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For mixtures of hard spheres and hard spherocylinders of large aspect ratio a recently proposed density
functional theory is extended to incorporate effects due to nonvanishing rod thickness. This is accomplished by
introducing several new geometric weight functions into the framework. We demonstrate explicitly how these
weight functions recover the sphere-rod Mayer bond.
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Mixtures of colloidal spheres and mesoscopic rods, like
colloidal rods or stiff polymer chains, suspended in a mo-
lecular solvent, are well-characterized model systems gov-
erned by steric(excluded volume) forces [1–6]. Interesting
questions concern the bulk phase behavior and effective
sphere–sphere and sphere–wall interactions mediated by the
presence of the rods[3,6]. Based on Rosenfeld’s
fundamental-measure theory for mixtures of nonconvex bod-
ies [7,8], recently a density-functional theory(DFT) [9] for a
minimal model of hard sphere colloids and infinitely thin
needles[10] was proposed[11] and used to investigate the
structure of the interface between sphere-rich and sphere-
poor phases[12,13], and the wetting behavior of a hard wall
[14]. This binary DFT proved to predict phase behavior ac-
curately compared to the simulation results of[10], and to
give high-quality results for(fluid) density profiles in inho-
mogeneous situations, when compared both to results from
an effective one-component treatment[14] using the deple-
tion potential between spheres[15,16], and to computer
simulation results of the free fluid–fluid interface of the bi-
nary mixture[13]. By combining Yu and Wu’s functional for
mixtures of polymeric fluids[17] and the theory of Ref.[11],
Bryk arrived at a DFT for binary mixtures of hard rods and
polymer chains[18].

In all these cases, the rods are assumed to have vanishing
thickness. Due to the geometry, the statistical weight of con-
figurations with overlapping rods vanishes, and hence the
rods behave as though being ideal.(The rod–sphere interac-
tion is unaffected by this argument and is governed by ex-
cluded volume.) Rosenfeld’s theory when applied to a mix-
ture of hard spheres of finite(large) packing fraction and a
second component of(thick) spherocylinders at vanishing
density was shown to predict the entropic force and torque
on the rod near a hard wall very accurately[19] and more
general cases have also been considered[20].

In order to capture effects of finite rod thicknessandfinite
rod density an extension to the theory for vanishingly thin

rods [11] was made in Ref.[12], incorporating the Onsager
limit of the rods[21], hence recovering exactly the rod–rod
Mayer bond in the limit of large aspect ratio. The Onsager
model continues to be a valuable system to study the prop-
erties of anisometric particles, see, e.g., Refs.[22–24] for
recent work. Cinacchi and Schmid proposed a DFT for gen-
eral anisotropic particles interpolating between the Rosenfeld
and the Onsager functional[25]. The theory of Ref.[12] is,
however, restricted to the limit ofLD /s2!1 whereL andD
are the rod length and thickness, respectively, ands is the
sphere diameter.

In the present contribution, we extend the framework, re-
stricting ourselves still to the Onsager limit ofL /D@1. This
is accomplished by introducing several new geometric
weight functions. We demonstrate how these weight func-
tions recover the leading order contribution(in D) to the
rod–sphere Mayer bond. Our model is a binary mixture of
hard spheres(speciesS) of diameters and hard needlelike
spherocylinders(speciesN) with lengthL (of the cylindrical
part) and diameterD. This is considered in the(Onsager)
limit of large rod aspect ratio of length-to-thickness,L /D
@1. The one-body density distributions of spheres and
needles are denoted byrSsr d and rNsr ,Vd, respectively,
wherer is the position coordinate(pointing to the center of
the respective particle shape) andV is a unit vector describ-
ing the needle orientation.

We start by defining the density functional. In order to not
duplicate material, explicit expressions are given only for the
new quantities. We refer the reader directly to Ref.[12] for a
full account of the known terms. We do, however, discuss the
relation to the sphere–rod Mayer bond in detail below. The
Helmholtz excess(over ideal gas) free energy functional is
expressed as

FexcfrS,rNg = kBTE d3r E d2V

4p
Fshni

ajd, s1d

wherekB is the Boltzmann constant andT is temperature,ni
a

are weighted densities that are obtained through convolutions
of the bare density profiles with geometric weight functions
wi

a; a refers to the particle species andi refers to the type of
weighted density. The weight functionswi

a are obtained by
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imposing the correct(second order) low-density behavior of
(1); this is achieved by the so-called deconvolution of the
Mayer bond, which we will turn to below. The functional
form of F is obtained from consideration of the dimensional
crossover[26,27] and scaled-particle ideas[28].

The weight functions necessary to recover the Mayer
bond are found to be

w1
SNsr ,Vd = s2pd−1dsr · VddsR− rd, s2d

w2±
SNDsr ,Vd = dsR− rdQs±V · r d, s3d

w1±
NDsr ,Vd = sD/2ddsr ± LV/2d, s4d

w2
Nsr ,Vd = pDE

−L/2

L/2

dldsr + Vld, s5d

whereR=s /2 is the sphere radius,ds·d is the Dirac distribu-
tion, Qs·d is the stepfunction, andr = ur u. We use “mixed”
weight functions that depend on properties of both species
(see Fig. 1 for illustrations). w1

SN describes the “equator” of
the sphere, where the polar axis is pointing into the direction
given by the (needle) orientation V. w2±

SND describes the
“northern” (subscript1) and “southern”(subscript2) hemi-
sphere. Hence,w2+

SND+w2−
SND=w2

S, where w2
S is the usual

sphere surface weight function[28]. The rod endcaps are
described byw1±

ND, wherew1+
ND+w1−

ND=Dw0
N (as defined in Ref.

[11]). The weight functionw2
N makes the dimensional analy-

sis consistent[7,8], and is proportional to a known weight,
w2

N=4pDw1
N, wherew1

N is given in[11] and obtained directly
through[7,8].

Weighted densities are built using spatial convolution, but
retaining the angular dependence:

n1
SNsx,Vd =E d3rrSsr dw1

SNsx − r ,Vd, s6d

n2±
SNDsx,Vd =E d3rrSsr dw2±

SNDsx − r ,Vd, s7d

n1±
NDsx,Vd =E d3rrNsr ,Vdw1±

NDsx − r ,Vd, s8d

n2
Nsx,Vd =E d3rrNsr ,Vdw2

Nsx − r ,Vd. s9d

Note that orientation-dependentspheredensities are built via
(6) and (7).

Following Rosenfeld’s dimensional analysis[7,8,28], and
in accordance with the scaled-particle theory for mixtures of
non-spherical particles[29], the (reduced) free energy den-
sity is found to beF=FS+FSN+FSNN+DF, whereFS is the
hard sphere term[28], FSN is the contribution in the case of
infinitely thin needles[11], andFSNN is the correction in the
Onsager limit[12] with LD /s2!1; these terms are given
explicitly in Eqs. (11), (12), and (17) of Ref. [12], respec-
tively. The new contribution is

DF =
n1

SNn2
N + n1+

NDn2−
SND+ + n1−

NDn2+
SND

1 − n3
S , s10d

where n3sr d=QsR− ur udprSsr d is the usual local packing
fraction for spheres. This completes the prescription of the
functional.

The corresponding fundamental measures,ja
i

=ed3r ed2Vwa
i / s4pd, are

j1
SN= R, j2±

SND = 2pR2, j1±
ND = D/2, j2

N = pLD, s11d

equal to the integral mean curvature of the sphere, surface of
a hemisphere of radiusR, radius of a hemispherical endcap
of the rod, and residual(for small D /L) rod surface, respec-
tively.

The exact second virial coefficient between sphere and
rod is

B2
SN= pR2SL +

4R

3
D + pDRsL + 2Rd + pD2SL

4
+ RD +

pD3

6
,

s12d

where the theory of Ref.[12] obtains the first term(indepen-
dent of D), and the present contribution recovers also the
next term, linear inD.

Expanding(10) for small density leads to second(lead-
ing) order Df=n1

SNn2
N+n1+

NDn2−
SND+n1−

NDn2+
SND=rSrNsj1

SNj2
N

+j1+
NDj2−

SND+j1−
NDj2+

SNDd=rSrNpsLDR+2DR2d. Hence, the addi-
tional contribution to the second virial coefficient isB2

SND

=Df / srSrNd=psLDR+2DR2d, indeed equal to the second
term of the exact result, given in(12).

In the following we demonstrate the relation to the
sphere-rod Mayer bondfSN being −1 if both particles overlap
and zero otherwise. We splitfSN= fSN

sD=0d+DfSN, where fSN
sD=0d

is the Mayer bond for vanishingly thin needles, which can be
deconvolved into one-body weight functions, see appendix A
1 of [12] (where this contribution is denoted byfSN). We
express the correction, valid for smallD /L, as

− DfSNsr ,Vd =
D

2
„Qsur · Vu − L/2ddsur − sr · VdVu − Rd

+ dsur + LV/2u − RdQs− r · V − L/2d

+ dsur − LV/2u − RdQsr · V − L/2d…, s13d

wherer is the difference vector between particle centers and
V is the rod orientation. Note thatDdsxd /2=QsD /4−ux
−D /4ud for D→0. Using the weight functions,(2)–(5), this
can be expressed as

FIG. 1. Illustration of the geometry of the weight functions:w2
N

describes the residual rod surface(thick line), w1
SN is nonvanishing

on the equator of the sphere(bold circle), w1
ND+ corresponds to one

rod endcap(dot), andw2
SND− describes a hemisphere(gray).
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− DfSN= w1
SNp w2

N + w1+
ND p w2−

SND + w1−
ND p w2+

SND, s14d

wherep denotes the spatial convolution.
We next chose a specific coordinate system, and demon-

strate the validity of Eq.(14). We first consider the first term
on the right-hand side of Eq.(14) and take the needle orien-
tation V to be parallel to thez axis and both needle and
sphere to lie within they-z plane, i.e., V=s0,w̄d, r
=sr ,q ,0d. Then,

w1
SNp w2

N =
D

2
E

0

p E
0

2p

dsRcosq8dE
−L/2

L/2

d1 − Rsinq8 sinw8

r sinq − Rsinq8 cosw8

r cosq − Rcosq8 + l
2dlR2 sinq8dw8dq8

s15d

=
D

2
E

0

2p E
−L/2

L/2

d1 − Rsinw8

r sinq − Rcosw8

r cosq + l
2dlRdw8 s16d

=
D

2
QSL

2
− ur cosquDE

0

2p

dsRsinw8ddsr sinq

− Rcosw8dR dw8 s17d

=
D

2
QSL

2
− ur cosquDdsr sinq − Rd, s18d

which recovers the first line of Eq.(13).
We next consider the termw1+

NDpw2−
SND in Eq. (14); the

calculation ofw1−
NDpw2+

SND can be performed analogously and
is skipped here. We write the convolution in its most general
form, i.e. using absolute coordinates,

E w1+
NDsr − r 8,Vdw2−

SNDsr 9 − r 8dd3r8 s19d

=E D

2
dSr − r 8 + V

L

2
DdsR− ur 9 − r 8udQ„− V · sr 9 − r 8d…d3r8.

s20d

Then we place everything in thex–y plane, q=q̄=q9
=p /2; the sphere shall sit on the negativex axis: w9
=−p /2. Using the remaining translational symmetry, we put
the tip of the needle in the origin:r =L /2, w=p+w̄. To sum-
marize, we have:r =sL /2 ,p /2 ,p+w̄d, r 8=sr8 ,q8 ,w8d, r 9
=sr9 ,p /2 ,−p /2d, V=sp /2 ,w̄d. Using these coordinates, we
can transform Eq.(20) and obtain:

w1+
ND p w2−

SND =
D

2
E

0

` E
0

2p E
0

p

dsr8 sinq8 sinw8d

3dsr8 sinq8 cosw8ddsr8 cosq8d

3dsR− Îr92 + r82 + 2r8r9 sinq8 sinw8d

3Qsr9 sin w̄ + r8 sinq8 sinw8 sin w̄

+ r8 sinq8 cosw8 cosw̄dr82 sinq8dq8dw8dr8

s21d

=
D

2
E

0

` E
0

2p

dsr8 sinw8ddsr8 cosw8d

3dsR− Îr92 + r82 + 2r8r9 sinw8dQsr9 sin w̄

+ r8 sinw8 sin w̄ + r8 cosw8 cosw̄dr8dw8dr8

s22d

=
D

2 o
±
E

0

`

dsr8ddsR

− Îr92 + r82dQsr9 sin w̄ ± r8 cosw̄ddr8 s23d

=
D

2
dsR− r9dQsr9 sin w̄d s24d

which recovers the second line of Eq.(13).
We turn to a brief investigation of the prediction of the

DFT for the bulk free energy. There the contribution of(10)
to the free energy per volume is obtained by settingri
=constant, and henceni

a=ji
ari. With the sphere packing frac-

tion h=prSs3/6, the resulting excess free energy is

bFexc

V
= fhsshd − rN lns1 − hd +

pL2D

4

rN
2

1 − h

+
3

2
S L

2R
+

LD

2R2 +
D

R
D rNh

1 − h
, s25d

where fhs is equal to the Percus–Yevick compressibility
(scaled-particle) result for pure hard spheres,V is the system
volume, and the second and third term inside the parentheses
is the contribution due to(10).

In conclusion, we have extended the DFT of Refs.[11]
and[12] to include effects of nonvanishing rod thickness. To
that end, we have introduced two qualitatively new weight
functions into the geometric framework. Our theory accounts
for excluded volume effects caused by finite rod aspect ra-
tios,D /L. We emphasize, however, that although we treat the
statistical weight associated with finiteD, the present theory
will not resolve features of density variation on length scales
comparable toD. We also have only dealt with contributions
of the order of 1/s1−n3

Sd to the excess free energy. Rosen-
feld’s prescription[7,8] also involves terms proportional to
1/s1−n3

Sd2, which we have not treated here. Whether the
weight functions introduced in the present work can be used
to modify these terms is an interesting problem, that we
leave for future research.
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The proposed theory should lead to rich bulk phase be-
havior as one has, besides demixing into fluid phases with
different chemical composition of species, also the possibil-
ity of nematic ordering of rods. In turn this clearly leads to a
rich variety of interesting interfacial situations. It would also
be interesting to see how the present theory performs against
other theoretical approaches or computer simulations. From
the practical point of view, the present functional causes only

a moderate increase of computational complexity as the new
weighted densities are built with spatial convolutions only
(the angular convolution of Ref.[12] is more involved).
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