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Abstract
The fundamental measure density functional theory for hard spheres is
generalized to binary mixtures of arbitrary positive and moderate negative
non-additivity between unlike components. In bulk the theory predicts fluid–
fluid phase separation into phases with different chemical compositions. The
location of the accompanying critical point agrees well with previous results
from simulations over a broad range of non-additivities and both for symmetric
and highly asymmetric size ratios. Results for partial pair correlation functions
show good agreement with simulation data.

Density-functional theory (DFT) is a powerful approach to study equilibrium properties of
inhomogeneous systems, including dense liquids and solids of single- and multi-component
substances [1]. Its practical applicability depends on the quality of the approximation to the
central object, the (Helmholtz) excess free energy functional arising from the interparticle
interactions. The specific model of additive hard sphere mixtures constitutes the reference
system par excellence to describe mixtures governed by steric repulsion, and Rosenfeld’s
fundamental-measure theory (FMT) [2–5] is arguably the best available approximation to
tackle inhomogeneous situations. A rapidly increasing number of applications to interesting
physical problems can be witnessed [6].

The more general non-additive hard sphere mixture is defined through pair potentials
between particles of species i and j , given as Vi j(r) = ∞ for r < σi j and 0 otherwise, where
r is the centre–centre distance between the two particles, and σi j is the distance of minimal
approach between particles of species i and j . In a binary mixture non-additivity is measured
conventionally through the parameter � = 2σ12/(σ11 + σ22) − 1. The physics of non-additive
hard sphere mixtures is considerably richer than that of the additive case. In particular the case
of � > 0 is striking, as small values of � are known to be already sufficient to induce stable
fluid–fluid demixing into phases with different chemical compositions (for recent studies see
e.g. [7–10]).
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The treatment of general non-additivity is elusive in the FMT framework. The author
is aware of successful studies only in four special cases. First, for the Asakura–Oosawa–
Vrij (AOV) model [11, 12], where species 1 represents colloidal hard spheres and species
2 (with σ22 = 0) represents non-interacting polymer coils with radius of gyration equal
to σ12 − (σ11/2), an excess free energy functional was given [13]. Second, a free energy
functional for the Widom–Rowlinson (WR) model, where σ11 = σ22 = 0, was obtained [14].
Third, the depletion potential between two big spheres immersed in a sea of smaller spheres
was obtained through ‘Roth’s trick’ of working on the level of the one-body direct correlation
functional [15–17]. In this case the functional for the additive case is sufficient to obtain
results, but the approach is limited to small concentration of big spheres. Fourth, in the FMT
of Lafuente and Cuesta for lattice hard core models, due to an odd–even effect of the particle
sizes (measured in units of lattice constants), non-additivity of the size of one lattice spacing
arises [18]. This effect, however, is specific to lattice models and vanishes in the continuum
limit.

The aim of the present letter is to generalize FMT for hard spheres to the case of general
positive and moderate negative non-additivity and arbitrary size asymmetry. The proposed
extended framework accommodates, in the respective limits, the Rosenfeld functional for
additive hard sphere mixtures [2], the DFT for the extreme non-additive AOV model [13], and
the exact virial expansion up to second order in densities. The structure of the theory, however,
goes qualitatively beyond that of either limit.

The excess (over ideal) Helmholtz free energy functional is expressed as

Fexc[ρ1, ρ2] = kBT
∫

dx dx′
3∑

α,β=0

K (12)
αβ (|x − x′|)�αβ

({n(1)
ν (x)}, {n(2)

τ (x′)}) , (1)

where ρi (r) is the one-body density distributions of species i = 1, 2 dependent on position r,
kBT is the thermal energy, �αβ for α, β = 0, 1, 2, 3 is the free energy density depending on the
sets of weighted densities {n(i)

ν } for i = 1, 2, and the kernels K (12)
αβ (r) are a means to control

the range of non-locality between unlike components and depend solely on distance r . The
weighted densities are built in the usual way [2] through convolution of the respective bare
density profile with appropriate weight functions:

n(i)
ν (x) =

∫
dr ρi (r)wν(|x − r|, Ri), i = 1, 2, (2)

where ν = 0, 1, 2, 3 labels the type of weight function, and Ri = σii/2 is the particle radius
of species i = 1, 2. The (fully scalar) Kierlik–Rosinberg form [19, 20] of the wν(r, R) is used
in the following, as this renders the determination of the K (12)

αβ (r) more straightforward. The
wν(r, R) are

w0 = −δ′′(R − r)/(8π) + δ′(R − r)/(2πr),

w1 = δ′(R − r)/(8π),

w2 = δ(R − r),

w3 = �(R − r),

(3)

where R = Ri , the prime denotes the derivative w.r.t. the argument, δ(·) is the Dirac
distribution, and �(·) is the step function. Alternatively, in Fourier space the weight functions
are w̃α(k, R) = 4π

∫ ∞
0 dr wα(r, R) sin(kr)r/k and are given as

w̃0 = c + (k Rs/2),

w̃1 = (k Rc + s)/(2k),

w̃2 = 4π Rs/k,

w̃3 = 4π(s − k Rc)/k3,

(4)
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with the abbreviations s = sin(k R) and c = cos(k R). The kernels K (12)
αβ (r) in (1) can be

viewed as αβ-components of a second-rank tensor

K̂(12)(r) =




w3 w2 w1 w0

w2 w
†
1 w

†
0 w−1

w1 w
†
0 w

†
−1 w−2

w0 w−1 w−2 w−3


 , (5)

where indexing is such that the top row contains K (12)

00 , . . . , K (12)

03 , etc, and † distinguishes
different elements. All K (12)

αβ (r) possess a range of R12 = σ12 − (σ11 + σ22)/2, i.e. vanish
for values of r beyond that distance (see figure 1 for an illustration of the length scales).
The dimension of K (12)

αβ is (length)−α−β , and hence the dimension of wγ is (length)γ−3. The

elements of K̂(12) are defined, with R = R12 > 0, through (3), and furthermore

w
†
1 = δ′(R − r),

w
†
0 = δ′′(R − r)/(8π),

w
†
−1 = δ(3)(R − r)/(64π2),

w−1 = δ′′(R − r)/(2πr) − δ(3)(R − r)/(8π),

w−2 = δ(3)(R − r)/(16π2r) − δ(4)(R − r)/(64π2),

w−3 = −δ(4)(R − r)/(8π2r) + δ(5)(R − r)/(64π2),

(6)

with the derivatives δ(γ )(x) = dγ δ(x)/dxγ for γ = 3, 4, 5. Again, we also give the Fourier
space representation (being together with (4) also valid for R = R12 < 0), which reads

w̃
†
1 = 4π(k Rc + s)/k,

w̃
†
0 = c − (k Rs/2),

w̃
†
−1 = −(k2 Rc + 3ks)/(16π),

w̃−1 = (k2 Rc − ks)/2,

w̃−2 = −k3 Rs/(16π),

w̃−3 = (k4 Rc − 3k3s)/(16π).

(7)

In order to express the dependence of the free energy density, �αβ in equation (1), on the
weighted densities (2) we introduce ansatz functions A(i)

αγ for species i = 1, 2 that possess
the dimension of (length)α−3 and the order γ in density (i.e. contain γ factors n(i)

τ ). Explicit
expressions for the non-vanishing terms are

A(i)
01 = n(i)

0 , A(i)
02 = n(i)

1 n(i)
2 , A(i)

03 = (n(i)
2 )3/(24π), (8)

A(i)
11 = n(i)

1 , A(i)
12 = (n(i)

2 )2/(8π), A(i)
21 = n(i)

2 , A(i)
30 = 1. (9)

The excess free energy density is then constructed as

�αβ =
6∑

γ=0

3∑
γ ′=0

A(1)
αγ ′ A

(2)

β(γ−γ ′)ϕ
(γ )

0d (n(1)
3 + n(2)

3 ), (10)

where ϕ
(γ )

0d (η) ≡ dγ ϕ0d(η)/dηγ is the γ th derivative of the zero-dimensional excess free
energy as a function of the average occupation number η [3], ϕ0d(η) = (1 − η) ln(1 − η) + η,
and ϕ

(0)

0d (η) ≡ ϕ0d(η) for γ = 0. The specific form (10) ensures both that the terms in the

sum in (1) possesses the correct dimension of (length)−6 and that the prefactor of ϕ
(γ )

0d in (10)
is of the total order γ in densities, as is common in FMT. This completes the prescription for
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Figure 1. Illustration of the relevant length scales. The hard core interaction distances σi j

between pairs of particles of species i j = 11, 12, and 22 are related to radii through σ11 = 2R1,
σ12 = R1 + R12 + R2, and σ22 = 2R2, respectively. The spheres of radii R1 and R2 represent
the weight functions w

(1)
α and w

(2)
β , respectively, and can be viewed as ‘true’ particle shapes. The

sphere of radius R12 represents the kernel K (12)
αβ being a mere construct to generate the correct hard

core distance σ12 between species 1 and 2.

the functional; a full account of all details, also for multi-component mixtures and for lower
spatial dimensionality, will be given elsewhere.

Here we discuss some of the properties of the theory. For small densities it is
straightforward to show that the correct virial expansion up to second order in densities is
obtained, Fexc → − ∑

i j

∫
d3r d3r ′ fi j(|r − r′|)ρi(r)ρ j (r′)/2, where the Mayer functions,

fi j (r) = exp(−Vi j(r)/(kBT )) − 1, are recovered through

f12 = −
3∑

αβ=0

w(1)
α ∗ K (12)

αβ ∗ w
(2)
β , fii = −

3∑
α=0

w(i)
α ∗ w

(i)
3−α, i = 1, 2, (11)

where ∗ denotes the convolution, g(r) ∗ h(r) = ∫
d3r ′g(r′)h(r − r′). In the limit of an

additive mixture, � → 0 and hence R12 → 0, one finds that Kαβ(x) → 0 if β �= 3 − α and
Kα(α−3)(x) → δ(x) otherwise. This leads to a cancellation of one spatial integration in (1) and
yields the Rosenfeld functional for a binary additive hard sphere mixture [2] with radii R1 and
R2. In the AOV limit, R2 → 0, one finds that n(2)

α → 0 if α �= 0, and n(2)

0 → ρ2 otherwise.
The integration over x′ in (1) together with the kernel Kαβ(|x−x′|) and the fact that the density
n(2)

0 (x′) = ρ2(x′) appears linearly in �αβ , see A(2)

01 in (8), plays the same role that building
weighted densities for the polymer species in the AOV case does. The resulting functional is
equal to that for the AOV model [13]. However, in the WR limit, in contrast to [14], terms
higher than on the second virial level vanish. For � = −1 the two species decouple, and
Fexc[ρ1, ρ2] = Fexc[ρ1] +Fexc[ρ2] which is not obeyed by the present approximation, limiting
its applicability to small values of � if � < 0.

We next turn to an investigation of bulk properties of the theory. To assess structure, direct
correlation functions can be obtained via

c(2)

i j (|r − r′|) = − δ2βFexc

δρi(r)δρ j(r′)

∣∣∣∣
ρ1,ρ2=const

, (12)

which can be shown to feature Percus–Yevick- (PY-) like behaviour: c(2)
i j (r > σij) = 0.

Inverting the Ornstein–Zernike (OZ) relations permits us to calculate partial structure factors,
Si j (k), and partial pair correlation functions, gi j(r). We have carried out Monte Carlo (MC)
computer simulations in the canonical ensemble with 1024 particles and 105 MC moves per
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Figure 2. Partial pair correlation functions, gi j (r), between species i j = 11, 12 and 22 (as
indicated), as a function of the scaled distance r/σ11, as obtained from the present DFT using
the OZ route (dashed curves) and from MC simulation (solid curves). Results for g12 (g22) are
shifted upwards by one (two) units for clarity. Parameters are σ22/σ11 = 0.5, � = 0.3, η2 = η1/8
and η1 = 0.05 (lower), 0.1 (upper). For comparison, the theoretical critical point is located at
η1 = 0.118, η2 = 0.0321.

particle; histograms of all distances between particles yield benchmark results for gi j(r). We
have chosen an intermediate size ratio of σ22/σ11 = 0.5 and have considered various values of
� from −0.3 to 0.5 and a range of statepoints characterized by packing fractions,ηi = πρiσ

3
ii/6

for i = 1, 2. For � = 0, the current DFT reproduces the solution of the PY integral equation,
as the functional reduces to the Rosenfeld case (which is known to yield the same c(2)

i j (r) as the
PY approximation). Results for the representative case � = 0.2 at two different statepoints
are shown in figure 2. The core condition, gi j(r < σi j) = 0, is only approximately fulfilled,
but the overall agreement between results from theory and simulation is quite remarkable.

In principle, one could envisage that this approach permits us to study the depletion
potential, V (11)

depl (r), between particles of species 1 being generated by the immersion into a

‘sea’ of particles 2 through V (11)

depl (r) = −kBT ln g11(r) for ρ1 → 0, and ρ2 = const. However,
for the (relevant) case of small size ratios (e.g. σ22/σ11 ∼ 0.1, see [15, 16]) already in both
limits of additive hard spheres and the AOV model the results are only of rather moderate
accuracy, underestimating the strength of the depletion attraction [13], similar to results from
the PY approximation. However, results from the present theory obtained through the OZ
route (not shown) cross over smoothly between the additive hard sphere case and the AOV
case, similar to the correct behaviour [15, 16]. Hence one can conclude that the pair structure
predicted by the current DFT is similar to that of the PY approximation. This is a remarkable
property, and one can anticipate test-particle calculations to yield superior results.

Evaluating (1) at constant density fields yields an analytic expression for the bulk excess
free energy for fluid states, Fexc = Fexc[ρ1 = const, ρ2 = const]. The total Helmholtz free
energy is then F = Fexc + kBT V

∑
i=1,2 ρi [ln(ρi�

3
i ) − 1], where �i is the (irrelevant) de

Broglie wavelength of species i , and V is the system volume. Via Taylor expanding Fexc in
both densities one can show that it features the exact second virial coefficients (consistent with
the correct incorporation of fi j (r) on the second virial level) and also the exact third virial
coefficients (see e.g. [7]) provided 2σ12 > max(σ11, σ22).

The fluid–fluid demixing spinodal can be obtained from (numerical) solution of
|∂2(F/V )/∂ρi∂ρ j | = 0, and the location of the critical point can be determined from
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Figure 3. The total packing fraction at the critical point, ηcrit
tot , where ηtot = η1 + η2, for a non-

additive binary hard sphere mixture as a function of the non-additivity parameter �. Shown are
results from the present DFT (curves) and from simulations (symbols) for the symmetric case,
σ22/σ11 = 1, by Góźdź [9] (filled squares) and by Jagannathan and Yethiraj [10] (open circles), as
well as for the highly asymmetric case of σ22/σ11 = 0.1 by Dijkstra [7] (crosses).

Figure 4. Partial structure factors, Si j (k) for i j = 11, 12, 22 (as indicated), as a function of kσ11
at the fluid–fluid critical point for size ratio σ22/σ11 = 0.1 and non-additivity � = 0.2, 0.5, 1. The
results for � = 0.5 (1) are shifted upwards by 5 (10) units for clarity.

minimizing one of the chemical potentials, µ1 or µ2, along the spinodal. Such results are
compared in figure 3 to those from simulations for σ11 = σ22, performed in the semi-grand
ensemble by Jagannathan and Yethiraj [10] and by Góźdź [9], the latter study including a
finite size analysis, for a variety of non-additivities ranging from � = 0.1–1. For the highly
asymmetric case of σ22 = 0.1σ11 results from Gibbs ensemble simulations were obtained by
Dijkstra [7]. For both size ratios the strong decrease of the total critical packing fraction with
increasing values of �, as well as the overall functional dependence, are very well described
by the theory. However, the precise value at given � is underestimated. This behaviour is
not uncommon for mean-field-like theories and is also present in the AOV case. A benefit of
working on the level of the density functional is that the structure is consistent with the free
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energy. In figure 4 partial structure factors are shown for a range of values of � evaluated at
the fluid–fluid critical point obtained from the free energy, and indeed |Si j(k → ∞)| → ∞.

In conclusion, having demonstrated the good accuracy of the predictions of the current
theory for bulk fluid properties of the non-additive hard sphere mixture, we are confident that
it is well suited to study interesting and relevant interfacial situations, such as the structure and
tension of interfaces between demixed phases, wetting at substrates [21], and more. Note that
any colloidal mixture interacting with soft repulsive forces, as e.g. present in charge-stabilized
dispersions, can be mapped (e.g. by the Barker–Henderson procedure) onto an effective non-
additive hard sphere system. Hence one can anticipate experimental consequences of the
structure and phase separation predicted by the present theory. The treatment of freezing [8]
requires additional contributions to the free energy functional [3, 4].
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