfeld [18] for
additive hard-sphere mixtures. In order to obtain the
reduced free energy density F appropriate to the AO
model, Schmidt et al. [16, 17] considered the zero-
dimensional limit which corresponds to a cavity that can
hold at most one hard-sphere colloid but can hold an
arbitrary number of ideal polymers if no colloid is
present. Full details of the derivation of the DFT and its
applications to the determination of bulk fluid thermo-
dynamics and structure are given in [17]. A summary is
provided in section 5.1 of the present article where we
consider an extension of the AO model. Here it suffices
to make some remarks about the status of the theory.
Note that in the original papers [16, 17] a tensor weight
function was included; this contribution is omitted in
the above formulation and in the calculations to be
described later. Inclusion of the tensor (see equation (33)
below), while essential for calculating crystalline pro-
perties, makes negligible difference for inhomogeneous
fluid states and so would only serve to complicate
matters without altering the basic phenomena. It is
important to recognize that the functional can also be
regarded as a linearization, in the polymer density �pðrÞ,
of the original Rosenfeld hard-sphere functional.
For a homogeneous fluid mixture the functional yields

a reduced excess bulk free energy density

�FAO
ex =V ¼ �f AO

ex ð�c, �p; qÞ ¼ �fHS
ex ð�cÞ � �p ln �ð�cÞ,

ð15Þ

where

�ð�cÞ ¼ ð1� �cÞ exp ð�A
 � B
2 � C
3Þ, ð16Þ

with 
 ¼ �c=ð1� �cÞ, A¼ 3qþ 3q2 þ q3, B¼ 9q2=2þ 3q3

and C ¼ 3q3. fHS
ex is the excess free energy density of pure

hard spheres in the scaled particle (PY compressibility)
approximation; an explicit expression is given later in
equation (36). This result can be shown to be identical
to the free-volume theory of Lekkerkerker et al. [4, 10],
where �ð�cÞ is interpreted as the ratio of the free volume
accessible to a single test polymer sphere and the system
volume. It is not immediately obvious that the DFT

approach should be equivalent to free-volume theory.
The starting points for the two theories are quite dif-
ferent and it is usually the semi-grand free energy that is
considered in free-volume theory; connections between
the two approaches are discussed in [17]. Free-volume
theory treats the semi-grand free energy as the sum of a
hard-sphere (colloid) part plus a contribution from an
ideal gas of polymers in the free volume left by the
colloids, which is treated as an expansion in the fugacity
zp truncated at the term linear in zp [4, 10]. This linearity
in zp, or equivalently in �p, is built into the DFT.

The bulk pair direct correlation functions c
ð2Þ
ij ,

obtained by taking two functional derivatives of
FAO

ex ½�c, �p�, are given analytically [17]. The Ornstein–
Zernike relations then provide the partial structure
factors SijðkÞ. Linearization in the polymer density has
the consequence that cð2Þpp ¼ 0, as in the PY approxi-
mation for this AO model. However, the other direct
correlation functions cð2Þcc and cð2Þcp are not the same as
those from PY approximation, even though c

ð2Þ
ij ðrÞ

vanishes for r > Ri þ Rj in both the DFT and the PY
treatments. In an exact treatment we would expect
contributions to c

ð2Þ
ij ðrÞ beyond Ri þ Rj. An important

advantage of the DFT over integral equation theories is
that the partial structure factors and radial distribution
functions gijðrÞ obtained from the Ornstein–Zernike
equations yield a spinodal consistent with that from the
bulk free energy (15), i.e. the free-energy and structural
routes to the fluid–fluid spinodal are consistent. (Note
that the spinodal can be obtained analytically from
the canonical free energy (15)—see [17].) Such a
property is especially advantageous when considering
interfacial properties at or near two-phase coexistence.
Schmidt et al. [17] also investigate the asymptotic decay,
r ! 1, of gijðrÞ in different regions of the bulk phase
diagram. Since the partial structure factors SijðkÞ are
given analytically it is straightforward to determine the
poles of these functions in the complex plane and hence
locate the so-called Fisher–Widom line [32–35] where
the ultimate decay of rgijðrÞ crosses over from oscillatory
to purely monotonic, exponential decay. Examples of
the cross-over lines and of (mean-field) critical point
behaviour of SijðkÞ for various size ratios q are given
in [17].

It is important to emphasize that, within the frame-
work of DFT, the Ornstein–Zernike route is not the
only one to the pair correlation functions. The alter-
native is the test particle route, whereby one fixes a
particle of species i at the origin and determines (by
solving the appropriate Euler–Lagrange equations,
obtained by minimizing the functional) the inhomoge-
neous one-body density profile �jðrÞ arising from the
external potential exerted by the fixed particle i; then
gijðrÞ ¼ �jðrÞ=�jð1Þ. All that is required to solve the
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relevant equations are the one-body direct correlation
functions c

ð1Þ
i ðrÞ, which involve only a first derivative

of FAO
ex . One can show that in the limit �c ! 0, the

test particle route for the DFT yields the exact result
gccðrÞ 
 exp ð���eff ðr; zpÞÞ, where �eff is the effective
depletion potential defined in equation (6) [16, 17]. In
other words, the geometrically based DFT describes
correctly the depletion effect between two hard-sphere
colloids when implemented within the test-particle
procedure. There are other good reasons to believe
that the test-particle route to gijðrÞ should be more
accurate than the Ornstein–Zernike route [17].

3. The fluid–fluid interface

Phase separation in the AO model is a well-studied
problem [4, 8–10]. As remarked earlier, for small size
ratios q, fluid–fluid phase separation is pre-empted by
a fluid–solid transition so the former is, at best, meta-
stable. For larger values of q, however, there is stable,
entropically driven, fluid–fluid phase separation. Free-
volume theory for the AO model predicts stable liquid
(colloid-rich)–gas (colloid-poor) phase coexistence for
q > 0:32. It follows that our present DFT predicts the
same behaviour. Figure 2 shows the bulk phase diagram
obtained from the present theory for a size ratio q ¼ 0:6
for which there is a stable fluid–fluid demixing transi-
tion with a critical point at �rp, crit � 0:495. The polymer
reservoir packing fraction is defined as �rp ¼ ðp=6Þ�3

p�
r
p,

with �rp ¼ zp for ideal polymer. Note that the tie
lines connecting coexisting states are horizontal in this
(reservoir) representation. It should be emphasized
that the fluid–fluid and fluid–solid phase boundaries
presented here are those of the original free-volume
theory [4, 10]y. While the fluid–fluid phase boundary
shown is precisely that given by the functional, the true
solid–fluid boundary from DFT would require a full
minimization of the functional for a solid-like distribu-
tion. This is outside the scope of the present study.
Also shown in figure 2 is the Fisher–Widom (FW) line
which divides the phase diagram into regions where the
asymptotic decay of the three bulk pairwise correla-
tion functions, rgijðrÞ, is either monotonic or exponen-
tially damped oscillatory. The FW line has important
consequences both for our study of the free fluid–fluid
interface and for adsorption at a wall as the asymptotic
behaviour predicted for the bulk pair correlations
applies also to the one-body density profiles [33, 34].

We turn now to the free interface between demixed
fluid phases. The density profiles for colloid and
polymer are obtained by minimizing the grand potential
functional

O½�cðrÞ, �pðrÞ� ¼ F id½�cðrÞ, �pðrÞ� þ FAO
ex ½�cðrÞ, �pðrÞ�

þ
X
i¼c, p

Z
drðVext

i ðrÞ � �iÞ�iðrÞ , ð17Þ

where FAO
ex is the excess Helmholtz free energy func-

tional of the AO mixture given in equation (11), F id

denotes the functional for the ideal mixture, �i is the
chemical potential (fixed by the reservoir) and Vext

i ðrÞ is
the external potential coupling to species i with i ¼ c, p.
In the case of the free interface Vext

i � 0. The fact
that the functional is linear in the polymer density
makes solution of the AO Euler–Lagrange equations
considerably simpler than for the more familiar binary
hard-sphere Rosenfeld functional [18]. In the latter
case, the two minimization conditions �O=��1 ¼ 0 and
�O=��2 ¼ 0 give rise to two coupled equations for �1
and �2 which must be solved self-consistently. The
AO functional can be minimized explicitly with respect
to the polymer density and the level of computational
complexity reduced to that of minimizing a functional
with respect to a single density field [17].

The colloid density profiles and corresponding surface
tensions are shown in figure 3. The surface tension is
plotted here in mNm�1 to facilitate comparison with
the experimental results of [36, 37] which we shall

yNote that in calculations, e.g. [10], based on free volume
theory the Carnahan–Starling approximation is often used for
fHS
ex whereas in DFT the PY compressibility approximation
must be employed.

0 0.15 0.3 0.45 0.6
ηc

0

0.4

0.8

1.2

1.6

ηr
p

q=0.6

F+F F
+
S

S

a

b

c
d

Oscillatory

Monotonic

I

II

Figure 2. The bulk phase diagram calculated from the
functional for q ¼ 0:6. �c is the packing fraction of the
colloid and �rp that of polymer in the reservoir. F denotes
fluid and S solid. The long dashed line shows the
fluid–fluid spinodal and the short dashed line shows the
Fisher–Widom line. The latter intersects the binodal
at �rp,FW ¼ 0:53. The horizontal tie lines (a), (b), (c) and
(d) connect coexisting fluid states. Horizontal arrows
indicate the paths I and II by which the phase boundary
is approached for the adsorption studies in section 4.2.
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return to later but which correspond to size ratio q � 1,
i.e. we take the colloid diameter to be 26 nm in accor-
dance with the experiments. The polymer profiles
are given in figure 4 and demonstrate the polymer
partitioning between the two phases. We show four
profiles for states between the critical and triple points.

The labels (a)–(d) in figure 3 correspond to the tie lines
in figure 2; (d) corresponds to the free interfacial profiles
between coexisting densities near to the critical point
and (a) to a near triple point state. For state (d)
the colloid profile is smooth and reminiscent of the
profiles of [38] calculated using an effective one-com-
ponent Hamiltonian and employing a square gradient
functional. For states approaching the triple point the
interfacial width is found to be approximately �c, similar
to values inferred from ellipsometric measurements on
a colloid–polymer mixture [39] where a tan h function
was fitted to the refractive index profile through the
interface.

While the profiles near the critical point are smooth
and rather unsurprising, for states nearer to the triple
point striking oscillations develop on the colloid-rich
‘liquid’ side of the profiles. Such oscillations have been
found previously in theoretical studies [33] of the free
liquid–vapour interface of the square-well fluid and
in simulation studies of the liquid–liquid interface [40]
in a simple model of a liquid mixture. The presence
of oscillations in one-body density profiles at interfaces
is intimately connected to the asymptotic decay of bulk
pairwise correlations [33, 34]. For the present mixture
oscillatory profiles arise at the free interface when
the colloid density in the coexisting liquid is greater
than the colloid density where the FW (Fisher–Widom)
line intersects the binodal, i.e. for all states with �rp >
�rp,FW ¼ 0:53 for q ¼ 0:6—see figure 2. The general
theory of asymptotic decay of correlations in mixtures
with short-range forces predicts [33, 34] that the longest-
range decay of the density profiles should be

�iðzÞ � �i � �iAi exp ð��0zÞ, z ! 1, ð18Þ

on the monotonic side of the FW line and

�iðzÞ � �i � �i ~AAi exp ð� ~��0zÞ cos ð�1z� �iÞ, z ! 1,

ð19Þ

on the oscillatory side; �i is the bulk density of species i.
Equivalent definitions exist for z ! �1, with appro-
priate bulk densities �i. On the FW line, �0 ¼ ~�0�0.
The decay lengths ��1

0 and ~���1
0 and the wavelength of

oscillatory decay 2p=�1 are common to both species and
are properties of the bulk fluid. These are determined
by the (common) poles of the structure factors SijðkÞ
[34]. The amplitudes Ai, ~AAi and the phase �i are species
dependent and although there is knowledge about the
amplitude ratios in binary mixtures [34], there is no
theory for the absolute amplitude of the oscillations.
We have confirmed that for states where the colloid
profile oscillates, the corresponding polymer profiles
also exhibit oscillations on the same, colloid-rich side
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Figure 3. Colloid density profiles at the free interface
between demixed fluid phases for a size ratio q ¼ 0:6. The
polymer reservoir packing fractions correspond to the tie
lines in figure 2, i.e. �rp ¼ 1:0 (a), 0:8 (b), 0:6 (c) and 0:52
(d) (near critical point). States (a), (b) and (c) lie on the
oscillatory side of the FW line. The inset shows the
surface tension 
 versus the difference in the colloidal
packing fraction in coexisting liquid (l) and gas (g) phases
for q ¼ 0:6 and 1:0. The colloid diameter is taken to be
26 nm to compare with experimental data of [36] (points)
where q ¼ 1:0.
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Figure 4. Polymer density profiles for q ¼ 0:6 corresponding
to the colloid profiles shown in figure 3. The polymer
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of the interface, with identical wavelength and decay
length to those of the colloid. As the bulk density of
the polymer is low in the colloid-rich ‘liquid’ phase,
the amplitude of the polymer oscillations is very small;
figure 5 shows an enlargement of the oscillations in
the polymer profile for state (a). For states just above
the FW intersection point, �rp,FW, the amplitude of the
colloid oscillations can also become extremely small
and this is why the profile (c) does not show oscillations
on the scale of figure 3. For state (a), with �rp ¼ 1, which
is not especially close to the estimated triple point, the
amplitude of the oscillations is substantial and appears
to be larger than the corresponding amplitude for a
square-well fluid very near its triple point where the
oscillations have a wavelength of about one atomic
diameter [33]. Our present results resemble closely
those of a recent DFT treatment of binary mixtures of
repulsive Gaussian core particles which exhibit fluid–
fluid phase separation [41], although in that case there
are states for which oscillations occur on both sides of
the interface.
We note that all DFT treatments are mean-field-like

in that they ignore fluctuation effects, both of the bulk
liquid (critical fluctuations) and of the interface.
Thermally induced capillary wave fluctuations of the
interface will act to erode the oscillations in the ‘bare’
(mean-field) density profiles but it is argued that at
least some of the oscillatory structure will remain in
the ‘dressed’ colloid profiles. The standard method of
incorporating capillary wave fluctuations is to assume
that DFT calculations yield a ‘bare’ or ‘intrinsic’ profile
and that interfacial fluctuations can be ‘unfrozen’ by an

appropriate renormalization of the mean-field profile
[31, 33, 34, 42]. Because of the extremely low surface
tensions 
 which occur in colloidal systems one might
expect the oscillations to be completely washed out
by inclusion of these fluctuation effects but we will argue
that this is not necessarily the case. In the simplest
treatment of capillary wave fluctuations the intrinsic
interface is smeared by a Gaussian convolution over the
interfacial thermal roughness ?. For oscillatory profiles
which decay as equation (19) the wavelength and decay
length are unaltered by this convolution but the ampli-
tude is reduced by a factor exp ½�ð�2

1 � ~��2
0Þ

2
?=2� [33, 34,

42]. The roughness ? depends upon both the interfacial
area L2 and the external potential, i.e. the Earth’s
gravitational field. For zero gravitational field, 2? ¼

ð2p�
Þ�1 ln ðLmax=LminÞ, where Lmax and Lmin are upper
and lower cut-off wavenumbers for the capillary wave
fluctuations. If we choose Lmax ¼ 2p= and Lmin ¼

2p=L, where  ¼ ~���1
0 is the correlation length of the bulk

coexisting ‘liquid’ phase, it follows that the amplitude
of the oscillations in the density profile will be reduced
by a factor

� ¼ ðL=Þ�!½ð�1= ~��0Þ
2
�1�, ð20Þ

where we have introduced the dimensionless parameter

! ¼
kBT

4p
2
, ð21Þ

which measures the strength of the capillary wave
fluctuations. Smaller surface tensions give rise to larger
values of ! and, as a result, the amplitude of the
oscillations is damped more severely. Molecular
dynamics simulations of a liquid–liquid interface have
been performed by Toxvaerd and Stecki [40]. These
authors (see also Chacón and co-workers [43, 44] who
performed Monte Carlo simulations of the liquid–gas
interface of a model of a metal) found a decrease in the
amplitude of oscillation with increasing L, consistent
with a Gaussian renormalization of the oscillatory
intrinsic interface. We find for the present model that
! takes values of a similar order of magnitude as those
for simple fluids [38]. This is due to the fact that the
bulk correlation length  scales roughly as �c [16, 17] and
the tension 
 as kBT=�2

c [38, 45]. From our explicit
calculations of 
 and  we find that at state point (a),
for which the profile has pronounced oscillations, see
figure 3, ~��0�c ¼ 0:77, �1�c ¼ 6:74 and the reduced
surface tension 
� ¼ �
�2

c ¼ 1:13 which implies that
! ¼ 0:042 and ð�1= ~��0Þ

2
� 1 ¼ 75:12. We thus find that

� ¼ ðL=Þ�3:23 which suggests that detecting oscillations
of the colloid profile should be no more difficult than
for simple fluids where the exponent is expected to take
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Figure 5. An enlargement of the polymer profile for q ¼ 0:6
and �rp ¼ 1:0, i.e. state (a) shown in figure 4. The
oscillations, although not visible on the scale of figure 4,
are present in the polymer profiles and display the same
period and decay length as the corresponding colloid
profiles (figure 3).
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a similar value. Indeed, from an experimental viewpoint
such oscillations in a colloidal system offer an interest-
ing opportunity for experimental study as it should be
more favourable to investigate such structuring in
systems where the period is of colloidal size than in
atomic fluids, where the period is on the Angström scale.
We conclude this section by returning to the results

for the surface tension. The inset in figure 3 shows the
tension 
 for size ratios q ¼ 0:6 and 1:0. We find that the
tension calculated using the present DFT is consistently
larger than that calculated [38] using the effective one-
component Hamiltonian treated by square gradient
DFT. The level of agreement with the experimentally
measured tension for mixtures of a silica colloid, coated
with 1-octadecanol, and polydimethylsiloxane (PDMS)
in cyclohexane at T ¼ 293K [36] is somewhat better than
in [38]. The size ratio for this mixture is approximately
1:0. As mentioned earlier, in order to compare our DFT
results with experiment we choose �c ¼ 26 nm, the mean
diameter of the particles investigated in [36]; there are
no adjustable parameters in the model [25, 26, 46].
Note that the measured tensions are typically

3–4 mNm�1, values which are about 1000 times smaller
than the tensions measured for simple atomic fluids near
their triple points. Such small values of the tension are
not so surprising when one recalls (i) that the tension
scales roughly as kBT=�2

c , provided the state is well
removed from the critical point and (ii) that �c � 100
atomic diameters [38, 45]. In figure 3 the tension is
plotted against the difference between �c in the coexis-
ting liquid (l) and gas (g) phases. Within the present
mean-field treatment 
 vanishes as ð�lc � �gcÞ

3 on appro-
aching the critical point. Incorporating critical fluctua-
tions should lead to even faster decay; for Ising-like
criticality the exponent 3 should be replaced by
2	=� 
 3:9. The experiments of [36] were not performed
sufficiently close to the critical point to examine scaling
behaviour. However, Chen et al. [47] do report results
for the density difference and surface tension, in a
similar mixture of silica particles and PDMS in
cyclohexane, taken near the critical point. They report
values for 
 < 1�Nm�1 and a good fit to Ising-like
scaling.

4. Adsorption at a hard wall

In this section we consider the AO mixture adsorbed
at a planar hard wall described by the external potentials
(8). Such a model constitutes the simplest framework
in which one can address the statistical mechanics of
colloidal adsorption or, more specifically, the effects
of entropic depletion forces on the distribution of
both colloids and polymer near a (repulsive) substrate.
Of course, other more complex wall–fluid potentials
can be considered which include soft repulsion and/or

attractive interactions. The advantages of the hard-wall
model are (i) it encompasses the key feature of depletion-
induced wall–colloid attraction and (ii) as emphasized in
section 2.1, it can be mapped exactly to a very simple
effective Hamiltonian (9), for q < 0:1547, that can be
used efficiently in simulation studies.

We focus first on the case q ¼ 0:1, for which there are
Monte Carlo results [11] for the colloid density profile
against which we can test the reliability of our DFT.
Afterwards we consider larger size ratios where bulk
fluid–fluid phase separation occurs. This enables us to
investigate entropic wetting phenomena at the hard wall
using the DFT approach.

4.1. Test case: q ¼ 0.1
In order to test the performance of the DFT for

adsorption studies we first calculate density profiles
against a hard wall for q ¼ 0:1. For this small size ratio,
simulation results are available [11] for the colloid
profiles. These make use of the exact mapping to
the effective Hamiltonian (9); only a pairwise additive
fluid–fluid potential (�AO) and an explicit one-body
wall–fluid depletion potential (�wall

AO ) are involved. As
previously, we minimize the functional (17) but now
for a hard wall with external potentials (8). The results
obtained from the present DFT (figure 6) should be
compared and contrasted with those of [11] where
the effective one-component Hamiltonian was treated
by means of a one-component mean-field DFT which
treats the hard-sphere contribution by Rosenfeld’s
FMT and the attractive contribution, arising from
�AOðRÞ, in mean-field fashion. We find that the present
mixture functional provides an equally good description
of the colloid profiles, in particular the dramatic increase
in the wall contact value, �cð�

þ
c =2Þ � �wc, as polymer is

added; the present functional clearly incorporates the
depletion attraction between the wall and the colloids. It
should be noted that the binary mixture AO functional
generates internally all depletion effects between the
colloids and between the colloids and the hard wall,
whereas in the previous one-component treatment these
are essentially put in by hand. We choose polymer
reservoir packing fractions �rp ¼ 0:05 and �rp ¼ 0:1 and a
fixed bulk colloid packing of �c ¼ 0:3, as Monte Carlo
simulation results exist for these state points. We
intentionally stay away from the vicinity of the solid–
fluid phase boundary which is at about �rp ¼ 0:16 [10].

The present functional tends to give significantly more
structured colloid profiles than does the effective
one-component DFT of [11]. In fact it appears that
the binary mixture AO DFT consistently overestimates
the degree of structuring (more pronounced maxima and
minima than in simulation) whereas the one-component
DFT gives an underestimate. When there is no polymer
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in the system, �rp ¼ 0, see figure 6 (a), both functionals
reduce to the Rosenfeld functional for pure hard spheres
and, as is well known, this performs very well for the
full range of bulk packing fractions. The oscillations
arise from packing effects at the hard wall.

On adding a small amount of polymer, �rp ¼ 0:05,
there is a pronounced increase in the contact value,
figure 6 (b), as a result of the wall-induced depletion
which is now implicitly incorporated into the mixture
DFT. We obtain a contact value of �wc�

3
c � 7:56 which

is slightly higher than the value 6:41 obtained from the
effective one-component DFT [11]. For such small size
ratios the wall–colloid depletion potential is strongly
attractive and of short range (0:1�c) and it thus becomes
difficult to achieve good simulation statistics close to the
wall [11]. The simulation results have been extrapolated
to contact and yield a value �wc�

3
c � 4:28. For �rp ¼ 0:1,

see figure 6 (c), the wall–colloid depletion attraction
becomes even stronger and the present DFT gives a
contact value �wc�

3
c � 20:29; again this is larger than the

corresponding result from the one-component func-
tional, which is 15:52. Note that these very high values
of the local density decay to roughly unity over the
range of the wall–colloid depletion potential, i.e. 0:1�c.
The insets in figures 6 (b) and 6 (c) show that the DFT
captures correctly the non-trivial ‘triangular’ structure
of the second peak in the profile but for both �rp ¼ 0:05
and 0:1 the first minimum is deeper than the simula-
tion result and the height of the second maximum is
overestimated. As �rp is increased the oscillations become
damped more rapidly and �cðzÞ is close to the bulk
value after a distance of approximately 4�c. Numerical
results were checked using the hard wall sum rule,
�P ¼ �cð�

þ
c =2Þ þ �pð�

þ
p =2Þ, where P is the total pressure

[11]. Recall that for each colloid profile we present here
we also have the corresponding polymer profile. The
sum rule was satisfied to better than 0:1% in all cases. It
should be noted that comparing the DFT results
with those of simulation for such a highly asymmetric
mixture constitutes a severe test. The fact that the
AO mixture DFT performs well under such difficult
conditions is thus most encouraging. In addition, the
free-volume theory, which gives a bulk free energy
(15) identical to that of the AO functional, becomes
increasingly accurate for larger q values. We might
reasonably expect the performance of the functional
to improve accordingly. Although the bulk free energy
obtained from the functional improves with increasing
q, this does not guarantee that one-body profiles will be
any better. Nevertheless, since the profiles obey the
hard wall sum rule, the contact values should become
closer to those of simulation as q increases, in
accordance with the increasing accuracy of the free-
volume bulk pressure. These considerations are relevant
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Figure 6. The colloid density profiles calculated from the
binary mixture DFT compared with simulation results for
a size ratio q ¼ 0:1 and bulk colloid packing fraction
�c ¼ 0:3. The packing fractions of the polymer reservoir
are (a) �rp ¼ 0 (hard spheres), (b) 0:05 and (c) 0:10,
respectively. The circles are the Monte Carlo results [11]
and the solid lines are the DFT results. The insets show
the results on an expanded scale. Note the rapid increase
in the density near contact as �rp is increased.
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when we focus on larger size ratios (q > 0:32) where
stable fluid–fluid demixing occurs and investigate
interfacial phase transitions at the hard wall–fluid
interface.
The physical significance of the simulation results for

q ¼ 0:1 were discussed in [11] and we do not dwell upon
this here. Rather we simply emphasize that since
the colloid density profiles decay so rapidly from their
very high contact densities over the short range of the
wall–fluid depletion potential, �wall

AO , the amount of
colloid adsorbed in the contact ‘layer’ is rather small
(fraction of a monolayer). Indeed the Gibbs adsorption
of colloid does not increase rapidly with increasing
�rp [11]. From examination of the one-body profiles
and simulation snapshots there was no evidence of wall-
induced local crystallization at the polymer concentra-
tions we examined. However, the state points we
considered were still well removed from the bulk
fluid–solid phase boundary. The issue of when and
how wall-induced crystallization occurs is an important
one, both conceptually and because there are several
experimental papers reporting evidence for the phenom-
enon (in colloid–colloid as well as in colloid–polymer
mixtures) occurring for state points well below the bulk
phase boundary—see [11] for a summary.

4.2. Entropic wetting and layering: q� 0.6
For these larger size ratios the bulk phase diagram

exhibits three stable phases, as in figure 2. In determin-
ing the adsorption characteristics, we choose to fix �rp
and approach the bulk fluid–fluid phase boundary from
the colloid poor side. This is analogous to performing
a gas adsorption isotherm measurement for a simple
atomic fluid, recalling that �rp plays a role equivalent
to inverse temperature in the AO model. Depending
on the value of �rp chosen, we find the adsorption
behaviour changes dramatically. For the present AO
model one might expect to observe similar behaviour as
that pertaining to simple fluids adsorbed at attractive
substrates; we have a system of colloids interacting
via an effective Hamiltonian which gives rise to fluid–
fluid phase separation in bulk and a depletion induced
attraction acting between the colloids and the wall.
However, in the present case we have effective many-
body colloid–colloid and many-body wall–colloid
potentials for the size ratios of interest, i.e. values of q
large enough to give rise to a stable bulk fluid–fluid
transition. For large size ratios the effective wall–colloid
potential ceases to be a simple one-body potential
acting on individual colloids and becomes a complicated
function of multiple colloid coordinates. We find that
these complex wall potentials do indeed give rise to new
phenomena which are quite distinct from those seen in
simple fluids. As an example we consider size ratio

q ¼ 0:6 and describe some of the phenomena encoun-
tered as we increase �c, for fixed �rp, towards the bulk
phase boundary. We consider, in turn, paths I and II
shown in figure 2.

We first choose a path just above the critical point,
�rp ¼ 0:55, i.e. follow path I in figure 2. The layer of
liquid-like colloid density grows continuously against
the wall and becomes macroscopically thick as the phase
boundary is approached. The colloid density profiles in
figure 7 show the onset of complete wetting by the
colloid-rich phase. We have confirmed that for states
with smaller values of �rp (but above the critical value
�rp, crit) the equilibrium film thickness, teq, or, equiva-
lently, Gc, the adsorption of colloid, grows logarithmi-
cally with the deviation from the bulk phase boundary.
Although a detailed investigation of the amplitude
was not performed this should be the bulk correlation
length of the wetting (colloid-rich) phase, as is appro-
priate to a system where all the interactions are of finite
range—see e.g. [48]. The corresponding polymer profiles
are shown in the inset and indicate how polymer
becomes more depleted as the colloid-rich layer grows;
the polymer can be effectively regarded as a ‘slave’
species with profiles determined by the distribution
of colloid [17]. Strictly speaking, macroscopically
thick wetting films can only occur when the density
of coexisting liquid lies on the monotonic side of the
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Figure 7. Colloid density profiles for q ¼ 0:6 showing the
onset of complete wetting of a hard wall by the colloid-
rich phase at �rp ¼ 0:55 as the bulk phase boundary is
approached along path I in figure 2. Bulk colloid fractions
are �c ¼ 0:04, 0:06, 0:07, 0:076, 0:0775, 0:0778 and 0:0779
(from bottom to top). The coexisting gas density is
�c ¼ 0:078 12. The inset shows the polymer profiles for the
same values of �c (from top to bottom). Note that the
polymer distribution becomes progressively more depleted
as the colloid-rich layer grows in thickness.
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FW line in figure 2, i.e. for �rp < �rp,FW, the point of
intersection of the FW line and the binodal. One
can envisage a coarse grained description of wetting
phenomena whereby the surface excess free energy can
be regarded as an effective wall or binding potential,
FwallðtÞ, acting on a single degree of freedom, the film
thickness t [49]. For �rp, crit < �rp < �rp,wet and �rp < �rp,FW
the potential FwallðtÞ exhibits a single minimum at a
finite equilibrium film thickness teq provided the state
is off bulk coexistence. �rp,wet denotes the polymer
reservoir packing fraction at the wetting transition.
As the value of �c is increased towards coexistence
the position of this minimum, and hence teq, increases
continuously to infinity. If we are in the region where
�rp, crit < �rp < �rp,wet and �rp > �rp,FW the decay of the
density profiles is oscillatory. It can be shown [50] that
in this region the effective binding potential FwallðtÞ
possesses a corresponding oscillatory decay. As a result
the minimum, teq, of the binding potential will always
lie at a finite value. Such oscillatory binding potentials
will stabilize very thick but finite films, which would
otherwise be infinite, even at bulk coexistence. This is
because the global minimum lies at the trough of one
of the oscillations and not at infinity. Such situations
can easily lead to numerical difficulties when using
iterative methods because of the presence of a large
number of metastable minima and care must be taken to
ensure that the global minimum of the excess (over bulk)
free energy is reached. By choosing �rp ¼ 0:55 we avoid
many of these complications and can easily obtain films
of thickness 20 or 30�c. We confirmed that in the flat
portion of the profiles the densities of colloid and polymer
are equal to their values in the coexisting colloid-rich
phase. In order to investigate such thick wetting films
it is necessary to work very close to bulk coexistence
and solving the Euler–Lagrange equations resulting
from minimizing the functional can be very slow.
Very different scenarios arise for other paths

approaching bulk coexistence. As �c is increased along
path II, see figure 2, at fixed �rp ¼ 0:7 the colloids behave
essentially as an ideal gas in the presence of the wall–
colloid depletion potential but with some enhancement
of the contact value due to packing effects. A selec-
tion of profiles calculated along this path is shown
in figure 8. The profiles remain largely unstructured
until �c ¼ 0:0198 where a first-order phase transition
occurs and a second liquid-like layer is adsorbed
against the wall. The inset to figure 8 shows the disconti-
nuous jump in the (reduced) Gibbs adsorption of the
colloids, Gc, at the transition. The Gibbs adsorption is
defined as

Gc ¼ �2
c

Z 1

0

dz �cðzÞ � �cð1Þð Þ, ð22Þ

where �cð1Þ is the density of colloid in the bulk. This
layering transition is most unusual and is quite different
from the transitions between layered liquid-like films
found in DFT studies of simple fluids at attractive
substrates—see e.g. [51] which considers a Yukawa fluid
against an attractive Yukawa wall. The transitions found
in [51] are for temperatures very close to the triple point
and the sequence always leads to complete wetting
at coexistence. In the present case we are far away from
the free volume triple point at �rp � 1:43 (although its
location within a full DFT treatment of the solid is
not known). Moreover the transition is to only a single
extra layer; the adsorption remains finite all the way to
coexistence. Thus the wall is partially wet for this value
of �rp. Since for �

r
p ¼ 0:7 the wall is partially wet, whereas

for �rp ¼ 0:55 the wall is completely wet, we can infer
that there exists an analogue of the wetting transition
temperature, i.e. there is a wetting polymer reservoir
packing fraction �rp,wet, at which along coexistence there
is a transition from partial wetting to complete wetting.
It should be noted that when the second layer is adsorbed
its density is not that of the coexisting liquid, rather it
is at some lower liquid-like density. For values of �c
away from the layering transition, numerical solution
of the Euler–Lagrange equations is extremely rapid
due to the very low bulk density of colloid. As the
transition is approached convergence slows consider-
ably and large numbers of iterations are required to
overcome the free energy barrier separating layered
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Figure 8. Colloid density profiles for size ratio q ¼ 0:6
showing the first layering transition at �rp ¼ 0:7 corre-
sponding to path II in figure 2. Bulk colloid fractions
are �c ¼ 0:010, 0:015, 0:018, 0:019 and 0:020 (from
bottom to top); the transition occurs between 0:019 and
0:020. The inset shows the corresponding jump in the
Gibbs adsorption Gc. Gc remains finite at bulk coexistence
�c ¼ 0:0203, i.e. the interface is partially wet by the
colloid-rich phase.
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and unlayered profiles. In the sequence of layering
transitions calculated in [51] the appearance of layer n
is accompanied by a jump of density in the preceding
layers, primarily effecting the (n� 1)th layer. The jump
in adsorption which occurs at the transition thus receives
a contribution from all layers, not only layer n. A similar
effect can be seen at the present layering transition
where the first contact peak in the colloid profile jumps
as a second layer is adsorbed.
The layering transition which we find from the AO

functional, distinct from the wetting transition, appears
to result from effective many-body wall–fluid and
fluid–fluid potentials acting on the colloids. It does not
appear to have a direct counterpart in the adsorption of
simple fluids—see section 7. In order to test this asser-
tion we have calculated colloid density profiles using the
mean-field DFT employed in [11]. As described in the
previous subsection, we treat the AO pair potential as a
mean-field perturbation to a hard sphere reference
system and apply an external potential consisting of a
hard wall plus the one-body AO wall–colloid potential,
see equation (9). We find that whilst a wetting transition
does exist, there is no sign of the layering which we
obtain from the AO mixture DFT. The phase boundary
was approached for different fixed values of �rp above
�rp,wet. In each case the adsorption was found to increase
smoothly to a finite value at bulk coexistence.
In order to map out the full interfacial diagram and

locate further layering transitions we calculate density
profiles along the coexistence curve starting at large
values of �rp working down towards the critical point,
�rp, crit. Using the transition points (jumps) on the phase
boundary as a guide we then take slices across the phase
diagram, increasing �c for a fixed value of �rp, so we can
locate any lines of first-order transitions which may
extend into the single phase (dilute in colloid) region.
We have determined interfacial phase diagrams for size
ratios q ¼ 0:6, 0:7 and q ¼ 1:0 in order to identify any
variation of the topology with size ratio. Figure 9 shows
the interfacial phase diagram for q ¼ 0:6; it is very rich
and features not only the wetting and first layering
transitions discussed above but also two further layering
transitions. Figure 10 shows the colloid density profiles
calculated along the bulk coexistence curve for a number
of values of �rp and the corresponding adsorption Gc

is shown in figure 11. Since these layering transitions
are rather unusual we give a brief description of how
they are located.
We begin mapping out the phase diagram by calculat-

ing the profiles at coexistence for large �rp, region (a) in
figure 9. In this region the profiles have little structure
outside the contact region and the numerical iteration
scheme used to solve the Euler–Lagrange equations
converges rapidly. Decreasing �rp we encounter the point
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Figure 9. The interfacial phase diagram for a colloid–
polymer mixture adsorbed at a hard wall for size ratio
q ¼ 0:6. The full curve is a portion of the bulk fluid–fluid
coexistence curve shown in figure 2. We find a wetting
transition at �rp,wet ¼ 0:596 and three separate layering
transitions at higher values of �rp. The first layering
transition line extends from coexistence to deep into the
single phase region (dashed line) and, when crossed, gives
rise to a jump in the adsorption as shown in figure 8
for �rp ¼ 0:7; it ends in a surface critical point near
�rp ¼ 0:62. The second and third layering transition lines
and any prewetting line lie very close to the coexistence
curve so the transition lines are simply denoted by circles.

0 1 2 3 4 5
z/σc

0

0.5

1

ρcσc

3

q=0.6

(a)

(b)

(c)

(d)

(e)

Figure 10. The colloid density profiles calculated at bulk
coexistence on decreasing �rp (bottom to top) for a size
ratio q ¼ 0:6. The labels (a)–(e) indicate groups of profiles
calculated on the different sections of the coexistence
curve, see figure 9, and show clearly the four different
transitions, e.g. the higher profile of (a) jumps to the lower
profile of (b) at the first layering transition. The first three
jumps are layering transitions and the final one, (d) to (e),
is the wetting transition. As �rp is decreased the adsorption
jumps discontinuously as each layering transition is
encountered. For �rp90:596 the wall is competely wet
by the colloid-rich phase.
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at which the first layering transition line intersects
the phase boundary. Near this point the solution
of the Euler–Lagrange equation becomes unstable; this
instability is reflected in the number of iterations required
to obtain a converged solution. At �rp ¼ 0:722 the
adsorption jumps discontinuously and a new layer is
adsorbed, see figure 11.
Moving further down the coexistence curve, region

(b), the adsorption increases smoothly until a second
layering transition occurs at �rp ¼ 0:642, where there is
again a discontinuous jump in adsorption as a third
layer is adsorbed at the wall. Again the new layer
corresponds to a density lower than the coexisting bulk
liquid density but it is still liquid-like in character.
As the third layer appears the local density in the
second layer also jumps significantly, to a value which
appears to correspond more closely to that of the
coexisting liquid density, i.e. the jump in adsorption
at the second transition is only partially due to the
appearance of the third layer. Similarly, for �rp ¼ 0:608,
we find a third layering transition, (c) to (d), whereby
a fourth adsorbed layer develops, with an accompany-
ing increase in density of layer three, giving rise to
another jump in Gc. As �rp is reduced further Gc remains
finite at bulk coexistence until �rp ¼ 0:596, where the
transition to complete wetting occurs. Having located
the transition points on the phase boundary, we then
take slices at fixed values of �rp to determine whether
the layering transitions extend into the single phase
region. As remarked earlier, the first layering transi-
tion extends away from the phase boundary and ends

at a surface critical point near �rp ¼ 0:62. In determin-
ing the transition line we simply mark the locus of
points where the adsorption jumps discontinuously.
Such an approach will always be subject to some
hysteresis effects, i.e. the actual transition line may be
closer to the phase boundary as, for a given �rp, we may
have to increase �c above its value at the equilibrium
transition in order to move to the next minimum in
the free energy. In order to assess the extent of this
effect we reversed some of the paths across the phase
diagram, starting with a converged solution at coexis-
tence and decreasing �c until the transition is located.
Although hysteresis effects do exist, these are small,
and are not visible on the scale of the line in figure 9.
Unlike the first transition, the second and third transi-
tion lines are extremely short in �rp. As it is very
difficult to determine these accurately we have simply
represented the transitions as large circles in figure 9.
The wetting transition appears to be of first order,
i.e. Gc appears to diverge discontinuously, see figure 11.
However, it is difficult to determine any prewett-
ing line, which should emerge tangentially from the
coexistence curve at the wetting transition [49]. We
can say with certainty that any prewetting line is
extremely short. We repeated the calculations for
q ¼ 0:7 and we find the same pattern of three layering
transitions and a wetting transition as was found for
q ¼ 0:6. The transitions occur at different values of �rp,
see figure 12. Both the layering transitions and the
wetting transition move to larger values of �rp on the
phase boundary but the distance, in �rp, between
the first layering transition and the wetting transition
remains roughly the same. The first layering transition
line is shorter in �rp for q ¼ 0:7 than for q ¼ 0:6 and
lies closer to the phase boundary. Figure 13 shows
the colloid profiles calculated at bulk coexistence
in different regions of the phase diagram, and the
corresponding adsorption is shown in figure 14.

For q ¼ 1 the distance, in �rp, along the bulk phase
boundary between the first layering transition and the
wetting transition increases and a fourth layering
transition appears above the wetting transition—see
figure 15. The sequence of colloid density profiles is
shown in figure 16. It is interesting to note from figure 17
that at subsequent layering transitions the jump in
adsorption is slightly less than that at the preceding
one. Since the profiles shown in figure 16 would indicate
that the amount adsorbed in each new layer is roughly
the same, the difference in adsorption at each transition
is due chiefly to the contribution of jumps in the local
density at the preceding layer. At the first layering
transition the first peak in the colloid profile shows a
clear jump, whereas at the fourth transition the local
density in the third layer shows little change. We find

Figure 11. The Gibbs adsorption of the colloids Gc along
the bulk coexistence curve corresponding to the profiles
shown in figure 10, and the phase diagram of figure 9.
At each of the layering transitions the adsorption changes
discontinuously by a finite amount. At the wetting transi-
tion the adsorption diverges discontinuously as the wall is
wet completely by the colloid-rich phase.
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that the first layering transition line is very short
for q ¼ 1 and lies extremely close to the coexistence
curve so we simply represent this as a circle in figure 15.

4.3. A simulation study for q ¼ 1
All the results we have described so far for wetting

and layering were based on the DFT for the binary AO
mixture. It is important to enquire how much of the
rich behaviour predicted by DFT for this model can
be found in simulation studies. After the completion
of our DFT calculations [25, 26, 46], Dijkstra and
van Roij [19] developed a novel Monte Carlo scheme
for tackling the equilibrium statistical mechanics of

both homogeneous and inhomogeneous model colloid–
polymer (AO) mixtures for arbitrary size ratios q,
including those where effective many-body interactions
between the colloids play an important role. Their
approach is based on the exact effective one-compo-
nent Hamiltonian entering equation (4). Because of the
ideality of polymers, �pp ¼ 0, the grand potential of
polymer in the external potential Vext

p and in the static
configuration fRNcg of the Nc colloidal hard spheres
is given exactly by O ¼ ���1zpVf , where

Vf ¼

Z
dr exp ð��Vext

p ðrÞ�Nc

i¼1½1þ fcpðjr� RijÞ� ð23Þ
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Figure 12. As in figure 9 but for size ratio q ¼ 0:7.
As for q ¼ 0:6, we find three layering transitions but
the first layering transition line is slightly shorter in �rp
and lies closer to the bulk coexistence curve. The wetting
transition occurs at �rp,wet ¼ 0:664.
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Figure 15. As in figure 9 but for size ratio q ¼ 1:0. We
find four layering transitions but now all the transition
lines, including the first, lie extremely close to the bulk
coexistence curve (solid line). The wetting transition
occurs near �rp,wet ¼ 0:845.
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Figure 13. The colloid density profiles at bulk coexistence
on decreasing �rp (bottom to top) for q ¼ 0:7. The labels
(a)–(e) indicate groups of profiles calculated on different
sections of the coexistence curve, see figure 12.
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Figure 14. The Gibbs adsorption of the colloids Gc along the
bulk coexistence curve corresponding to the profiles
shown in figure 13 and the phase diagram in figure 12.
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is the free volume. The integral in equation (23) is over
the total volume V of the system and fcpðrÞ is the colloid–
polymer Mayer bond: fcp ¼ �1 for 0 < r < Rc þ Rp and
zero otherwise. Of course, the shape of the free volume
is, generally, irregular and non-connected but compu-
tationally efficient methods were developed to calculate
this [19]. Bulk simulations were performed for the
case q ¼ 1 where effective many-body interactions are
expected to be crucially important. The semi-grand free
energy was obtained using thermodynamic integration,
at fixed colloid packing fraction �c, with respect to the
polymer fugacity zp (see also [28]).
Phase coexistence was then determined by standard

common tangent constructions at fixed zp. The inset

to figure 18 shows the resulting phase diagram in the
reservoir, �rp versus �c, representation. Three phases are
present; there is colloidal gas–liquid separation, with a
critical point �rp, crit � 0:70, and a liquid–solid transition
which is almost independent of �rp. The triple point is
at �rp, t � 6:0, i.e. there is a very large stable gas–liquid
coexistence region, much larger than the corresponding
(inverse) temperature region for simple atomic fluids.
Also plotted in this figure is the phase diagram obtained
from the free-volume theory of [4]. Note that the latter
can be viewed as a first-order perturbation theory that
approximates Vf by its average in the pure hard-sphere
fluid [10, 11]; it sets Vf ¼ �ð�cÞV , where �ð�cÞ is the
free-volume fraction in equation (16). On the scale of the
inset, the free-volume theory, and therefore our DFT
approach which yields the same free energy, provides
an accurate description of the simulation data. There
are significant deviations, as indicated on the expanded
scale of the main figure where the gas branch of the
coexistence curve is plotted, but the overall agreement
is quite remarkable. As emphasized by Dijkstra and
van Roij [19], it is important to compare the ‘exact’
simulation phase diagram for q ¼ 1 with that obtained
in [10] from simulations in which solely the pairwise
effective potential�eff ðR; zpÞ, equation (6), was employed.
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Figure 18. Simulation results (adapted from [19]) for bulk
and surface phase diagram of the AO model (size ratio
q ¼ 1) as a function of the colloid packing fraction �c and
the polymer reservoir packing fraction �rp. The main figure
is a blow-up of the saturated bulk gas branch, separated
into a regime of complete wetting (thick curve, open
circles), and partial wetting by colloidal liquid (thin curve)
at a planar hard wall. The first (filled triangles), second
(filled squares), and third (filled circles) layering transition
lines extend from bulk coexistence into the single phase
(gas) region. The inset shows the gas–liquid and fluid–
solid bulk coexistence (open squares) to full scale. The
dashed curves denote the bulk binodals obtained from
free-volume theory.
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Figure 16. The colloid density profiles at bulk coexistence
on decreasing �rp (bottom to top) for a size ratio q ¼ 1:0.
The labels (a)–(f) indicate groups of profiles calculated in
different sections of the coexistence curve, see figure 15.
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coexistence curve corresponding to the profiles shown in
figure 16 and the phase diagram of figure 15.
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For the latter, �rp, crit � 0:5 and �rp, t � 0:8. In other
words, the effective many-body interactions extend
greatly the region in �rp over which stable gas–liquid
coexistence can occur. Moreover, these many-body
contributions appear to be incorporated into the free-
volume/DFT approximation. For completeness we
should also note that Bolhuis et al. [15] have investigated
the bulk phase behaviour of the AO binary mixture
using Gibbs ensemble Monte Carlo simulations for size
ratios q ¼ 0:34, 0.67 and 1.05. They find that for
q ¼ 0:34 the fluid–fluid binodal is (weakly) metastable,
consistent with the prediction of the free-volume theory.
For q ¼ 0:67 and 1.05 their simulation results for
the gas–liquid coexistence curves are in good overall
agreement with those of the free-volume theory. These
authors also performed simulations which incorporate
excluded-volume interactions between polymers but we
shall return to this aspect later.
The main part of figure 18 displays the surface phase

diagram obtained in [19] for the q ¼ 1 AO mixture
adsorbed at a planar hard wall. Once again Vf (now
given by equation (23) with Vext

p corresponding to the
hard-wall potential) is calculated within the simulation
so that all many-body interactions are incorporated,
including the modification of pair and higher-body
interactions that occurs when two colloids are close to
the wall—see section 2.1 and [11].
For small polymer reservoir packings �rp, crit < �rp <

1:05 there is strong evidence for complete wetting, i.e.
formation of a thick film of colloidal liquid at the hard
wall–colloidal gas interface with the adsorption Gc

increasing continuously (logarithmically) as bulk coex-
istence is approached. In this regime the colloid density
profiles (see figure 2 (a) of [19]) are reminiscent of the
DFT results in figure 7. By contrast, for about �rp > 1:1,
there is partial wetting, i.e. Gc remains finite at bulk
coexistence. The authors conclude that there is a wetting
transition at some value of �rp,wet in the range 1:05 <
�rp,wet < 1:1. They find no evidence for an accompanying
prewetting transition out of bulk coexistence, i.e. there
appears to be no thin–thick transition in the same range
of values of �rp. For about �

r
p > 1:1, however, they find

jumps in the adsorption which they attribute to layering
transitions of the type we found in the DFT calculations
described in section 4.2. Indeed the colloid density
profiles near the layering transitions (see figure 2 (b)
of [19]) are very similar in form to those shown in
figures 10, 13 and 16. Note that the latter refer to
transitions encountered on reducing �rp at bulk coex-
istence, whereas the simulation data is for a path at fixed
�rp, increasing �c towards bulk coexistence. Figure 18
describes three separate layering transition lines, each
of them rather short, lying close to bulk coexistence
and very far from the bulk triple point. A reasonable

person would conclude that the wetting and layering
phenomena found in the simulations for q ¼ 1 mimic
those found in the DFT calculations. There is not
perfect agreement. The sequence of layering transitions
gleaned from the simulations for q ¼ 1, is arguably
closer to that observed in DFT for q ¼ 0:6 and 0.7 than
for q ¼ 1; the layering transitions extend very little
out of bulk coexistence in the last case (see figure 15).
But one should not expect an approximate DFT to
provide a completely accurate account of what are
very subtle interfacial phase transitions, resulting from
a complicated competition between wall–fluid and fluid–
fluid interactions. Given that the bulk gas–liquid
coexistence curves obtained from DFT and simulation
differ significantly on the scale relevant to the surface
phase diagram it is not surprising that there are differ-
ences in the surface phase behaviour. What is more
important is to establish that it is the many-body inter-
actions entering the effective interfacial Hamiltonian
for the colloids which give rise to the pattern of inter-
facial transitions that is observed. We shall return to this
issue later.

5. Treating polymer–polymer interactions within

a geometry-based DFT

So far in this paper we have treated the polymers
as mutually non-interacting: �ppðrÞ ¼ 0. Real polymers,
when dissolved in a good solvent, experience repulsive
monomer–monomer interactions. As described in the
introduction, when averaged over polymer conforma-
tions this repulsion at the polymer segment level gives
rise to a soft, penetrable and repulsive interaction
between polymer centres of mass. The range of this
effective pair potential is 0 the polymer radius of
gyration and its strength (at zero separation between
the two centres of mass) is of the order of the thermal
energy, kBT . Within this ‘soft colloid’ picture the
effective polymer–polymer potential can be well repre-
sented by a Gaussian pair potential [52]. In the following
we do not attempt to model this interaction realistically,
rather we summarize the approach of [20] where a
minimal model was considered that displays the essential
features of polymer–polymer repulsion. With a simple
geometric picture in mind, the interactions between
polymers are represented by a repulsive step-function
pair potential

�ppðrÞ ¼
�, for r < 2Rp,

0, otherwise,

�
ð24Þ

whilst the colloid–colloid and colloid–polymer poten-
tials remain hard-sphere-like. Note that in the limit
�=kBT ! 0 we recover the AO model with non-
interacting polymers, equation (1) with �p � 2Rp,
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whereas for �=kBT ! 1 the model reduces to that of an
additive binary hard-sphere mixture. A similar treat-
ment of polymer interactions was introduced by Warren
et al. [53], although in that work �ppðrÞ was assumed to
have a range of Rp, the polymer radius of gyration. Our
current (longer-ranged) choice is more consistent with
the effective (Gaussian) potentials of Louis et al. [52],
which extend even beyond 2Rp. Our aim is to develop a
DFT which retains most of the features of the DFT for
the original AO model but which incorporates, albeit
crudely, polymer–polymer interactions. We briefly
review how the DFT of section 2.2 can be extended to
the current case, following [20], and then describe the
bulk fluid–fluid phase separation which arises in this
theory.

5.1. Construction of the functional
In constructing functionals for hard-sphere fluids it

has been shown [54, 55] that requiring an approximate
functional to recover the properties of the system in
the zero-dimensional (0d) limit, where the partition
sum can be calculated exactly, is a powerful constraint
which has guided the development of DFTs for other
models, such as the AO model. Thus we first consider
the current model in the 0d limit, in which particle
centres are confined to a volume v0d whose dimensions
are smaller than all relevant length scales in the system.
The microstates accessible are then completely speci-
fied by the occupation numbers of particles of both
species and each microstate is assigned a statistical
weight according to the grand ensemble. The grand
partition sum for an arbitrary binary mixture in this
limit is

X ¼
X1
Np¼0

z
Np
p

Np!

X1
Nc¼0

zNc
c

Nc!
exp ð���totalÞ, ð25Þ

where the (reduced) fugacities are zi ¼ ðv0d=L3
i Þ �

exp ð��iÞ,Li is the thermal wavelength, �i is the chemical
potential of species i and �total is the total potential
energy in the situation where all particles have vanishing
separation. Note that for hard-core interactions, the
Boltzmann factor vanishes for forbidden configurations,
which then limits the upper bounds in the summations
in equation (25). For the present case, where �cc and �cp

are hard-body interactions, we obtain

X ¼ zc þ
X1
Np¼0

z
Np
p

Np!
exp ���NpðNp � 1Þ=2

� �
, ð26Þ

where the Np dependence in the Boltzmann factor stems
from the counting of pairs of polymers. There are
two important limiting cases. For zc ¼ 0 (no colloids),

the limit of one-component penetrable spheres [56] is
recovered, whereas for �� ¼ 0, equation (26) reduces
to the AO result [16, 17], X ¼ zc þ exp ðzpÞ. In order to
obtain the Helmholtz free energy, a Legendre transform
must be performed, and the dependence on the fugaci-
ties replaced with the dependence on the mean (occupa-
tion) numbers of particles, �i ¼ zi@ ln X=@zi, i ¼ c,p.
Taking the particle volume of species i as the reference
volume, �i is also the 0d packing fraction of species i.
Subtracting the ideal contribution, one calculates
the excess Helmholtz free energy, �F0d ¼ � ln XþP

i¼c, p �i ln ðziÞ �
P

i¼c,p �i½ln ð�iÞ � 1�. In the present
case (as for pure penetrable spheres [56]), this cannot
be expressed analytically. As we are interested in the
case of small � (small deviations from the AO model),
we perform an expansion in powers of ��, and obtain

�F0d
ð1Þ ¼ ð1� �c � �pÞ ln ð1� �cÞ þ �c þ

��

2

�p
2

1� �c
,

ð27Þ

which is exact up to lowest (linear) order in ��. In the
limit �� ! 0, equation (27) reduces to the AO result
[16, 17], which is �F0d,AO ¼ ð1� �c � �pÞ ln ð1� �cÞ þ �c.
In the absence of colloids, �c ! 0, we obtain a mean-
field-like expression, F0d,MF ¼ ��p

2=2.
Since some terms of higher than first order can be

obtained analytically, we write the free energy as
F
ð1Þ
0d þ�F0d, and we find that up to cubic order in ��

��F0d ¼ �
�p

2ð��Þ2

4ð1� �cÞ
þ

�p
2

1� �c
þ

2�p
3

ð1� �cÞ
2

� �
ð��Þ3

12
: ð28Þ

For large ��, the 0d free energy must be calculated
numerically. This is straightforward [20].

Returning to three dimensions, we write the excess
Helmholtz free energy functional of an inhomogeneous
system as

�F ex½�cðrÞ, �pðrÞ� ¼

Z
drF fnc	g, fn

p

g

� �
, ð29Þ

which is the same as in the ideal polymer case,
equation (11). The weighted densities fni	g are defined
as convolutions with the bare density profiles through
equation (13). In addition to the weights (14) we also
introduce Tarazona’s [57] tensor weight function
ŵw
i
m2ðrÞ ¼ wi

2ðrÞ½rr=r
2 � 1̂1=3�, where 1̂1 is the identity

matrix.
The free energy density is composed of three parts

F ¼ F1 þ F2 þ F3 , ð30Þ
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which are defined as

F1 ¼
X
i¼c, p

n0i ’i n
c
3, n

p
3

� �
, ð31Þ

F2 ¼
X

i, j¼c, p

ni1n
j
2 � niv1 	 n

j
v2

� �
’ij n

c
3, n

p
3

� �
, ð32Þ

F3 ¼
1

8p

X
i, j, k¼c, p

1

3
ni2n

j
2n

k
2 � ni2n

j
v2 	 n

k
v2

�

þ
3

2
niv2n

j
m2n

k
v2 � tr nim2n

j
m2n

k
m2

� �	 
�
’ijk nc3, n

p
3

� �
,

ð33Þ

where tr denotes the trace. The quantities ’i, ’ij etc. are
derivatives of the 0d excess free energy

’i...kð�c, �pÞ �
@m

@�i . . . @�k
�F0dð�c, �pÞ: ð34Þ

In the absence of polymer, F1 and F2 are equivalent to
the free energy densities for hard spheres introduced
in [18] and F3 is equivalent to the tensor treatment
for pure hard spheres in [57]. Equations (31)–(33) are
generalizations of these earlier treatments that include
summations over species. If we set �� ¼ 0, ideal poly-
mer, and take the derivatives of �F0d,AO we recover the
explicit expressions given in equation (12) for the AO
model.

5.2. Fluid–fluid phase separation
In bulk, the one-body densities of both species are

spatially uniform: �iðrÞ ¼ const: This leads to simple
analytic expressions for the weighted densities. The
excess free energy density, equations (30)–(33), is easily
evaluated provided the analytic approximations (27),
(28) are employed for F0d. If we retain only the linear
term in ��, i.e. employ equation (27), then

�fexð�c, �pÞ ¼
�F exð�c, �pÞ

V
¼ �fHS

ex ð�cÞ � �p ln �1ð�cÞ

þ
� ~��ppð0Þ

2
�p

2½1� ln �2ð�cÞ� , ð35Þ

where the integrated potential is ~��ppð0Þ ¼
4p

R
dr r2�ppðrÞ ¼ 4p��3

p=3. fHS
ex is the scaled-particle

(Percus-Yevick compressibility) approximation, and is
given by

�fHS
ex ¼

3�c½3�cð2� �cÞ � 2ð1� �cÞ
2 ln ð1� �cÞ�

8pR3
cð1� �cÞ

2
; ð36Þ

and is the same quantity that enters equation (15).
The quantities �1 and �2, which depend solely on �c and
the size ratio q ¼ �p=�c, are given by

ln �1 ¼ ln ð1� �cÞ �
X3
m¼1

Cð1Þ
m 
m, ð37Þ

ln �2 ¼ �
1

8

X4
m¼1

Cð2Þ
m 
m, ð38Þ

where the dependence on colloid density is through

 ¼ �c=ð1� �cÞ, and the coefficients are polynomials
in the size ratio, given as C

ð1Þ
1 ¼ 3qþ 3q2 þ q3,

C
ð1Þ
2 ¼ ð9q2=2Þ þ 3q3, C

ð1Þ
3 ¼ 3q3 and C

ð2Þ
1 ¼ 8þ 15qþ

6q2 þ q3, C
ð2Þ
2 ¼ 15qþ 24q2 þ 7q3, C

ð2Þ
3 ¼ 18q2 þ 15q3

and C
ð2Þ
4 ¼ 9q3.

For �� ¼ 0, ideal polymer, our result is identical to
that of free-volume theory for the AO model—see
equations (15) and (16). The quantity �1 in equation (37)
is identical to a, the free-volume fraction of a single
polymer sphere in the AO model. �2 can be interpreted
[20] as the free-volume ratio for pairs of overlapping
polymers. �1 and �2 both decrease monotonically with
increasing �c due to the increasing excluded volume.
However, �2 > �1 over the whole density range, which
may be due to correlations between polymer pairs [20].
At fixed �c, both �1 and �2 decrease monotonically with
increasing size ratio.

The total canonical free energy is given by F=V ¼

fex þ kBT
P

i¼c, p �i ½ln ð�iL
3
i Þ � 1�. It is convenient to

transform to the semi-grand ensemble, where the
polymer chemical potential �p is prescribed instead of
the system density �p. The appropriate thermodynamic
potential is the semi-grand free energy Osemi, related to
F via a Legendre transform: Osemi=V ¼ F=V � �p�p,
where �p is given as

��p ¼ @ð�F=VÞ=@�p

¼ ln ð�pL3
pÞ � ln �1ð�cÞ � � ~��ppð0Þ�p½1� ln �2ð�cÞ�,

ð39Þ

which is a transcendental equation to be solved for �p
once �p is prescribed. This result is a generalization of
the standard free-volume expression ��p ¼ ln ðL3

p�p=�Þ
pertaining to the original AO model [4].

As usual, phase coexistence is determined by requiring
equality of the total pressure, of the chemical potentials
�i, and of the temperatures in the coexisting phases.
This can be carried out in the system representation
(�c, �p) [20] or, using common tangent constructions on
Osemi, in the polymer reservoir representation (�c,�p).

Stable fluid–fluid phase separation (with respect to
the fluid–solid transition) is observed in experiments
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on colloid–polymer mixtures only at sufficiently large
polymer-to-colloid size ratios. We consider the size ratio
q ¼ 0:57, for which experimental data are available for
PMMA colloid and polystyrene (PS) in cis-decalin [5].
Figure 19 shows the calculated phase diagrams with and
without polymer interactions. For non-interacting poly-
mers (�� ¼ 0), our result is identical to that from free
volume theory for the AO model. In order to apply our
theory to the experimental situation, we have prescribed
the potential energy barrier to be �� ¼ 0:5. This is based
on considerations of the second virial coefficient of a
pure polymer solution [20]. In order to achieve higher
accuracy than is provided by the linear expansion of
the 0d free energy, equation (27), we use the cubic order
expression, equation (28), to determine the excess free
energy. Figure 19 shows a comparison of the calculated
theoretical binodal with the experimental data of [5]
in the system representation.
Although the measured single-phase (fluid) state

point at high colloid packing fraction lies inside the
theoretical two-phase region, it is clear that our theory
predicts a shift in the correct direction compared
with the non-interacting (ideal) binodal. The theory
also predicts that the coexisting colloidal gas phase is
more strongly dilute in colloids, as compared with the
non-interacting case.
In figure 20 the phase diagram is shown in polymer

reservoir representation: a reservoir of interacting pure
polymer is considered that is in chemical (osmotic)
equilibrium with the system with respect to exchange
of polymers. The tie lines are horizontal in this
representation. Away from the critical point a gas,

dilute in colloids, coexists with a liquid that has very
high packing fraction of colloids, much higher than in
the ideal case. We consider next the case of equally-sized
species, q ¼ 1. Phase diagrams are shown in the system
representation (figure 21) and in the reservoir represen-
tation (figure 22). Again a marked shift of the critical
point towards higher �c is found and the single phase
region is larger (in the system representation) compared
to the case of ideal polymer. Figure 22 shows that the
packing fraction of coexisting liquid increases quite
rapidly with increasing �rp, which has repercussions for
the location of the triple point. All these results can be
understood in terms of a free energy penalty arising
from polymer–polymer interactions. These manifest
themselves primarily in the colloidal gas phase as only
a small penalty arises in the colloidal liquid phase, where
polymers are strongly diluted.

It is instructive to make some comparisons between
the present results and the recent extensive Monte Carlo
simulation results of Bolhuis et al. [15] mentioned in
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Figure 19. Fluid demixing binodals in the system represen-
tation, i.e. as a function of the colloid (�c) and polymer
(�p) packing fractions for size ratio q ¼ 0:57. Results are
shown for the case of non-interacting polymer (dashed
line) and for interacting polymer (solid line) with strength
�� ¼ 0:5. The crosses denote the critical points. The
symbols refer to the experimental state points taken
from [5]. The open circles denote single-phase (fluid) states
and the filled rhombuses two-phase (liquid–gas) states.
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Figure 20. Same as figure 19 (q ¼ 0:57), but in the reservoir
representation, i.e. as a function of �c and the packing
fraction of polymer (�rp) in a reservoir of pure polymer
in osmotic equilibrium with the system.
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section 4.3. These authors consider hard-sphere colloids
but obtain effective potentials for the polymer–polymer
interaction from simulations of a bulk system of self-
avoiding walks (SAW) at various concentrations—a
procedure known to be reliable for polymers in a good
solvent. The effective pair potentials �pp correspond
to tracing out the monomer degrees of freedom and
treating the polymer as ‘soft colloid’; �pp depends
on the volume fraction of the polymer and is calculated
by inversion of the centre-of-mass radial distribution
function gppðrÞ. The colloid–polymer effective potential
also depends on the volume fraction of polymer. It is
obtained from simulations of a single hard sphere in
a solution of SAW polymers by inverting the centre-of-
mass concentration profile using the HNC equation—
details are given in [15]. Phase diagrams are determined
by Gibbs ensemble simulations of the binary mixture
described by these effective pair potentials and results
are presented for q ¼ 0:34, 0.67 and 1:05. We focus
here on size ratios q ¼ 0:67 and 1.05 where gas–liquid
(fluid–fluid) phase separation is stable with respect to
fluid–solid.
In the (�c, �

r
p) representation including polymer–

polymer interactions increases the critical point value
of the packing fraction of colloids very slightly but
increases the critical polymer reservoir fraction �rp, crit by
about 0.25 for q ¼ 0:67. More significantly, the gas–
liquid two-phase region is broadened significantly in �c
and the triple point �rp, t is lowered considerably from
what is found in the ideal polymer (AO) case—see
figure 1 of [15]. The upshot is that there is a very narrow,
in �rp, region of stable fluid–fluid phase coexistence when
interactions are included. This is not totally different
from what we find in figure 20, for q ¼ 0:57, from the
DFT; as freezing is expected to occur when �c � 0:5, this
permits only a small separation between �rp, t and �rp, crit
when interactions are incorporated. However, our DFT
does not predict the substantial increase in �rp, crit which

is found in simulations when interactions are included.
This is reflected clearly in the (�c, �p) representation
where the binodal calculated with interactions appears
to be more separated from the non-interacting case (see
figure 2 of [15]) giving a larger single-phase region than
in the corresponding DFT results, although the latter
are for a smaller value of q. The situation is exaggerated
for q ¼ 1:05. Now the critical point is shifted from
�c, crit � 0:11, �rp, crit � 0:75 to �c, crit � 0:18, �rp, crit � 1:12
and the triple point is lowered from what is a very high
number �rp, t � 6 to �rp, t � 1:65 when interactions are
included. Again the range in �rp over which stable fluid–
fluid phase coexistence occurs is narrowed considerably.
A similar trend is found in the DFT results of figure 22
for q ¼ 1 but the latter predict a small decrease in �rp, crit
rather than the substantial increase found in simulation.
Moreover, the DFT does not predict the very strong
shift of the binodal in the (�c, �p) representation
found in simulations (figure 3 of [15]) which results in
a much larger single-phase region when interactions
are included.

In summary, the DFT introduced in [20] and descri-
bed above captures several, but not all, of the effects of
polymer–polymer excluded volume interactions that are
found in the computer simulations of bulk phase behav-
iour. (Note, however, that the freezing transition was
not considered explicitly in the DFT calculations.) This
should encourage applications of the theory to inhomo-
geneous situations—the primary purpose of DFT.
Such problems are not easily tackled by simulations.

Of course, this model of polymer–polymer interac-
tions is highly idealized and a detailed critique is given
in [20]. The main limitations are: (i) �ppðrÞ is assumed to
be a step function rather than a Gaussian-type function,
(ii) the range of the step function is set equal to 2Rp,
twice the polymer radius of gyration, in order to derive a
geometry-based DFT meeting ‘additive’ restrictions and
(iii) the strength � and range of �pp are assumed to be
independent of the concentrations of polymer and
colloids, whereas simulation studies of SAW [15, 52]
indicate that the effective polymer–polymer potential
should depend on the volume fraction of polymer.

We conclude this section by emphasizing [20] that the
present DFT approach is not a perturbative treatment of
polymer–polymer interactions. One might attempt to
construct a DFT which starts with the AO functional
for the AO reference model and then simply adds a
(perturbative) contribution to account for polymer–
polymer interactions. The latter could be the type of
mean-field functional used recently to describe a pure
polymer system [21], namely

FMF½�pðrÞ� ¼
1

2
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Figure 22. Same as figure 20, but for size ratio q ¼ 1.
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This functional generates the pair direct correlation
function which corresponds to the random phase
approximation: cð2Þppðr, r

0Þ ¼ cð2Þppðjr� r0jÞ ¼ ���ppðjr� r0jÞ,
known to be a good approximation at high densities
for penetrable potentials [21]. It has been used to good
effect in investigations of repulsive Gaussian core
particles adsorbed at a hard wall [58]. The generalization
of equation (40) to binary Gaussian core mixtures was
used in studies of fluid–fluid interfaces [41] and of
wetting phenomena [48]. At first sight the functional
FAO

ex þFMF would appear to provide a reasonable
description of the excess free energy of the AO mixture;
note that the hard-body interactions between colloids
and polymers are already included in FAO

ex . However, as
shown in [20], this is not the case for the model described
above. The perturbative contribution FMF depends
solely on the polymer density �pðrÞ and therefore
neglects exclusion of polymer from the volume occupied
by the colloids. By contrast the geometry-based DFT
builds in excluded volume effects. One can understand
this by returning to the 0d free energy, equation (27).
The final (polymer) contribution is enhanced over the
corresponding mean-field expression ���2p=2 by a factor
ð1� �cÞ

�1. The perturbative DFT exhibits some severe
failings when applied to the calculation of phase
behaviour and similar failings are to be expected [20]
if the same approach, i.e. simply adding FMF to FAO

ex ,
were adopted for other models, e.g. mixtures of hard-
core and Gaussian particles. Note that the approach of
Warren et al. [53] for the bulk free energy can be viewed
as a perturbative treatment in which �ppðrÞ is regarded as
a perturbation about the AO reference system. Schmidt
et al. [20] rederive the theory of [53] in a framework
that allows them to understand relationships between
the various approaches. They argue that the geometry-
based DFT provides a more realistic account of the
binodal than does the theory of [53].

6. Further developments

During the last two years several applications and
extensions of the DFT for the AO model have been
reported. We summarize some of them in this section.
An overview of geometry-based DFT, which lists a
wider range of developments, is given by Schmidt [59].
We mention first two direct applications of the DFT

for the AO mixture described in section 2.2. As a planar
hard wall prefers the colloid-rich (liquid) phase to the
colloid-poor (gas) phase, the hard wall–liquid surface
tension is lower than the hard wall–gas tension. General
arguments [60] then imply that for the colloid–polymer
mixture confined between two, parallel, planar hard
walls, capillary condensation of the liquid phase should
occur when the reservoir fluid is in the gas phase, i.e.
for a given �rp the value of �c is lower than the bulk

coexistence value. Brader observed this phenomenon
in his PhD studies [25] using the DFT. Systematic
investigations were carried out recently [61] using both
DFT and computer simulation. Lines of capillary con-
densation were determined for size ratio q ¼ 1. These
are most easily represented in the (�c, �

r
p) plane, where

�c is the colloid chemical potential. Upon decreasing the
(scaled) wall separation distance H=�c from ten to two a
pronounced shift of the capillary binodal towards
smaller values of �c occurs. The critical point shifts to
larger �rp, corresponding to lower temperature in the
case of a simple atomic fluid, and to larger �c upon
reducing H. This latter trend seems to be much more
pronounced in the simulation results than in those from
DFT. Preliminary investigations demonstrated that the
shift of the binodal could be described reasonably well
using the generalized (to binary mixtures) Kelvin
equation for capillary condensation [62]. The practical
importance of this investigation lies in possible experi-
mental realizations by strongly confining (between glass
substrates) real colloid–polymer mixtures [63]. From a
theoretical viewpoint one sees that since all the bare
interactions in this system are either hard or ideal, this
is an important example of shifting a bulk phase
transition, via confinement, by means of purely entropic
(depletion) forces.

The second application refers to the AO model
colloid–polymer mixture exposed to a standing laser
field that is modelled as an external potential acting on
the colloids. This has a sinusoidal variation as a function
of the space coordinate in the direction of the beam
[64]. DFT results indicate that the external potential
may stabilize a ‘stacked’ fluid phase which is a periodic
succession of liquid and gas slabs. The regions of large
laser intensity (where the external potential is small)
are filled with colloidal liquid whereas the regions with
small laser intensity are gas-like.

Several extensions of the AO model have been made
and the bulk phase behaviour compared with the
original. In order to take into account the effect of
poor solvent quality on colloid–polymer mixtures, the
solvent was modelled as a distinct component. Speci-
fically it was taken to be a binary mixture of a primary
solvent that is treated (as usual) as a homogeneous,
inert background and a secondary cosolvent that is
treated as an ideal gas of point particles [65]. These
cosolvent particles are assumed to penetrate neither
the polymers nor the colloids. In the absence of colloids,
the polymer–cosolvent subsystem is the Widom–
Rowlinson model [66] of a binary mixture in which
particles of like species are non-interacting while unlike
species interact with hard cores. Thus the cosolvent
induces an effective many-body attraction between
the polymers, reminiscent of that caused by poor solvent.
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It was found that worsening the solvent quality, by
increasing the cosolvent concentration, increases greatly
the tendency to demix, i.e. this shifts the corresponding
binodal to smaller colloid and polymer packing fractions
[65].
The shape and size of real polymers will be affected by

confinement effects, generated by the presence of the
colloidal particles in a colloid–polymer mixture. In order
to model the effect on the polymer size distribution,
an AO model with polydisperse polymer spheres was
considered [67]. The polymer spheres are mutually
non-interacting but are excluded from the colloids;
their radii are free to adjust to allow for colloid-induced
compression. The size (radius of gyration) probability
distribution in the polymer reservoir was taken to be
that of ideal chains. It was found that the presence of the
colloids reduces considerably the average polymer size.
As a consequence, the bulk demixing binodal is shifted
towards higher polymer densities, stabilizing the single,
mixed phase as compared with the incompressible
AO case.
For very large polymer-to-colloid size ratios the

assumption that colloids cannot penetrate polymers
is no longer valid. A small colloidal sphere may well
penetrate the open coil structure of a big polymer. In
order to incorporate this effect on the level of an effective
sphere model a penetrable AO model was introduced
[68]. The colloid–polymer interaction is assumed to be a
step-function of finite height, in contrast to the hard-
core repulsion of the conventional AO case. The range
of this interaction is still taken to be Rc þ Rp, and the
strength is taken from the known immersion free energy
of a single sphere in a dilute solution of polymer coils
or in a theta solvent. The colloid–colloid interaction
remains hard-sphere-like and �pp ¼ 0. For large size
ratios, q03, there is a significant increase in the extent
of the mixed region in the phase diagram compared to
the free-volume result for impenetrable polymer, i.e. for
the AO model [68]. These findings are in keeping with
results from more microscopic approaches which treat
excluded volume at the segment level [14].
A system that is closely related to the AO model is a

mixture of spherical hard-sphere colloids and hard,
needle-like particles. The latter may represent either
stretched polymers or stiff colloidal rods. In the simplest
model [69] the thickness of the rods is set to zero such
that rod–rod interactions can be ignored but there
remains an excluded volume interaction between a rod
and a hard sphere. For this model there is no liquid
crystalline order, because of the absence of rod–rod
interactions. However, simulation studies found iso-
tropic gas and liquid phases as well as a solid phase
[69]. The rods act as a depletant, in a similar fashion
to the non-interacting polymer spheres in the AO

model, and give rise to an effective attraction between
the hard-sphere colloids. Bolhuis and Frenkel [69] also
determined the phase behaviour using a free-volume
approximation for the free energy, similar to that of
Lekkerkerker et al. [4] for the AO model, i.e. a first-
order perturbation theory that sets the free-volume
fraction for the needles equal to its average value in the
pure hard-sphere fluid. A DFT was constructed [22]
for this model and applied subsequently [23] to the
planar (free) interface between demixed fluid phases, one
of which, the liquid, is rich in spheres (and poor in
needles) and the other, the gas, is dilute in spheres (and
rich in needles). Note that in constructing the DFT it
was necessary to introduce a weight function wSN

2 ðr,:Þ,
where : refers to the orientation of the needles, which
contains information about both species, the spheres
and the needles, in order to generate the sphere-needle
Mayer bond. The corresponding sphere-needle weighted
density, nSN2 ðr,:Þ, is a convolution of the sphere density
�sðrÞ and wSN

2 ðr,:Þ, whereas all the remaining weighted
densities involve only variables of an individual species.
For uniform fluids the DFT yields the following
expression for the excess free energy density:

�fexð�S, �NÞ ¼ �fHS
ex ð�SÞ � �N ln �ð�SÞ, ð41Þ

where �S and �N refer to the number densities of spheres
and needles, respectively. fHS

ex is, as usual, the excess
free energy density of pure hard spheres (36) and �ð�SÞ
is the free-volume fraction for a single, test needle of
length L in the hard-sphere fluid:

�ð�SÞ ¼ ð1� �Þ exp ½�ð3=2ÞðL=�Þ�=ð1� �Þ�, ð42Þ

with � ¼ p�S�3=6, the packing fraction of spheres of
diameter �. Equation (41) is identical to the free-volume
result [69] and can also be obtained by applying scaled-
particle theory for non-spherical bodies [70] to the
current model. It has the same form as the excess free
energy for the AO model—see equation (15). The fluid–
fluid binodal resulting from equation (41) was found to
be rather close to that obtained by simulations for the
case L=� ¼ 1 [69]. Brader et al. [23] chose the same size
ratio for their DFT studies of the planar fluid–fluid
interface. The bulk phase diagram, plotted in the
reservoir representation, i.e. �r� ¼ �rNL

2� versus �, has
a similar form to figure 2 with � ¼ �c and �r�, the
reduced needle density in the reservoir, replacing the
polymer reservoir packing fraction �rp. The critical point
is located at �crit ¼ 0:158 and �r�, crit ¼ 14:64 whilst the
triple point, estimated from first-order perturbation
theory [69], is at �r�, t ¼ 24. As in figure 2, there is a
Fisher–Widom (FW) line intersecting the liquid branch
of the binodal near �r�,FW ¼ 17, see figure 2 of [23].
For coexisting states with higher values of �r�, on the
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oscillatory side of the FW line, Brader et al. find sphere
density profiles �SðzÞ that are oscillatory on the sphere-
rich (liquid) side of the planar interface. However, the
amplitude of the oscillations is considerably smaller
than what was described in section 3 for the AO model.
As expected, on the needle-rich (gas) side the density
profile of the spheres decays monotonically into bulk for
all states. The important new feature which arises in this
study concerns the nature of the needle density profiles.
Within DFT one can determine the one-body density
�Nðz, �Þ, where z is the perpendicular distance from
the interface and � is the angle between the needle
orientation and the interface normal, and hence both the
orientation averaged needle density profile, ���NðzÞ, and
the orientational order parameter profile hP2ðcos �Þi.
For states above the FW line, ���NðzÞ displays very weak
oscillations on the liquid side of the interface arising
from the influence of the packing of the spheres on the
distribution of the needles. From the result for
hP2ðcos �Þi, Brader et al. conclude that needles order
parallel to the interface on the needle-rich side. This
appears to be similar to the biaxial ordering of needles
that occurs at a planar hard wall; in the present case
the densely packed hard-sphere fluid acts as a ‘wall’ for
the needles. On the sphere-rich side the needles prefer
to orient themselves perpendicular to the interface and
this is interpreted as the needles protruding through the
voids in the first layers of the hard-sphere fluid. These
general features of the orientational order are indepen-
dent of the size ratio L=�. As an optimal compromise
between manageable needle particle numbers and
simulation box size, Bolhuis et al. [71] chose to
perform Monte Carlo simulations with ratio L=� ¼ 3.
The different preferential alignment of needles on either
side of the interface is confirmed by the simulation
results. Moreover, there is remarkable quantitative
agreement between simulation and DFT results for the
density profiles �SðzÞ, ���NðzÞ and the orientational order
parameter profile [71]. Brader et al. [23] also describe
results for the liquid–gas surface tension and discuss
what might be appropriate scaling factors to bring
about data collapse for different size ratios L=�.
In a related study Roth et al. [24] considered the same

sphere–needle mixture, with L=� ¼ 1, adsorbed at a
planar hard wall—the same type of situation as that
described in section 4. Density profiles calculated from
the DFT for the binary mixture of spheres and needles
show that complete wetting of the hard wall–gas
interface by the sphere-rich, liquid phase occurs upon
approaching the binodal on a path at fixed �r� ¼ 16; the
profiles are reminiscent of those in figure 7. There
appears to be complete wetting for all the values of �r�
considered. An effective one-component description of
the same system was also investigated in [24]. This

follows the approach of section 2.1 in that a sphere–
sphere and a wall–sphere depletion potential can be
obtained by integrating out the degrees of freedom of
the needles (rods) [72]. Since the needles are mutually
non-interacting the depletion potentials depend linearly
on �rN. Geometrical arguments, similar to those for the
AO model, show that the effective one-component
Hamiltonian corresponding to equation (9) should be
exact for L=� < 1� ð2ð31=2Þ � 3Þ1=2 ¼ 0:31875, which
should be compared with the corresponding size ratio
q ¼ �p=�c ¼ 0:1547 for the AO model. Thus, for the
system under consideration, with L=� ¼ 1, there are
many-body effective interactions which are not included
in the analogue of equation (9). Ignoring these, Roth
et al. [24] employed a one-component DFT, equivalent
to that used in [11] for adsorption studies of the AO
model with q ¼ 0:1; this treats the hard-sphere con-
tribution by the Rosenfeld FMT and the depletion
attraction between pairs of spheres by means of a mean-
field approximation. The resulting fluid–fluid binodal is
in fair agreement with that from the free-volume theory,
equivalent to the result of the binary mixture DFT.
The effective one-component treatment also predicts
complete wetting. However, there is also a partial
wetting regime, at high �r�, followed by a sequence of
five layering transitions and then a transition to the
completely wet state as �r� is reduced following the gas
branch of the binodal. The pattern of surface phase
transitions (see figure 5 of [24]) is very similar to that
seen in figures 9 and 12 for the AO model, i.e. the first
layering transition is quite extended in �r� and the
layering critical point, near �r� ¼ 20, is well removed
from the binodal. Subsequent transition lines are
reduced in extent and lie close to the binodal. Thus, it
is tempting to argue that this effective one-component
treatment of the adsorbed sphere–needle mixture mimics
what we found for the AO model. But there we argued
that it was the incorporation of effective many-body
interactions between the colloids that was responsible
for the rich layering behaviour; our effective one-
component treatment did not yield layering transitions
in the case of the AO model. A full understanding of
the results for the sphere–needle model is yet to emerge.
The precise location of the triple point is important.
Indeed a preliminary simulation study of the bulk
system [73], using the same effective sphere–sphere
potential as in [24], finds that �r�, crit 
 17:5 and
�r�, t 
 22:7, i.e. gas–liquid coexistence is stable over a
rather narrow region of �r�. More significantly, the triple
point lies below the onset of the first layering transition
found in [24], suggesting that the layering could be
occurring in a region where the gas–liquid transition is
metastable with respect to gas–solid. This is not the case
in the AO model where in both the DFT calculations of
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section 4.2 and in the simulation studies of section 4.3,
the onset of layering occurs well below the triple point.
A further study [74] was devoted to developing a

geometry-based DFT for a ternary mixture of hard-
sphere colloids, ideal polymer spheres and vanishingly
thin hard needles. The model combines those of AO and
of Bolhuis–Frenkel. Both the mutually non-interacting
polymers and mutually non-interacting needles act as
depletion agents so that rich fluid phase separation
can arise. As usual, colloid–colloid, colloid–polymer
and colloid–needle interactions are hard. Schmidt and
Denton [74] consider two cases: (i) the polymer–needle
interaction �PNðrÞ vanishes for all distances r and (ii) it is
hard, i.e. �PN ¼ 1 if polymer and needle overlap, and
zero otherwise. Constructing the DFT for the second
case requires a generalization to needles of an earlier
DFT treatment [75] of the Widom–Rowlinson model
[66] since in the absence of colloids the polymer–needle
mixture is of the Widom–Rowlinson type: interactions
between like species vanish while unlike particles interact
via hard-core repulsion. For case (i), two-phase coex-
istence between colloid-rich and colloid-poor fluid
phases is found. For case (ii), there is the possibility
of de-mixing between the polymers and the needles.
Moreover, there can be a competition between the
depleting effects of (interacting) polymers and needles;
the two species compete to generate the attraction
between the colloid spheres. Striking demixing fluid
phase behaviour is found, with various critical points
and a three-phase coexistence region [74]. It would be
of considerable interest to investigate structural correla-
tions in the various bulk fluid phases and to consider
inhomogeneous situations, such as fluid–fluid or wall–
fluid interfaces, in this model system.
A very different kind of confinement from that

considered so far is present for fluids adsorbed in
porous media. Rather than the well-defined geometries
which occur at a planar wall or at fluid–fluid interfaces,
irregular and random confinement acts on the adsorbed
fluid. In order to model porous media one introduces the
so-called quenched–annealed fluid, where the quenched
components represent the porous medium in terms of
immobilized fluid configurations. Since the quenched
components act as an external potential on the annealed
(equilibrated) components constituting the adsorbate,
the one-body density distribution of the latter can be
obtained using standard DFT methods. However, such
an approach is computationally demanding since the
spatial distribution of the adsorbate is extremely com-
plicated. An alternative approach, termed quenched–
annealed DFT, was proposed recently. This treats the
quenched components on the level of their one-body
density distributions [76]. The minimization condition
differs from that of equilibrium (fully annealed)

mixtures, as the quenched components are treated as
fixed input quantities in the grand potential functional.
For the AO model adsorbed in different types of
matrices the results of this DFT approach were com-
pared to those from liquid integral equation theory
(replica OZ using the optimized random-phase approx-
imation) for the corresponding effective one-component
model, where the polymers are integrated out and only
the pairwise contributions to the effective Hamiltonian
of section 2.1 are taken into account [77]. Thus, the
effective interaction between colloids is given by �eff

AOðRÞ
while the colloid and matrix particles interact via either
a hard-sphere potential or �eff

AOðRÞ. Both approaches
predict, consistently, capillary condensation or evapora-
tion, depending on the nature of the matrix–polymer
interaction. If a matrix particle excludes both colloid
and polymer, condensation occurs, whereas if the matrix
excludes only colloid (there is vanishing matrix–polymer
interaction) capillary evaporation occurs. The latter
refers to the situation where phase separation occurs in
the fluid adsorbed in the matrix at chemical potentials
for which the reservoir would remain in a single, colloid-
rich, liquid phase. The bulk pair correlation functions
from DFT are in good agreement with computer
simulation results [77]. A very recent study is devoted
to demixing and the planar fluid–fluid interface of the
AO mixture adsorbed in a matrix of homogeneously
distributed hard-sphere particles [78]. Two cases are
considered: (i) colloid-sized matrix particles at low
packing fractions and (ii) large matrix particles at high
packing fractions. The two cases exhibit very different
behaviour; for details see [78].

7. Discussion

We have outlined two strategies for tackling the
statistical mechanics of inhomogeneous colloid–polymer
mixtures described by the simplest model that captures
the effects of depletion attraction, namely the Asakura–
Oosawa–Vrij (AO) model. The first of these, based on
the well-trodden ‘integrating out’ route of McMillan–
Mayer theory, is most useful for highly asymmetric
mixtures with small size ratio q < 0:1547, where there
are no three- or higher-body contributions to the
effective one-component Hamiltonian for the colloids.
The second employs a geometry-based DFT for the
mixture that treats the two species on equal footing.
Since there is no explicit integrating out of the polymer
degrees of freedom, depletion effects are generated
internally by the geometrical structure of the functional.
This DFT approach has the advantage that it applies to
arbitrary size ratios, including those where many-body
contributions are known to be important. The main
results of our investigations of interfacial properties
are presented in sections 3 and 4 where we describe the
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density profiles and surface tensions for the free fluid–
fluid interface and the properties of the AO mixture
adsorbed at a hard wall calculated using the functional
derived in [16, 17]. For the free interface we find
oscillatory structure in the density profiles on the
colloid-rich (liquid) side of the interface for state points
where the coexisting liquid density lies on the oscillatory
side of the Fisher–Widom line and surface tensions
which are in reasonable agreement with experiment.
We find that for a highly asymmetric mixture, q ¼ 0:1,
at state points away from any phase boundary, the AO
functional gives a good account of the simulation data
for density profiles at a hard wall. For larger size ratios,
where fluid–fluid coexistence occurs, the DFT predicts
very rich interfacial phase diagrams which display both
a wetting transition and several novel layering transi-
tions. The interfacial phase diagram was determined for
size ratios q ¼ 0:6, 0:7 and 1:0 and we find the topology
changes significantly with q. We make a comparison
with recent Monte Carlo simulation results for the
interfacial phase diagram for size ratio q ¼ 1.
Here we discuss further some features of our results.

The oscillations we observe in the free interface colloid
density profiles are dramatic. They appear to have an
amplitude larger than oscillations which have been
calculated for simple liquids at state points near the
triple point. We argue in section 3 that despite the very
low interfacial tension of the colloid–polymer system,
the capillary wave fluctuation erosion of the oscilla-
tions should not be greater than for a simple liquid. This
suggests that colloid–polymer mixtures might provide
an excellent opportunity to investigate oscillatory
structure at fluid–fluid interfaces, as the large size of
colloidal particles makes them well suited to ellipso-
metric measurements [39, 79]. Oscillations at a free
fluid–fluid interface arise when that interface is ‘stiff’, i.e.
for high values of the appropriate reduced surface
tension 
�, and when the density difference between the
two coexisting bulk phases is large. Under these
conditions the free interface (treated at mean-field
level) behaves as a ‘wall’ and layered structure can
develop due to packing effects. These effects are most
pronounced near the triple point where both the reduced
surface tension and the density difference are largest.
Considering the phase diagram for q ¼ 0:6, shown in
figure 2, and identifying �rp with T�1, it is clear that the
separation between the critical and triple points is much
larger in the present case than for a simple fluid such as
argon. It is primarily for this reason that we can obtain
such pronounced oscillations in the colloidal density
profiles for states near the triple point. By contrast, as
the temperature is reduced in simple liquids the
oscillations can only grow slightly before the liquid–
vapour coexistence region runs out and the triple point,

i.e. the crystalline phase, intervenes. One could argue
that oscillatory liquid–gas interfaces would be a
common feature in simple fluids at sufficiently low
temperatures were it not for the onset of crystallization.
The AO model can generate oscillations of even larger
amplitude than those shown in figure 3. As the size ratio
is increased the separation in �rp between the critical and
triple points grows, e.g. for q ¼ 1, �rp, t=�

r
p, crit � 8, see

figure 18, and 
� can become rather large—see figure 3.
A similar scenario arises for binary mixtures of repulsive
Gaussian core particles. There liquid–liquid coexistence
can occur over a very large range of total density, since
there is no crystalline phase present, and the resulting
interfaces can be very ‘stiff’ leading to predictions of
very weak erosion of the oscillations: the exponent
in equation (20) is calculated to be about �0:1 [41].
Pronounced oscillatory structure is also well known in
the study of liquid metals where there is a large
separation between the triple and critical points and
the reduced liquid–gas surface tensions are very large.
Simulations of the liquid–gas interface of alkali metals
[80] and of Ga [81] and X-ray reflectivity experiments on
both Ga [82] and Hg [83, 84] all indicate stratification
of the ion-density profile, with a spacing of about one
atomic diameter, on the liquid side of the interface.

The recent Monte Carlo studies of Chacón and
co-workers [43, 44] are significant in this context. These
authors constructed classical pair potential (no explicit
treatment of the electrons) models of a metal so that
the melting temperature Tm was deliberately suppres-
sed relative to the critical temperature Tc, typically
Tm=Tc90:2. At low temperatures they find high surface
tensions and thus a ‘stiff’ interface which seems to be the
origin of the strongly stratified density profiles which
they observe. Chacón and co-workers [44] also make
the important point that for models of the type they
consider, strong stratification can occur over a few
atomic layers in the interface even when the bulk liquid
is on the monotonic side of the FW line. However, we
know the ultimate asymptotic decay into bulk of the
density profile must be governed by the behaviour of the
bulk pair correlation functions. At very low tempera-
tures T � Tm, they estimate the erosion of the oscilla-
tions to be weak, with the exponent in equation (20)
about �0:4. The calculated exponent increases with T
to a value of about �1, near the FW line. Monte Carlo
results for the density profiles calculated for increasing
interfacial area are consistent with the power-law
prediction of equation (20) [44]. There are, of course,
important differences between the liquid metal models,
where the large ratio Tc=Tm arises from the inclusion,
albeit empirically, of electronic effects into the pair
potential, and the AO model, where the large value of
�rp, t=�

r
p, crit arises from the presence of effective many-
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body interactions between the colloids—recall that the
latter are responsible for separating the triple and
critical points at large size ratios—see the discussion of
figure 18.
We turn now to the layering transitions we find in

section 4.2. These are a very specific prediction of the
AO functional and since they are found in simulation,
appear to be a genuine feature of the AO model, rather
than an artefact of the DFT.
Although the pattern of the layering transitions

observed for q ¼ 1 in the simulations of [19] is not
identical to that from DFT, the shapes of the density
profiles near the transitions are very close to those found
in the theory so the layering phenomena are certainly
the same. We argued in section 4.3 that the occurrence
of such transitions, far from �rp, t, requires the effective
many-body interactions that are incorporated into
the DFT and into the simulations. Without these contri-
butions the triple and critical points lie much closer
together and there is less scope for the layering
(and wetting) transitions to manifest themselves at the
(stable) gas–hard wall interface. We emphasize, once
again, that simulations employing only the effective pair
potential �eff ðR; zpÞ yield a very narrow range, in �rp, of
stable liquid–gas coexistence. The form of the wall-
induced effective interactions must also be important
for the occurrence of layering transitions. The effective
pair interaction between colloids �eff ðRi;Rj ; zpÞ is a
complicated function of the coordinates Ri and Rj when
the colloids are close to the wall [11]; the strength of the
attraction is lowered compared with that of �eff

AOðRij ; zpÞ,
which pertains to the homogeneous fluid. It is possible
that this reduction in pairwise attraction, caused by
the wall reducing the overlap volume of the depletion
zones around each colloid, competes with the attractive
one-body potential �wall

AO ðz; zpÞ and that this situation
favours layering [19, 25]. However, it is fair to say that
we do not, as yet, have a full understanding of what
gives rise to these curious transitionsy. The issues are
compounded by the fact that layering transitions were
found in an effective one-component DFT calculation
for the analogous case of the sphere–needle mixture
[24]. Although in this case, see section 6, there remain

questions as to how well the one-component theory
accounts for the extent of stable liquid–gas coexistence.

Whether the layering transitions remain in models
which treat the wall and/or the polymer more realisti-
cally remains to be seen. It would be of considerable
interest to investigate adsorption at a hard wall for the
simple model described in section 5. Incorporating
polymer–polymer interactions is expected to reduce
substantially the separation between �rp, t and �rp, crit
(this is also what is found in the simulation studies for
SAW models of the polymer [15]) which might make it
difficult to observe any layering transitions and indeed
the pronounced oscillations found in the colloid density
profiles at the free interface for the AO model. Direct
simulation studies for colloids and interacting polymers
near a wall would be valuable, but extremely demand-
ing! It seems unlikely that such layering transitions
could be observed in adsorption experiments as the
transition lines lie so close to the bulk coexistence curve
that remarkable experimental accuracy would be
required to resolve these. Moreover, polydispersity in
both colloid and polymer sizes, roughness of the
substrate etc. would tend to eliminate what are probably
rather subtle and specific features of the AO mixture
adsorbed at a hard wall.

We conclude this discussion of layering transitions by
returning to the difference between the type of transi-
tions found in the AO model and those found in DFT
[51] and in simulation [87] studies of the adsorption
of simple gases at strongly attractive substrates. In
the latter case the transitions always occur close to the
triple point where the density profiles are more highly
structured than those shown in section 4.2, i.e. the
individual layers are much sharper. When a transition
occurs (at fixed T, increasing �) the jump in the Gibbs
adsorption corresponds to the addition of (roughly)
one dense ‘liquid’ layer. As the sequence of transitions
progresses the magnitude of the jump in adsorption
increases, reflecting the broadening of the outer peaks
in the profile and the fact that the local density in
one or two of the previous layers also increases at
the transition. There can be a very large number of
transitions—nine or ten could be discerned in DFT
calculations [51]—but their critical points all lie quite
close to the triple point Tt. Indeed, within a mean-field
treatment the number of transitions can be infinite,
i.e. complete wetting of the gas–substrate interface
by liquid, which is expected to occur for all T > Tt for
strongly attractive substrates, can occur by an infinite
sequence of layering transitions out of coexistence.
When capillary wave fluctuations in the wetting film are
included the number of transitions must be finite, since
the liquid–gas interface is always rough (in the statistical
mechanics sense). By contrast, for the AO mixture

yIt is well known that wetting transitions can depend
sensitively on the details of the wall-fluid interactions. For
example, in a Landau treatment which includes a surface term
of third order in the surface magnetization m1, which is of
opposite sign to the usual linear �h1m1 term, Indekeu [85]
found a single thin–thick transition, followed by a continuous
wetting transition on increasing T along the bulk coexistence
curve. An equivalent scenario was found by Piasecki and
Hauge [86] in a simple DFT treatment of a Yukawa fluid
adsorbed at a wall exerting both an attractive exponential and
a square-well wall-fluid potential.

Statistical mechanics of inhomogeneous model colloid–polymer mixtures 3379



adsorbed at a hard wall the onset of layering transitions
occurs far below �rp, t where the density profiles of the
colloid are not as highly structured (see figure 8) and the
jump in the adsorption, Gc, does not necessarily increase
as the sequence increases (but note that the results in
section 4.2 refer to a path following the bulk coexistence
curve rather than following paths at fixed �rp, equivalent
to fixed T.) It is feasible, nevertheless, that within our
DFT treatment of the AO mixture there could be
an infinite sequence of layering transitions leading
to complete wetting of the ‘gas’–hard wall interface.
Our numerical results do not rule out this scenario.
Given that the layering transition lines get shorter
and shorter as this sequence progresses it is difficult
to ascertain the precise sequence. If this is the correct
interpretation, then, as observed, we would not expect
to find a substantial pre-wetting line emerging from the
wetting point. The simulation results [19] cannot shed
much light on this issue; there one expects a finite but
large number of transitions before the onset of complete
wetting if the attractive one-body wall–fluid potential
�wall
AO ðz; zpÞ is driving the wetting transition. Note that

layering transitions at temperatures above the bulk
triple point have been found recently in Gibbs ensemble
Monte Carlo simulations of TIP4P water in cylindrical
pores [88].
We complete this discussion of layering transitions

between distinct adsorbed fluid phases by pointing out
that there is much experimental evidence for such
interfacial behaviour in molecular fluids adsorbed on a
graphite substrate under near triple point conditions—
see references in [51]. Ellipsometric studies of various
liquids adsorbed on Pyrex glass [89] and on mica [90] at
low temperatures also provide evidence for layering, i.e.
steps in the adsorption isotherms. Steps in the relative
adsorption of 2.5-dimethylpyridine in the liquid mixture
with water, in contact with solid silica have also been
identified as layering transitions [91]. Bonn et al. [92, 93]
have argued on the basis of ellipsometric measurements,
that a series of first-order layering transitions occurs at a
fluid substrate, i.e. at the liquid–gas interface in a binary
methanol–cyclohexane mixture at high temperatures.
The wetting transition in colloid–polymer mixtures

is a much more promising candidate for experimental
investigation and the basic phenomenon of wetting
of a ‘hard’ substrate by the colloid-rich phase should,
in principle, be experimentally observable. Although
experiments with colloidal particles have an advantage
over those using rare gases or fluids composed of small
molecules in that they can be performed at room
temperature, issues such as polydispersity obviously
complicate matters. Nevertheless, systematic measure-
ments of the contact angle for the liquid–gas meniscus
of phase-separated colloid–polymer mixtures, at various

compositions and size ratios, in contact with glass walls
would be most interesting. Indeed, there are already
indications, from contact angle measurements [94, 95],
of a transition from partial to complete wetting for a
mixture of silica particles and PDMS, with size ratio
� 0:93, in a solvent of cyclohexane at a glass substrate
coated with the same organophilic material as the silica
particles (on which PDMS does not adsorb). The
transition appears to take place further from the critical
point, measured in terms of �lc � �gc , the difference in
colloid packing fractions of the liquid and gas, than is
found in simulations or in DFT for the AO model—see
section 4. Measuring the contact angle for these systems
is not straightforward, however. Although the static
interfacial profile (shape of the meniscus) can be
measured using an optical microscope and the capillary
length extracted, thereby yielding the liquid–gas surface
tension 
, the contact angle depends very sensitively on
the precise location of the wall and studies by the
Utrecht group [96] were unable to ascertain whether or
not a wetting transition occurred for a silica–PDMS
mixture. The values of 
 which they obtained were close
to those measured by the independent spinning drop
technique [36, 79], given in figure 3. More recent results
from confocal scanning laser microscopy demonstrate
the presence of a thick colloidal liquid layer at the glass
wall, consistent with complete wetting [63].

As mentioned in section 6, it should also be possible
to design experiments which investigate, quantitatively,
capillary condensation in simple confining geometries.
Such experiments are difficult to perform for atomic
fluids but for colloidal systems, where the particle sizes,
and hence the confining length scales, are much larger,
this is feasible and there are already some observations
of the phenomenon in a colloid–polymer mixture [63].
One might also envisage studying some of the more
subtle capillary phenomena, such as those associated
with interfacial transitions in wedge geometry [97, 98].

Turning now to small size ratios, where the only
equilibrium phase transition is the fluid–solid transition,
we would encourage further theoretical and simulation
studies of adsorption at a hard wall. As mentioned in
section 4.1, we did not [11] make any effort to approach
closely the fluid–solid phase boundary so we could not
address the important issue of how crystalline layers
develop prior to bulk crystallization. Various scenarios
are possible [11], but given that the wall–colloid deple-
tion potential �wall

AO ðz; zpÞ is strongly attractive, for say
q ¼ 0:1, this might favour an infinite sequence of
(crystalline) layering transitions, culminating in com-
plete wetting of the hard wall–fluid interface by a nearly
close-packed crystal. However, it is not known how
close to the phase boundary the bulk (reservoir) fluid
must be before the first adsorbed layer becomes

3380 J. M. Brader et al.



crystalline. Of course, understanding wall-induced crys-
tallization is not an easy problem. For pure hard spheres
at a planar hard wall it is not fully established whether
or not there is complete wetting by hard-sphere
crystal—although recent simulation studies [73, 99]
suggest that this is the case. The nature of the wetting
behaviour has important repercussions for heteroge-
neous nucleation of the crystal [99].
In sections 5 and 6 we considered several extensions

of the basic AO model that were designed to incorpo-
rate additional physical features pertaining to a real
colloid–polymer mixture or to introduce entirely new
ingredients, such as orientational degrees of freedom in
the case of the sphere–needle mixture. All of these
extensions make use of geometry-based DFT; indeed
they were constructed with this purpose. Just how
accurate the DFT proves to be for the various models
remains to be seen for the most part. Where the DFT
has been tested in detail for an inhomogeneous situa-
tion, it performs very well [71]. We envisage many
applications of these extensions to various types of
inhomogeneity.
We began this article by praising the virtues of simple

models so it is appropriate to ask what other physical
problems might be tackled within the context of the basic
AO model. In particular, are there situations where
depletion attraction is expected to play an important
role and where our DFT might prove effective? Recall
once more that entropic depletion effects are generated
internally—unlike the case of DFT for simple fluids
where van der Waals attraction is treated explicitly,
usually in a perturbative or mean-field fashion [31]—in
our geometry-based approach the attraction between
colloids, or between a colloid and a hard wall, arises
solely from the geometrical structure of the functional.
The solvation of a single (big) hard sphere in a binary AO
mixture is of particular interest. Since the planar hard
wall can be wet completely by the colloid-rich liquid
phase it follows that a liquid film will develop around a
big hard sphere immersed in a colloid-poor gas that is
very close to bulk coexistence. This circumstance leads
to pronounced effects in the solvation free energy or
excess chemical potential, measured as a function of the
radius of the big sphere, Rb, and of the packing fraction
of colloid, say. Indeed the situation mimics that of a
simple liquid (solvent) adsorbed at a big solvophobic
particle (hard sphere), except there drying always
occurs, so that a film of gas develops on the sphere
when the solvent is close to coexistence [100]. A new
feature arising in the AO case is the presence of the
layering and the wetting transitions. For sufficiently
large Rb, these transitions are still present at the sphere,
albeit rounded by finite-size effects, and lead to very
striking features in the adsorption, density profiles at

contact with the sphere and in the solvation free energy of
the sphere [101]. A single hard sphere in the AO mixture
serves as an excellent model for investigating subtle
effects of curvature on interfacial properties, especially
when complete wetting occurs.

One can easily construct the DFT for a ternary
mixture consisting of (big) hard spheres, colloidal hard
spheres plus mutually non-interacting polymer spheres,
i.e. a solution of big hard spheres in the AO solvent.
For such a mixture one can determine the solvent-
mediated potential between two big spheres or between
a big sphere and a wall using a general DFT particle
insertion approach [102]. Since the solvent exhibits
fluid–fluid phase separation one can investigate the
effects of layering, wetting and solvent criticality on the
solvent-mediated potentials [101]. In order to implement
the DFT particle insertion procedure one requires a
density functional that can describe reliably a mixture of
the solvent and the big particles in the limit of vanishing
density of the big particles [102]. Such functionals are
hard to come by (perturbative approaches are generally
not appropriate) but the geometry-based DFT for this
particular ternary mixture fits the billy.

Finally we should mention briefly some of the topics
that we have not covered in this article. There is a
rapidly expanding body of work on glass transitions in
colloid–polymer mixtures. Strong evidence is emerging
for two types of glass; one is repulsion dominated (as in
pure hard spheres) and the other is attraction dominated
(as occurs when the addition of polymers gives rise
to very deep depletion potentials). For an ‘Edinburgh
model mixture’, i.e. PMMA and PS with q ¼ 0:08,
adding a little polymer (PS) to the hard-sphere colloidal
glass, at fixed �c � 0:6, disrupts the caging structure
and brings about crystallization. Adding more polymer
results in non-crystallization, there appears to be a re-
entrant glass transition [13]. Simulations and mode
coupling theory, based on an effective one-component
depletion potential, have been used to investigate this
behaviour [104, 105]. We have not considered in any
detail the situation where q � 1, i.e. the so-called
‘protein limit’, where small particles such as proteins
or micelles replace the colloids. There is much interest-
ing physics in this limit but it is quite different from
the depletion-driven phenomena we have described
in this article. Interested readers should consult the
recent articles [14, 106, 107] to obtain some overview of
this regime. During the course of completing our paper

ySolvent-mediated potentials in the presence of wetting
have also been investigated for big Gaussian core particles
immersed in a binary mixture of smaller Gaussian particles
using the mixture generalization of the mean-field functional
(40). See [103].
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we were alerted to the work of Forsman et al. [108]
who extended a DFT developed for polymer solutions
to the situation where solvent and monomer particles
have different diameters. These authors consider capil-
lary-induced phase transitions when the confining
planar surfaces are hard.
The Urbana group [109] have investigated phase

diagrams and osmotic compressibilities for silica parti-
cles and polystyrene in decalin comparing their results
with the PRISM integral equation theory developed by
Fuchs and Schweizer [14] and with the free-volume
theory of [4]. These authors argue that PRISM accounts
for all experimental trends whereas the free-volume
approach appears to miss certain aspects of the experi-
mental behaviour, even for theta solvent conditions.
Chen et al. [110] also present a critique of the AO model
for treating real colloid–polymer mixtures. We were
also made aware of the work of Paricaud et al. [111]
who consider bulk fluid–fluid phase separation in a
model in which the polymer–polymer and polymer–
colloid excluded volume interactions are treated at the
same level of the monomeric segments making up the
polymer chain, using the Wertheim thermodynamic
perturbation theory. Once again we direct interested
readers to these papers.

Much of the work described in this article would
not have come to fruition without the substantial input
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Louis kept us busy with a steady supply of pre-prints; we
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justice to their work in the present article. R. van Roij
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interesting, carried out the key simulation studies
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2002, J. Phys.: condens. Matter, 14, L1.
[47] CHEN, B., PAYANDEH, B., and ROBERT, M., 2000, Phys.

Rev. E, 62, 2369.
[48] ARCHER, A. J., and EVANS, R., 2002, J. Phys.: condens.

Matter, 14, 1131.
[49] See for example SCHICK, M., 1990, Liquids at Interfaces,

edited by J. Charvolin, J. F. Joanny and J. Zinn-Justin
(Amsterdam: North-Holland), chap. 9, p. 415.

[50] HENDERSON, J. R., 1994, Phys. Rev. E, 50, 4836.
[51] BALL, P. C., and EVANS, R., 1988, J. chem. Phys., 89, 4412.
[52] LOUIS, A. A., BOLHUIS, P. G., HANSEN, J. P., and MEIJER,

E. J., 2000, Phys. Rev. Lett., 85, 2522.
[53] WARREN, P. B., ILETT, S. M., and POON, W. C. K., 1995,

Phys. Rev. E, 52, 5205.
[54] ROSENFELD, Y., SCHMIDT, M., LÖWEN, H., and
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and KAHL, G., 2002, J. Phys.: condens. Matter, 14, 12099.
[78] WESSELS, P. P. F., SCHMIDT, M., and LÖWEN, H.,
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