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Replica Density Functional Study of One-Dimensional
Hard Core Fluids in Porous Media
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A binary quenched-annealed hard core mixture is considered in one dimension
in order to model fluid adsorbates in narrow channels filled with a random
matrix. Two different density functional approaches are employed to calculate
adsorbate bulk properties and interface structure at matrix surfaces. The first
approach uses Percus’ functional for the annealed component and an explicit
averaging over matrix configurations; this provides numerically exact results
for the bulk partition coefficient and for inhomogeneous density profiles. The
second approach is based on a quenched-annealed density functional whose
results we find to approximate very well those of the former over the full range
of possible densities. Furthermore we give a derivation of the underlying replica
density functional theory.

KEY WORDS: Density functional theory; quenched-annealed fluid mixtures;
hard core models in one dimension; random porous media.

1. INTRODUCTION

The one-dimensional hard rod model(1) continuous to be an invalu-
able test bed for theoretical work as it provides the possibility to com-
pare approximations to exact results. Recent examples of this strategy
include investigations of depletion interactions in binary mixtures where
one of the components is viewed as an agent that mediates an effective
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interaction between particles of the other component,(2,3) a model col-
loid-polymer mixture(4) where particles representing polymers can freely
penetrate, dynamical density functional theory(5,6) concerned with time-
dependent transport phenomena, as well as a model porous medium(7)

of lines of random length accessible to the fluid particles. As concerns
equilibrium statistical mechanics, Percus’ exact free energy functional for
pure systems(8) and (additive) mixtures of particles with different sizes,(9)

provides a framework to compute thermodynamics, density distributions,
and correlation functions in arbitrary inhomogeneous situations.

Fluids adsorbed in disordered matrices are often described in the con-
text of so-called quenched-annealed (QA) fluid mixtures, where particles
of the quenched component act as randomly distributed obstacles exert-
ing an external potential on particles of the annealed component.(10,11)

The matrix particles are distributed according to the Hamiltonian of the
quenched component, and hence can be treated with liquid state theory.
The crucial difference to an equilibrium system of two annealed compo-
nents is that the distribution of matrix particles is unaffected by the pres-
ence of the annealed component. As one is interested in the typical behav-
ior of the system, a double average over the annealed degrees of free-
dom and over the quenched disorder is required. A short overview of this
theoretical framework is given below. One standard approach to tackle
fluid structure and phase behavior of QA models is via the replica Orn-
stein-Zernike relations(10,11) supplemented with appropriate closure rela-
tions. Many standard liquid integral equation theories have been carried
over to the QA case. The basic quantities in terms of which these theories
are formulated are two-body (and possibly higher) correlation functions.

Recently it was proposed to rather work directly on the level of the
free energy functional, pre-averaged over the disorder.(12) Correlation func-
tions can be obtained subsequently, in particular the hierarchy of direct
correlation functions is obtained through functional differentiation with
respect to the density fields. The advantage of formulating the theory on
the one-body level of the density fields is that inhomogeneous situations,
e.g. at free interfaces or caused by external fields like e.g. gravity, are
straightforward to treat. Hence all advantages of equilibrium DFT(13,14)

apply to this QA or replica DFT. Also the disadvantage applies; in gen-
eral the density functional is unknown. Moreover, whether one can learn
anything about the important out-of-equilibrium behavior of QA systems,
like hysteresis in sorption isotherms, is questionable. Based on Rosen-
feld’s fundamental-measure theory (FMT) for hard sphere mixtures,(15)

and the subsequent discovery that one can construct density functionals
by imposing the correct behavior upon dimensional reduction (i.e. in sit-
uations of extreme confinement in one or more spatial directions through
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suitably chosen external potentials),(16,17) this DFT treats QA mixtures
with either hard or ideal interactions.

Previous tests of QA DFT include the comparison with results from
Monte Carlo (MC) simulations for the partial pair correlation functions
in hard sphere systems(12) and for density profiles across the surface of
a porous medium, modeled as a step-like density distribution of (freely
overlapping) matrix spheres.(18) Such an interface was also investigated
in a model of a random fiber network, being represented by quenched
configurations of infinitely thin needle-like particles. Again comparison
with simulation results shows satisfactory agreement with DFT results.(19)

Much work has been devoted to a model colloid-polymer mixture where
the colloids are represented as hard spheres and the polymers as freely
overlapping spheres. The crucial step beyond hard sphere systems is
the occurrence of a fluid-fluid phase transition, and the questions how
capillary condensation occurs inside a porous medium(20) and what the
structure of the interface between demixed fluid phases is like(21) were
treated. A further, very promising, line of research is the application of
the approach to lattice models. Note that using lattice models insight
into hysteresis behavior and the relation to the appearance of a complex
free energy landscape was gained.(22,23) Combining the QA-DFT approach
with the very powerful lattice DFT by Lafuente and Cuesta,(24,25) freezing
in a two-dimensional lattice model was investigated.(26)

In this work we consider the one-dimensional hard rod model
adsorbed in a quenched matrix of rods. Two cases of interactions between
the quenched particles are considered. In the first case the rods interact
with a hard core potential, hence we deal with a binary QA hard rod
mixture. In the second case the matrix particle are ideal (non-interacting)
amongst each other, but interact with a hard-core potential with particles
of the annealed component; this model is the QA analog of the model
colloid-polymer mixture of Ref. 4, obtained by quenching the polymers.
We use two different density functional approaches to tackle the proper-
ties of these models in both homogeneous and inhomogeneous (on aver-
age over disorder) situations. In the first approach the matrix is treated
explicitly on the level of particle coordinates distributed according to the
matrix Hamiltonian, and practically generated with a Monte Carlo proce-
dure. For each matrix configuration we use Percus’ functional(8) to obtain
adsorbate properties, and the disorder-average over matrix configuration is
carried out numerically by brute force generation of many (of the order
of 1000) matrix realizations. The second approach is the QA DFT work-
ing directly on the level of the disorder-averaged adsorbate density profile,
which is obtained via minimizing the disorder-averaged grand potential of
the adsorbate, using the matrix density profiles as a fixed input. As the
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average over disorder is taken a priori, the corresponding Euler-Lagrange
equation yields directly the averaged density profile. We compare results
from both theories in bulk via calculation of the partition coefficient,
which is the ratio of adsorbate density inside the matrix and the density
in a bulk reservoir that is in chemical equilibrium. The results from the
explicit matrix averaging procedure, which we also check against an inde-
pendent elementary calculation, agree well with those from the QA DFT
over the full range of accessible densities. Deviations appear at high den-
sities, which we can trace back to an incorrect behavior of the QA-DFT
near close-packing. As a generic inhomogeneous situation we consider a
surface of the model porous matrix, that is generated by a hard wall act-
ing on the matrix particles (before the quench). The wall is then removed
and leaves a halfspace of bulk (free of matrix particles). The adsorbate is
found to exhibit density oscillations on both sides of the interface, with
significantly smaller amplitude than at a hard wall.

The paper is organized as follows. In Section 2 we define the model
and give an overview of its statistical mechanics and the replica trick
(which can be safely skipped by an expert reader). Section 3 is devoted to
both density functional methods. In Section 4 results are presented and we
conclude in Sec. 5.

2. THE MODEL

2.1. Definition of the Interactions

We consider a quenched-annealed fluid mixture of a quenched spe-
cies 0 with N0 particles with one-dimensional (1d) position coordinates
x1, x2, . . . xN0 and an annealed species 1 with N1 particles with 1d position
coordinates X1,X2, . . . ,XN1 . The particles interact with pairwise poten-
tials (for pairs αγ =00,01,11) given by

φαγ (x)=
{∞ x <(σα +σγ )/2

0 otherwise, (1)

where x is the center-center distance between two particles; σα is the diam-
eter (length) of particles of species α =0,1, see Fig. 1a for an illustration.
This describes our first case of the hard core matrix. The total potential
energy due to particle-particle interactions is V00 +V01 +V11, with contri-
butions

V00 =
N0∑

i =1

N0∑
j = i+1

φ00(|xi −xj |), (2)



Functional Study of One-Dimensional Hard Core Fluids 1687

Fig. 1. Model of annealed hard rods in a matrix of quenched rods in one dimension. The
quenched rods interact with a) a hard core potential, and b) are ideal.

V01 =
N0∑

i =1

N1∑
j =1

φ01(|xi −Xj |), (3)

V11 =
N1∑

i =1

N1∑
j = i+1

φ11(|Xi −Xj |). (4)

We furthermore consider the influence of external potentials, φext
α (x), act-

ing on species α =0,1, respectively. In particular φext
0 (x) acts on parti-

cles of species 0 before they are quenched, i.e. their density distribution is
that generated in response to φext

0 (x). The resulting total external potential
energy is V ext

0 +V ext
1 , with contributions

V ext
0 =

N0∑
i =1

φext
0 (xi), V ext

1 =
N1∑

i =1

φext
1 (Xi). (5)

In our second case we consider ideal (non-interacting) matrix parti-
cles, i.e.

φ00(x)=0, (6)

valid for all distances x; the two remaining interactions are unchanged,
i.e. φ01(x) and φ11(x) are hard core potentials given through (1); see
Fig. 1b for an illustration. The size ratio s =σ1/σ0 is a geometric control
parameter. In the numerical results presented below we will restrict our-
selves to equally sized particles, s =1, and furthermore to situations where
φext

1 (x)=0.

2.2. Partition Sum, Grand Potential and Replica Trick

We first make the statistical mechanics of the quenched-annealed
mixture explicit. For notational convenience the grand canonical trace
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over matrix coordinates is denoted by
∫

d0 ≡ ∑∞
N0=0

(
N0!�N0

0

)−1 ∫
dx1 . . .∫

dxN0 and that over adsorbate coordinates by
∫

d1≡∑∞
N1 =0

(
N1!�N1

1

)−1

∫
dX1 . . .

∫
dXN1 , where �α is the (irrelevant) thermal wavelength of spe-

cies α =0,1, and the position integrals run over the total system volume
V . The (equilibrium) grand partition of the matrix particles under the
influence of the external potential φext

0 (x) is

�0(µ0, T ,V )=
∫

d0e−β(V00+V ext
0 −µ0N0), (7)

where β =1/(kBT ), kB is the Boltzmann constant, T is absolute tempera-
ture and µi is the chemical potential of species i =0,1. The grand poten-
tial for the matrix is then

�0(µ0, T ,V )= −β−1 ln �0(µ0, T ,V ). (8)

For fixed matrix configuration {xi} the grand potential of the adsorbate is

�1({xi},µ1, T ,V )= −β−1 ln
∫

d1e−β(V11+V01+V ext
1 −µ1N1), (9)

depending explicitly on {xi} through V01, see (3). Note that from the view-
point of the 1-particles, V01 +V ext

1 is the total external potential energy. A
(grand canonical) average over matrix configurations yields the disorder-
averaged grand potential of the adsorbate,

�1(µ0,µ1, T ,V )

=�−1
0 (µ0, T ,V )

∫
d0e−β(V00+V ext

0 −µ0N0)�1({xi},µ1, T ,V ). (10)

Note that (10) has a different structure than that of the partition sum
of an equilibrium mixture due to the appearance of the logarithm, upon
inserting (9) into (10), inside the trace over the 0-particles. However, a
relation to a multi-component mixture can be established using the rep-
lica trick: One introduces replicas as s copies of species 1: φαα(x)=φ11(x),
for 1<α � s, where s is an integer. Particles from different replicas are
non-interacting, φαγ (x)=0 for all x and α �= γ , but they interact with
matrix particles in the same fashion, φ0α(x)=φ01(x), for 1<α � s. Then
the (equilibrium) partition sum for this (s +1)-component mixture can be
written as

� =
∫

d0e−β(V00+V ext
0 −µ0N0)

(∫
d1e−β(V11+V01+V ext

1 −µ1N1)

)s

, (11)
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and the grand potential is

�(µ0,µ1, T ,V ; s)= −β−1 ln �. (12)

Via analytical continuation in s, and noting that lims →0 dxs/ds = ln x, the
disorder-averaged grand potential, (10), is obtained from the equilibrium
grand potential of the replicated system as

�1(µ0,µ1, T ,V )= lim
s →0

d

ds
�(µ0,µ1, T ,V ; s), (13)

establishing a practical route to tackle the QA system via the replicated
equilibrium system.

3. DENSITY FUNCTIONAL APPROACHES

The following subsections 3.1, 3.2 are valid in arbitrary space dimen-
sion d upon trivial alterations: spatial integrations become d-dimensional
integrals, hence

∫
dx is to be replaced with

∫
ddx and factors �α are to

be replaced with �d
α. Although in our subsequent study we only deal with

hard core interactions, where the dependence on temperature is trivial, the
formalism also applies to thermal systems. Hence we consider a general
binary QA mixture with arbitrary pair potentials φαγ (x), α, γ =0,1, not
necessarily given through (1), at temperature T inside a volume V .

3.1. Equilibrium Case

In the equilibrium DFT formalism, applied to the present case, where
both an explicit external potential, φ1(x), and the (random) influence of
the matrix particles at positions {xi} acts on the fluid, the grand potential
of the adsorbate component is expressed as a functional of its one-body
density distribution,

�̃1({xi}, [ρ1],µ1, T ,V ) = F id[ρ1]+Fexc[ρ1]+
∫

dxρ1(x)

×




φext

1 (x)+
N0∑

i =1

φ01(x −xi)


−µ1


 ,

(14)

where F id[ρ1]=β−1
∫

dxρ1(x)[ln(ρ1(x)�1) − 1] is the (Helmholtz) free
energy functional of the ideal gas, Fexc[ρ1] is the excess (over ideal) contri-
bution that arises from interactions between (adsorbate) particles, and the
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term in round brackets is the total external potential acting on the adsor-
bate stemming from the explicit (non-random) external potential, φext

1 (x),
and the sum over interactions with (randomly distributed) matrix particles.
The latter contribution is parameterized by the set of matrix coordinates
{xi}, and hence �̃1 depends explicitly on {xi}, which we stress in the nota-
tion of the l.h.s. of (14). The free energy functionals F id and Fexc depend
on T and V ; this is suppressed in the notation in (14) and in the follow-
ing. The minimization condition is

δ�̃({xi}, [ρ1],µ1, T ,V )

δρ1

∣∣∣∣∣
ρ1 =ρ1({xi },x)

=0, (15)

where ρ1({xi}, x) is the adsorbate density distribution that solves (15). The
value of the grand potential is then obtained by reinserting the solution
into the grand potential functional,

�({xi},µ1, T ,V )= �̃({xi}, [ρ1(x, {xi})],µ1, T ,V ), (16)

from which the average over the disorder, �(µ0,µ1, T ,V ), can be obtained
via (10). In a similar way as for the grand potential, the matrix-averaged
adsorbate density profile is given as

ρ1(x)=�−1
0 (µ0, T ,V )

∫
d0e−β(V00+V ext

0 −µ0N0)ρ1(x, {xi}). (17)

Note that explicit averages over the matrix configurations are to be per-
formed in (10) and (17). In the numerical procedure described below, we
will carry this out numerically via a Monte Carlo procedure.

3.2. Quenched-Annealed Case

Here we first formulate the equilibrium DFT of the replicated model
from which we obtain, in the appropriate limit of vanishing number of
components, the minimization condition of DFT for one quenched and
one annealed component. Explicitly assuming absence of replica symmetry
breaking, hence ρ1(x)=ρα(x),1<α � s, the grand potential functional for
the replicated equilibrium mixture reduces to

�̃([ρ0, ρ1],µ0,µ1, T ,V ; s)≡ �̃([{ρα}], {µα}, T ,V ) (18)
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The minimization conditions are

δ�̃([ρ0, ρ1],µ0,µ1, T ,V ; s)

δρα(x)
= 0, α =0,1, (19)

which are two coupled equations for the two unknown functions ρ0(x)

and ρ1(x). At the minimum the value of the functional is the true grand
potential

�(µ0,µ1, V , T ; s)= �̃([ρ0, ρ1],µ0,µ1, T ,V ; s). (20)

Via analytic continuation, and Taylor expanding in s around s =0, one
obtains

�̃([ρ0, ρ1],µ0,µ1, T ,V ; s) = �̃0([ρ0],µ0, T ,V )

+s�̃1([ρ0, ρ1],µ1, T ,V )+O(s2), (21)

where �̃0 is the grand potential of the pure system of 0-particles, that may
formally be written as �̃0([ρ0],µ0, T ,V ) = �̃([ρ0,0],µ0,µ1 → −∞, T ,V ),
furthermore �̃1[ρ0, ρ1]= lims →0 d�̃([ρ0, ρ1],µ0,µ1, T ,V ; s)/ds. Note that
via this definition �̃1 is also the disorder-averaged grand potential, given
in (13).

We decompose both contributions in the standard way:

�̃0([ρ0],µ0, T ,V ) = F id[ρ0]+Fexc
0 [ρ0]+

∫
dxρ0(x)

(
φext

0 (x)−µ0
)
,

(22)

�̃1([ρ0, ρ1],µ1, T ,V ) = F id[ρ1]+Fexc
1 [ρ0, ρ1]+

∫
dxρ1(x)

(
φext

1 (x)−µ1
)
,

(23)

which can be viewed as definitions for the excess (over ideal gas) free
energy functionals, Fexc

0 [ρ0] and Fexc
1 [ρ0, ρ1], that arise from interactions

between particles. Note, however, that neither F id[ρ0] nor a contribution
involving φext

0 (x) appear on the r.h.s. of (23), in contrast to the binary
equilibrium case.

We insert the small-s-expansion of the grand potential functional,
(21), into the equilibrium minimization condition, (19). Performing the
limit s →0, the minimization conditions for the QA mixture result as

δ�̃0([ρ0],µ0, T ,V )

δρ0(x)
= 0, (24)

δ�̃1([ρ0, ρ1],µ1, T ,V )

δρ1(x)
= 0. (25)
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The derivation of (24) is straightforward. To obtain (25) one sets α =1 in
(19) i.e. differentiates w.r.t. to ρ1(x) and divides the resulting equation by
s, assuming s >0, before taking the limit s →0. Note that (24) is decou-
pled from (25), hence in particular ρ0(x) is solely determined through (24).
The result then serves as an input to (25), which is solely to be solved for
ρ1(x).

3.3. Excess Free Energy Functionals

The theoretical approaches described so far incorporate the complex-
ity of the problem i) in the excess free energy functionals for the adsor-
bate, Fexc[ρ1], and an explicit average over matrix configurations, and ii)
in excess free energy functionals for the matrix component, Fexc

0 [ρ0], and
for the adsorbate in the presence of the matrix, Fexc

1 [ρ0, ρ1]. For the pres-
ent 1d model, the situations is fortunate, as an exact result for Fexc[ρ1]
and Fexc

0 [ρ0] is available, namely Percus’ free energy functional for 1d hard
rods.(8,9) For a one-component system of hard rods of species α one writes
(using Rosenfeld’s terminology)

Fexc[ρα]=
∫

dx n(0)
α (x)�′

hc

(
n(1)

α (x)
)

, (26)

where the weighted densities, n
(0)
α (x) and n

(1)
α (x), are obtained from the

bare density profile (of species α) via

n(0)
α (x) = [ρα(x −Rα)+ρα(x +Rα)]/2, (27)

n(1)
α (x) =

∫ x+Rα

x−Rα

dx′ρα(x′), (28)

where Rα =σα/2 is the particle “radius” of species α =0,1, and the upper
index ν =0,1 of the weighted density is related to its dimension, which is
(length)ν−d , where d =1 is the space dimension. The prime in (26) denotes
differentiation w.r.t. the argument, and �hc(η) is the zero-dimensional free
energy of hard core particles,(16) given by

�hc(η)= (1−η) ln(1−η)+η. (29)

Our (approximate) QA functional has very similar structure.(12) We
start from the generalization of (26) to binary mixtures, which is

Fexc
1 [ρ0, ρ1]=

∫
dx

∑
α =0,1

n(0)
α (x)�α

(
n

(1)

0 (x), n
(1)

1 (x)
)

, (30)
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where the weighted densities are still given through (27) and
(28), and derivatives of the zero-dimensional free energy, �, are defined
as �α(η0, η1)=∂�(η0, η1)/∂ηα. The particular form (30) ensures that the
exact result for � is recovered if the functional is applied to a zero-dimen-
sional density distribution, defined as ρi(x)=ηiδ(x) for i =0,1. Hence
it can be shown via elementary calculation that �(η0, η1)=Fexc

1 [η0δ(x),

η1δ(x)]. The exact result for �(η0, η1) is obtained by solving the zero-
dimensional limit (where all particles present in the system overlap); a
detailed calculation can be found in Ref. 12. Such a situation can be
enforced by appropriate external potentials φext

α (x)=∞ if |x|>L and zero
otherwise, and represents a “cavity” of size L, where L � min(σ0, σ1)/2.
Hence any two particles (of species α and γ ) present in the system will
overlap, i.e. x <σαγ , where x is the center-center distance between both
particles. (As a consequence the density profiles vanish outside the cavity,
ρα(|x|>L/2)=0.) This constitutes the crucial simplification that allows to
calculate the free energy; its excess contribution is independent of L.(12) In
the case of the hard core matrix the result is

�(η0, η1)= (1−η0 −η1) ln(1−η0 −η1)+η1 − (1−η0) ln(1−η0).

(31)

It is interesting to note that in this special case there is a simple
relation to the corresponding fully annealed binary hard core mixture:
�(η0, η1)=�hc(η0 + η1) − �hc(η0). In the case of the ideal matrix the
result for the excess free energy is

�(η0, η1)= (
e−η0 −η1

)
ln

(
e−η0 −η1

)+η1 +η0e−η0 . (32)

This does not have a similar relation as above to the corresponding
fully annealed binary mixture (the colloid-polymer mixture of Ref. 4). As
a further aside, we note that setting �(η0, η1)=�hc(η0 +η1) in (30) gives
the exact excess free energy functional for equilibrium (where both species
are annealed) binary hard rods.(8,9)

The density functional thus defined is exact on the second virial
level, which can be seen by Taylor expanding �(η0, η1) in both arguments
to second order, and exploiting the property of the weight functions to
recover the Mayer bond upon convolution.

3.4. Numerical Procedure

In order to calculate density profiles, the minimization is done with
a standard iteration technique. We chose a very fine grid with spacing
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0.0002σ to discretize the space coordinate. The system is assumed to be
periodic in x with length 20σ . To generate the matrix configurations {xi},
a Monte Carlo scheme is used. We start from an initial configuration
where the (matrix) particles have equally-spaced positions. Then particle
displacements are performed according to the Metropolis algorithm, i.e. a
new position is only accepted if no overlap with any other (matrix) parti-
cle or with the wall (introduced below) occurs. 1000 MC moves per par-
ticle are performed for equilibration, and 100 MC moves per particle are
performed between configurations that are used for data production. For
given matrix configuration {xi} the density profile for the adsorbate com-
ponent, ρ1(x, {xi}), is then obtained from solution of the minimization
condition of the equilibrium DFT, (15). Results from 1000 independent
matrix realizations for each N0 in the range N1 =0 − 20 are then used to
carry out the average over the disorder and obtain ρ1(x) via (17).

4. RESULTS

4.1. Bulk

The bulk case constitutes the basis of the subsequent interface study,
and is considered for the following three reasons: i) to assess the accuracy
of the QA-DFT, ii) to demonstrate the correctness of the matrix-averaging
procedure via comparing with an independent elementary calculation, and
iii) to study the (exact) partition coefficient, which we find to possess (very
unusual) non-monotonic behavior.

The matrix particles are distributed homogeneously on average, and
hence are characterized by a one-body density distribution ρ0(x)=η0/σ0 =
const. As a consequence, the adsorbate density distribution is on aver-
age ρ1(x)=η1/σ1 = const. We imagine the system to be in chemical equi-
librium with a reservoir of hard rods of species 1 of packing fraction
ηr

1 =ρr
1σ1, where ρr

1 is the number density in the reservoir; there are no
quenched matrix particles in the reservoir. The reservoir density sets the
chemical potential of 1-particles via the (well-known) hard rod equation
of state,

βµ1 = ln(ηr
1�1/σ1)− ln(1−ηr

1)+ ηr
1

1−ηr
1
. (33)

The central quantity that we use to characterize the coupled systems is the
partition coefficient K =η1/η

r
1 =ρ1/ρ

r
1, which we will study as a function

of the reservoir packing fraction ηr
1.
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Before applying both DFT methods to this case, we first seek to
obtain a benchmark result for K(ηr

1) from an independent, elementary
calculation; see ref. 27 for more mathematical background and ref. 7 for
an alternative application. We start from the probability W(x)dx that the
nearest-neighbor distance for 0-particles (measured between their centers)
is between x and x +dx (we call this a gap of size x), given by

W(x)σ0 =
{

η0
1−η0

exp
(

η0
1−η0

(1−x/σ0)
)

x >σ0

0 otherwise,
(34)

from which the average nearest-neighbor distance between matrix particles
follows as x̄ = ∫

dxxW(x)=σ0/η0, which is an expected result. To derive
(34), note that the occurrence of a gap of size x is proportional to the
Boltzmann weight of the reversible mechanical work to create it, hence
W(x) ∝ exp(−P0x), where P0 is the pressure of the bulk (matrix) system,
given for one-dimensional hard rods by σ0βP0 =η0/(1 − η0). One obtains
the precise form of (34) by taking into account the correct normalization,∫ ∞

0 dxW(x)=1.
The average number of 1-particles in a gap of (fixed) size x between

two 0-particles is N̄1(x,µ1)=β−1∂ ln �1/∂µ1, where the partition sum of
1-particles in the gap of volume x − σ0 − σ1 (being accessible to the cen-
ters of 1-particles) is

�1(x,µ1) =
∫

d1 exp(−β(V11 −µ1N1))

=
∞∑

N1 =0

exp(βµ1N1)

�
N1
1 N1!

(x −σ0 −N1σ1)
N1 . (35)

The mean number of 1-particles in the gap between two neighboring 0-
particles, averaged over all sizes of the gap, is N̄1(µ1)= ∫

dxW(x)N̄1(x,µ1).
Then the average density of 1-particles is ρ1 = N̄1(µ1)/x̄ = N̄1(µ1)η0/σ0,
from which the partition coefficient results as K =ρ1/ρ

r
1 = N̄1σ1/(x̄ηr

1).
Putting things together,

K = η0σ1

ηr
1σ0

∫ ∞

0
dxW(x)

∂ ln �1(x,µ1)

∂βµ1
, (36)

where the equation of state in the reservoir of 1-particles, (33), can be used
to obtain µ1 in terms of ηr

1 in (36), hence K is solely a function of the
packing fractions η0, η

r
1 and of the size ratio σ1/σ0. In general, we solve
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(36) numerically; we can, however, obtain analytic results in both (extreme)
cases of high and low reservoir density,

K(ηr
1 →0) = (1−η0) exp(−sη0/(1−η0)), (37)

K(ηr
1 →1) = sη0

exp (sη0/(1−η0))−1
, (38)

where s =σ1/σ0. (38) is obtained by noting that for µ1 →∞ the mean
number of 1-particles equals the maximal possible number, i.e. N̄1(x,

µ1→∞)=floor((x −σ0)/σ1), where floor(x) gives the next integer smaller
than x.

In the case of the of the non-interacting matrix, the equation of state
of the 0-particles is that of an ideal gas, σ0βP =η0. The gap size distribu-
tion is

W(x)= (η0/σ0) exp(−η0x/σ0), x >0, (39)

from which K can be derived following the same steps as above. Again in
the two limiting cases of either high or low reservoir packing fraction ana-
lytic expression can be obtained for the partition coefficient,

K(ηr
1 →0) = exp(−(1+ s)η0), (40)

K(ηr
1 →1) = sη0 exp(−η0)

exp(sη0)−1
. (41)

In order to obtain K from the QA DFT, we use the predicted equa-
tion of state, which is in the case of the hard core matrix

βµ1 = ln(η1�1/σ1)− ln(1−η0 −η1)+ η1 + sη0

1−η0 −η1
, (42)

which we set equal to the chemical potential in the reservoir, (33). For
small ηr

1 this gives the exact result, (37). In the high density limit, how-
ever, we do not recover (38), but obtain K(ηr

1 →1)=1−η0. Note that the
small η0-expansion of the exact result, (38), is K(η1 =1)=1− (1+ s/2)η0 +
O(η2

0), differing already in linear oder. For intermediate values of ηr
1 we

obtain numerical solutions.
Results for K as a function of reservoir packing fraction, ηr

1, are dis-
played in Fig. 2a for three different matrix packing fractions,
η0 =0.1,0.5,0.7. For the lowest value considered, η0 =0.1, K slightly
increases as a function of ηr

1. Remarkably a maximum is reached at ηr
1 ∼
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Fig. 2. Partition coefficient K =η1/η
r
1 for 1d hard rods immersed in a 1d matrix of

quenched rods as a function of the packing fraction in a reservoir of rods, ηr
1. Shown are

results from the elementary calculation, (36), (lines and full squares), DFT with explicit
matrix averaging (crosses) and QA DFT (open squares). a) Matrix particles are interacting
with a hard core potential and possess packing fraction η0 =0.1,0.5,0.7 (from top to bot-
tom). b) Matrix particles are ideal and posses packing fraction η0 =0.1,0.5,1 (from top to
bottom).

0.9, significantly smaller than the close-packing limit, ηr
1 =1. We could

not obtain numerical results for 0.9<ηr
1 <1, but the available data clearly

tend towards the limiting value, obtained through (38). For the interme-
diate value η0 =0.5 the variation of K with ηr

1 is stronger and the maxi-
mum is more pronounced. For ηr

1 =0.7 hardly any adsorbate particles can
enter the matrix and the resulting values are K�0.1, the variation with
ηr

1 being similar to the above cases. The exact results plotted in Fig. 2
are obtained from the elementary calculation above (lines) and from the
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DFT with explicit matrix averaging described in Sec. 3.1. Both agree with
high numerical accuracy. The result from the QA DFT is exact in the low-
density limit and stays accurate for intermediate ηr

1. At ηr
1 ∼ 0.7 devia-

tions emerge, overestimating the values of K. Moreover, the maximum is
absent, and monotonic increase with ηr

1 is found. We hence conclude that
the overall performance of the QA DFT is very satisfactory, but that the
intriguing non-monotonic behavior near close-packing is missed.

The situation in the case of the ideal matrix is similar. The equation
of state from QA DFT is

βµ1 = ln(η1�1/σ1)− ln
(
e−η0 −η1

)+ sη0e−η0 +η1

e−η0 −η1
. (43)

Again the result from QA DFT for ηr
1 →0 equals the exact result,

(41). In the limit ηr
1 →1 the result from QA DFT is K(ηr

1 →1)= exp(−η0),
which overestimates the exact expression, (41). See Fig. 2b) for numer-
ical results for K as a function of ηr

1 for matrix packing fractions
η0 =0.1,0.5,1. Compared to the case of the hard core matrix, at equal
densities K is larger, clearly due to the more open void structure of the
ideal matrix particles. Again K displays a maximum near ηr

1 ∼ 0.8, which
is not captured within the QA DFT. Nevertheless, the overall agreement is
again very reasonable, and gives us confidence to turn to inhomogeneous
situations.

4.2. Behavior at the Matrix Surface

We consider matrix distributions that are generated by a hard wall,
described by the external potential

φext
0 (x)=

{
0 x >0
∞ otherwise, (44)

acting before the quench. In order to obtain ρ0(x), we solve the minimi-
zation condition, (24), using Percus’ functional, given through (26)–(29),
as Fexc

0 in (22). This provides an exact (numerical) solution, see (Fig. 3a)
for matrix density profiles for three different matrix packing fractions
η0 =0.1,0.5,0.7. As η0 increases the contact value at the wall increases
and the layering near the wall becomes more pronounced, i.e. the ampli-
tude of the density oscillations grows.

The density profile of the adsorbate being exposed to such an inho-
mogeneous matrix (note that the hard wall, (44), only acts on the matrix
particles) are obtained using either the explicit matrix-averaging procedure
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Fig. 3. Behavior of adsorbate particles near the surface of a matrix of quenched rods
immersed in a hard core matrix. a) Density profile of the matrix particles, σρ0(x), as a func-
tion of the scaled distance x/σ for packing fractions η0 =0.1,0.5,0.7 (from bottom to top).
Adsorbate density profiles σρ1(x) are shown for η0 (from top to bottom) for βµ1 = −5 (b), 0
(c), and 3 (d). Results from the QA DFT (dashed lines) are compared with those of the exact
treatment (full lines).

of Sec. 3.1 or the QA DFT of Sec. 3.2. In Fig. 3b-d we display results for
ρ1(x) for η0 =0.1,0.5,0.7. For x >0 far away from the surface, the reser-
voir value is reached, ρ1(x →∞)=ρr

1; for x <0 deep inside the matrix, the
asymptotic value is ρ1(x → −∞)=Kρr

1, as studied above. For the lowest
adsorbate density considered, result for βµ1 = −5 are displayed in Fig. 3,
the crossover between the limiting cases happens in a narrow interval
−σ <x <σ . Already for x >σ the profile is flat. Inside the matrix, how-
ever, for x <σ there are small oscillations with wavelength of the order of
σ that decay rapidly with increasing distance from the surface. These oscil-
lations are not due to the correlations between adsorbate particles, but
are merely “imprinted” by the inhomogeneous matrix profiles as shown
in Fig. 3a. Increasing the adsorbate chemical potential, see Fig. 3c for
βµ1 =0, leads to stronger structuring outside the matrix, x >σ . This lay-
ering is similar to that at a hard wall, but with significantly smaller ampli-
tude. Clearly, this “washing out” is due to the average over the disorder.
Note that for a given matrix configuration {xi} the matrix particle closest
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to the surface, say xN0 , exerts a hard interaction on the fluid particles with
Xj >xN0 , and indeed the resulting ρ1(x) is that of a hard wall. The disor-
der-average then leads to the “washing out”. For βµ1 =3, shown in Fig.
3d, even stronger layering is observed. As expected from the bulk analy-
sis above, the QA DFT overestimates K and hence the adsorbate density
inside the matrix, which is clearly visible for x < − σ . The shape of the
curves, however, is predicted very accurately. Moreover, for x > − σ , the
QA DFT lies practically on top of the exact result.

In the case of the ideal matrix particles exposed to the hard wall,
Eq. 44, leads to step function density profiles, see Fig. 4a, hence is very
different from highly structured profile of the hard core matrix, Fig. 3.
The general trends upon varying the matrix density and the adsorbate
chemical potential, see Fig. 4b-d for results for the same values of βµ1 as
above, is similar. The ideal matrix allows to consider higher matrix pack-
ing fractions, and we have gone up to η0 =1. It is to be noted that oscil-
lations do appear for x <σ , although the matrix profile is uniform. These
oscillations clearly arise from packing effects between adsorbate particles.
Again the results from the QA DFT agree very well with those of the
exact calculation.

Fig. 4. Same as Fig. 3, but for ideal matrix particles of packing fraction η0 =0.1,0.5,1.
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5. CONCLUSIONS

In conclusion we have applied a recent DFT for adsorbate fluids
in random matrices to the one-dimensional hard core model. Comparing
with analytic and numerical exact solutions in bulk and at matrix inter-
faces we have tested the accuracy of the QA DFT. The general perfor-
mance is remarkable, both for the bulk partition coefficient and for the
inhomogeneous density profiles. Subtleties like non-monotonic variation of
the partition coefficient upon increasing adsorbate density are not cap-
tured by the QA DFT.

We note that by confining mesoscopic colloidal particles in narrow
channels(28) one-dimensional model fluids are experimentally accessible.
In principle we could imagine modifying setups of confining groves as
described in ref. 28 in order to prepare model systems that resemble
the model described in the current work. Possible future work could be
devoted to the impact of quenched disorder on three-dimensional narrow
channels.(29,30) Furthermore, it would be interesting to study the asymp-
totic decay of correlation functions(31,32) of fluids with quenched disorder
more systematically. Finally, whether non-monotonic variation of the par-
tition coefficient appears in 3d hard core models is an intriguing question.
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