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Density functional theory for sphere-needle mixtures: Toward finite rod thickness
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For mixtures of hard spheres and hard spherocylinders of large aspect ratio a recently proposed density
functional theory is extended to incorporate effects due to nonvanishing rod thickness. This is accomplished by
introducing several new geometric weight functions into the framework. We demonstrate explicitly how these
weight functions recover the sphere-rod Mayer bond.
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Mixtures of colloidal spheres and mesoscopic rods, likerods[11] was made in Ref{12], incorporating the Onsager
colloidal rods or stiff polymer chains, suspended in a mo-imit of the rods[21], hence recovering exactly the rod—rod
lecular solvent, are well-characterized model systems gowlayer bond in the limit of large aspect ratio. The Onsager
erned by sterigexcluded volumgforces[1-6]. Interesting  model continues to be a valuable system to study the prop-
questions concern the bulk phase behavior and effectiverties of anisometric particles, see, e.g., RE&2—-24 for
sphere-sphere and sphere—wall interactions mediated by thgcent work. Cinacchi and Schmid proposed a DFT for gen-
presence of the rods[3,6]. Based on Rosenfeld’'s eral anisotropic particles interpolating between the Rosenfeld
fundamental-measure theory for mixtures of nonconvex bodand the Onsager functiong25]. The theory of Ref[12] is,
ies[7,8], recently a density-functional theo®FT) [9] fora  however, restricted to the limit dfD/o?<1 whereL andD
minimal model of hard sphere colloids and infinitely thin are the rod length and thickness, respectively, and the
needleg[10] was proposedll] and used to investigate the sphere diameter.
structure of the interface between sphere-rich and sphere- In the present contribution, we extend the framework, re-
poor phase$12,13, and the wetting behavior of a hard wall stricting ourselves still to the Onsager limit bfD> 1. This
[14]. This binary DFT proved to predict phase behavior ac-is accomplished by introducing several new geometric
curately compared to the simulation results[d0], and to  weight functions. We demonstrate how these weight func-
give high-quality results focfluid) density profiles in inho- tions recover the leading order contributigim D) to the
mogeneous situations, when compared both to results fronmbd—-sphere Mayer bond. Our model is a binary mixture of
an effective one-component treatm¢h#] using the deple- hard spheregspeciesS) of diameters and hard needlelike
tion potential between sphergd5,16, and to computer spherocylindergspeciesN) with lengthL (of the cylindrical
simulation results of the free fluid—fluid interface of the bi- party and diameteD. This is considered in th¢Onsager
nary mixture[13]. By combining Yu and Wu’s functional for limit of large rod aspect ratio of length-to-thickneds,D
mixtures of polymeric fluid$17] and the theory of Ref11],  >1. The one-body density distributions of spheres and
Bryk arrived at a DFT for binary mixtures of hard rods and needles are denoted bys(r) and py(r,Q), respectively,
polymer chaing18]. wherer is the position coordinatéointing to the center of

In all these cases, the rods are assumed to have vanishifige respective particle shapendQ is a unit vector describ-
thickness. Due to the geometry, the statistical weight of coning the needle orientation.
figurations with overlapping rods vanishes, and hence the We start by defining the density functional. In order to not
rods behave as though being ide@he rod-sphere interac- duplicate material, explicit expressions are given only for the
tion is unaffected by this argument and is governed by exnew quantities. We refer the reader directly to R&g] for a
cluded volume. Rosenfeld’s theory when applied to a mix- full account of the known terms. We do, however, discuss the
ture of hard spheres of finitdarge) packing fraction and a relation to the sphere—rod Mayer bond in detail below. The

second component afthick) spherocylinders at vanishing Helmholtz excesgover ideal gasfree energy functional is
density was shown to predict the entropic force and torquexpressed as

on the rod near a hard wall very accuratéh®] and more
general cases have also been considg26t d’Q
In order to capture effects of finite rod thickneswd finite Fexdps pn] =keT f d’r f Eq)({nia})* (1)
rod density an extension to the theory for vanishingly thin
wherekg is the Boltzmann constant aridis temperaturen”
are weighted densities that are obtained through convolutions
*On leave from: Institut fiir Theoretische Physik Il, Heinrich- of the bare density profiles with geometric weight functions
Heine-Universitat Dusseldorf, UniversitdtsstraRe 1, D-40225 Dusw;'; a refers to the particle species antkfers to the type of
seldorf, Germany. weighted density. The weight functiong® are obtained by
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gy‘ Note that orientation-dependesypitheredensities are built via
(6) and (7).
Q Following Rosenfeld’'s dimensional analy$is 8,29, and
w wﬁA in accordance with the scaled-particle theory for mixtures of
LN S SNA non-spherical particlef29], the (reduced free energy den-

2 2 sity is found to beb =d g+ D g+ Doyt AP, wheredgis the
hard sphere terrf28], ®gy is the contribution in the case of
infinitely thin needleg11], and®gyyis the correction in the
FIG. 1. lllustration of the geometry of the weight function@ O”S?‘ger ,I'm't[lz] with LD/o?<1; these terms are given
describes the residual rod surfagkick line), wa is nonvanishing explicitly in Egs. (1), (12), and(17) of Ref. [12], respec-

on the equator of the sphefisold circle, wY** corresponds to one tively. The new contribution is

rod endcagdot), andw;™~ describes a hemisphetgray). . AN + S+ 4 phapsha o
1-n3 ’

imposing the correatsecond ordgrlow-density behavior of

(1); this is achieved by the so-called deconvolution of thewhere ns(r)=0@(R-|r|)*pgr) is the usual local packing

Mayer bond, which we will turn to below. The functional fraction for spheres. This completes the prescription of the

form of @ is obtained from consideration of the dimensional functional. .

crossover[26,27 and scaled-particle ide428]. The corresponding fundamental —measurest,
The weight functions necessary to recover the Mayer [d® [d2Qw /(4m), are

bond are found to be
EN=R, &M =24R? &2=D/2, &=7#LD, (11

wNr, @) = (2m) 16 - Q)8(R-T), @) .
equal to the integral mean curvature of the sphere, surface of
NA _ _ _ a hemisphere of radiug, radius of a hemispherical endcap
W§+ (@)= R-1OEQ 1), ©) of the rod, and residudfor smallD/L) rod surface, respec-
NA : tively.
Wy (1,€2) = (D/2)&r £ LQ/2), (4) The exact second virial coefficient between sphere and
U2 rod is
wH(r,Q) = wa dis(r +Ql), (5) 4R L D3
2( L2 B>"= 7TR2<L+?> +7TDR(L+2R)+1TD2<Z+R) +%,
whereR=¢/2 is the sphere radiug|-) is the Dirac distribu- (12)

tion, O(-) is the stepfunction, and=|r|. We use “mixed”

weight functions that depend on properties of both speciewhere the theory of Re{12] obtains the first terniindepen-
(See F|g 1 for i||ustratior)s WfN describes the “equator” of dent of D), -and the present contribution recovers also the
the sphere, where the polar axis is pointing into the directiofext term, linear irD.

given by the (needlg orientation Q. wir* describes the  Expanding(10) for small density leads to secoritbad-
“northern” (subscript+) and “southern’{subscript—) hemi- ~ ing) ~order ~ Ag=nP"5+nYPn5"+n)2n3 = pop (62N

sphere. HencewS™+wS™=wS, where w$ is the usual +&r&n +a-E&0") =pspym(LDR+2DRY). Hence, the addi-
sphere surface weight functiof28]. The rod endcaps are tional contribution to the second virial coefficient Bgm
described by}2, wherew)® +w)*=Dw}) (as defined in Ref. =A¢/(pspy)=7(LDR+2DR?), indeed equal to the second
[11]). The weight functionNg‘ makes the dimensional analy- term of the exact result, given (12).

sis consistenf7,8], and is proportional to a known weight, In the following we demonstrate the relation to the
wh=47Dw}, wherew}' is given in[11] and obtained directly ~sphere-rod Mayer bontky being -1 if both particles overlap
through(7,8]. and zero otherwise. We splity=fo-" +Afgy, wherefo
Weighted densities are built using spatial convolution, butis the Mayer bond for vanishingly thin needles, which can be
retaining the angular dependence: deconvolved into one-body weight functions, see appendix A
1 of [12] (where this contribution is denoted Hg,). We
nSNx, Q) =f dBrpg(NWSNX - 1,9), (6)  express the correction, valid for smallL, as
D
- Afg\(r,Q) = E(®(|r QI =L2)8(r = (r - Q)Q|-R)
SNA — 3 NA
SN (x,Q) = | Brpgr)ws(x-r,Q), 7
22 (6 0) f pell W ) @) +8(r +LQ/2|-RO(-1 - Q- L/2)
+8(r -LQ/2| -RO( -Q-L/2), (13
NA _ 3 NA(y _
N (X, Q) = | drpy(r, @)ws (x =T, €), (8 wherer is the difference vector between particle centers and
Q is the rod orientation. Note thaDd&(x)/2=0(D/4—|x
—-D/4]) for D—0. Using the weight functiong2)—(5), this
ny(x, Q) :f Crpn(r, QW (x —r,Q). (9)  can be expressed as
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—AfSN:WfN*W’2\1+W'£'f*W%NA+W’1\'_A*W§'L\A, (14 NA NA_ ffzwj S0’ sind' sing’)

where* denotes the spatial convolution.

We next chose a specific coordinate system, and demon- Xa(r" sind’ cosg’)&r' cosd’)

strate the validity of Eq(14). We first consider the first term XSR= V"2 +1"2+ 21" sind' sing')
on the right-hand side of E¢14) and take the needle orien- o . . o
tation Q to be parallel to thez axis and both needle and XO("sing+r’sind’ sing’ sing
sphere to lie within they-z plane, i.e., Q=(0,¢), r +1' sin®’ cose’ cosg)r’2sin9'dd’ de’dr’
=(r,,0). Then, (21)
\ 2m L/2 D w o
WS * W2 f f 5(R cost )f L :_f f 5([‘/ Siﬂ(p’)é(r’ COSQD,)
2J)o
-Rsind’ sing’

_ . , , XS(R=I"2+1"2+2r'r" sing)O(r" sing
rsind-Rsind' cose’ |dIRsind de’dd’

+r'sing’ sing+r’' cose’ cose)r'de’dr’
r cos—Rcosd +1 ¢' ¢ ¢ P)r'de

(15 (22)
D oo
. =—2f S(r')a(R
27 (L2 ~Rsing 25 Jo
f J L rsind - Rcosge d|Rd(p (16) _ \’,W)®(ru sinai v Cosadr’ (23)
rcosv+|1
D .
= dR=1)O(" sing) (24)

which recovers the second line of H3.3).

We turn to a brief investigation of the prediction of the
—Rcos¢’)R d¢’ (170 DFT for the bulk free energy. There the contribution(d6)
to the free energy per volume is obtained by settig
=constant, and hena® = §&"p;. With the sphere packing frac-

D L 2
:—®<——|rcost}|)f S(Rsing’)&(r sin®
2 \2 o

=g®<% I cosf}|>5(r Sin9—R), (19  tion n=mpso3l6, the resulting excess free energy is
F 7L°D

| - BFos— gy = puin(d - )+ =0 P
which recovers the first line of E¢13). Y

We next consider the term)2=w5™ in Eq. (14); the 3/L LD D o
calculation ofw)2+w5M can be performed analogously and + Z(ZR ot R) 1- (25
is skipped here. We write the convolution in its most general
form, i.e. using absolute coordinates, where ¢s is equal to the Percus—Yevick compressibility

(scaled-particleresult for pure hard sphereg,is the system
volume, and the second and third term inside the parentheses
jWTf(r - r',Q)Wg_m(r" —r")d%’ (19 is the contribution due t¢10).

In conclusion, we have extended the DFT of R¢fkl]
and[12] to include effects of nonvanishing rod thickness. To
that end, we have introduced two qualitatively new weight

:f Eﬁ(r —r +QE>5(R— "= 1)@= Q- (r" = r"))dr’ functions into the geometric framework. Our theory accounts
2 ' for excluded volume effects caused by finite rod aspect ra-
(20) tios,D/L. We emphasize, however, that although we treat the
statistical weight associated with finii, the present theory
_ will not resolve features of density variation on length scales
Then we place everything in thg-y plane, 9=9=19" comparable t@. We also have only dealt with contributions
=1/2; the sphere shall sit on the negatixeaxis: ¢” of the order of 1(1—n§) to the excess free energy. Rosen-
=-m/2. Using the remaining translational symmetry, we putfeld’s prescription[7,8] also involves terms proportional to
the tip of the needle in the origim=L/2, p=m+¢. To sum-  1/(1-n3)?, which we have not treated here. Whether the

marize, we haver=(L/2,7/2,m+¢), r'=(r',9",¢"), 1" weight functions introduced in the present work can be used
=(r",ml2,-m12), Q=(m/2,¢). Using these coordinates, we to modify these terms is an interesting problem, that we
can transform Eq(20) and obtain: leave for future research.
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The proposed theory should lead to rich bulk phase bea moderate increase of computational complexity as the new
havior as one has, besides demixing into fluid phases witiveighted densities are built with spatial convolutions only
different chemical composition of species, also the possibil{the angular convolution of Ref12] is more involveq.
ity of nematic ordering of rods. In turn this clearly 1eads to @ - e yyork of one of the author@.S.) is part of the re-
nch vanety of interesting interfacial situations. It would alsc_) search program of th&tichting voor Fundamenteel Onder-
be interesting to see how the present theory performs againgpek der MaterigFOM), that is financially supported by the

other theoretical approaches or computer simulations. FrorRederlandse Organisatie voor Wetenschappelijk Onderzoek
the practical point of view, the present functional causes onlyNwWO).
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