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The equilibrium phase behavior of a binary mixture of charged colloids and neutral, nonadsorbing
polymers is studied within free-volume theory. A model mixture of charged hard-sphere macroions
and ideal, coarse-grained, effective-sphere polymers is mapped first onto a binary hard-sphere
mixture with nonadditive diameters and then onto an effective Asakura–Oosawa model �S. Asakura
and F. Oosawa, J. Chem. Phys. 22, 1255 �1954��. The effective model is defined by a single
dimensionless parameter—the ratio of the polymer diameter to the effective colloid diameter. For
high salt-to-counterion concentration ratios, a free-volume approximation for the free energy is used
to compute the fluid phase diagram, which describes demixing into colloid-rich �liquid� and
colloid-poor �vapor� phases. Increasing the range of electrostatic interactions shifts the demixing
binodal toward higher polymer concentration, stabilizing the mixture. The enhanced stability is
attributed to a weakening of polymer depletion-induced attraction between electrostatically repelling
macroions. Comparison with predictions of density-functional theory reveals a corresponding
increase in the liquid-vapor interfacial tension. The predicted trends in phase stability are consistent
with observed behavior of protein-polysaccharide mixtures in food colloids. © 2005 American
Institute of Physics. �DOI: 10.1063/1.1940055�

I. INTRODUCTION

Mixtures of colloidal particles and free �non-adsorbing�
polymer coils dispersed in a solvent are among the most
intensively studied soft matter systems.1–6 The conceptual
analogy between colloids and atoms, similarities in thermo-
dynamic phase behavior between colloidal suspensions and
atomic systems, and the relative ease of tuning polymer-
induced effective colloidal interactions, make colloid-
polymer mixtures valuable model systems for probing con-
nections between microscopic interparticle interactions and
macroscopic properties in a variety of materials. The ob-
served phases, distinguished by composition and structural
order, include most of the equilibrium phases familiar in
simple molecular systems, e.g., vapor, liquid, crystal, as well
as nonequilibrium states, such as glasses and gels.1,7

Complementing their fundamental importance, colloid-
polymer mixtures have diverse industrial applications, e.g.,
to coatings, petroleum products, pharmaceuticals, and many
foods, where polymer additives are used to control phase
stability and rheological properties.

Addition of free polymer can substantially modify effec-
tive interactions between colloidal particles through the
mechanism of entropic depletion. When two colloidal sur-
faces approach to a separation closer than the typical diam-
eter of a polymer coil, the entropic cost to the coil of distort-
ing its average spherical conformation tends to exclude the

polymer. The resulting depletion of polymer from the space
between the colloids creates an imbalance in polymer os-
motic pressure that can induce effective attractions between
colloids. Attractions of sufficient range and strength, depend-
ing on the relative size and concentration of polymer, can
drive bulk demixing into colloid-rich �liquid� and colloid-
poor �vapor� phases.

The first, and conceptually simplest, statistical mechani-
cal model to qualitatively describe the polymer depletion
mechanism and the associated phenomenon of depletion-
driven demixing was the model of Asakura and Oosawa,8

developed independently by Vrij.9 The Asakura–Oosawa
�AO� model regards the colloidal particles as hard spheres
and the polymer coils as effective ideal spheres—mutually
noninteracting, but interacting with the colloids as hard
spheres. Neglect of polymer–polymer interactions can be
reasonably justified for polymers in a theta solvent. The
phase diagram corresponding to the AO model has been de-
termined by a variety of methods, including thermodynamic
perturbation theory,10 free-volume theory,11,12 density-
functional theory,13 and Monte Carlo simulation.14–16 Recent
effort has also been devoted to calculating the liquid-vapor
interfacial tension of phase-separated colloid-polymer
mixtures.17–26

Although certain topologically constrained polymers
�e.g., stars and microgels� are close to spherical in shape,
linear-chain polymers are random walks whose shapes are
spherical only on average. To explore the significance of
nonspherical conformations, more explicit segmented-chain
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polymer models have been studied via Monte Carlo
simulation27–29 and integral-equation theory.30 Effective
polymer–polymer interactions have been modeled by com-
bining Monte Carlo and integral-equation methods within a
“polymers as soft colloids” framework.29 In recent work, we
examined fluid–fluid demixing within several variations of
the classic AO model, incorporating a third component �hard
needles�,31 polymer-solvent interactions,32 polymer-polymer
interactions,33 and colloid-induced polymer compression.34

The latter study incorporated intrinsic polydispersity in the
polymer radius of gyration. Influences on phase behavior of
colloid polydispersity35 and of polymer chain length
polydispersity36,37 have also been studied theoretically.

While neutral colloid-polymer mixtures have been
widely investigated, much less attention has been devoted to
mixtures of charged species. In the case of charged colloids
or charged polymers �polyelectrolytes�, electrostatic repul-
sions between macroions, screened by counterions and salt
ions in solution, compete with depletion-induced attractions
and can modify phase behavior. In pioneering
experiments,38,39 phase separation was observed in mixtures
of charged colloids and neutral polymers. Gast et al.39 inter-
preted their observations by applying thermodynamic pertur-
bation theory to an effective one-component model, incorpo-
rating electrostatic repulsion and depletion-induced attraction
into an effective pair potential between colloids. Subsequent
measurements of force profiles in mixtures of charge-
stabilized colloidal oil-in-water emulsion droplets and ionic
surfactant micelles40 and in mixtures of colloidal particles
and charged macromolecules41 directly demonstrated the po-
tential for electrostatic interactions to modify depletion
forces. More recently, liquid-vapor separation and gelation
were observed in mixtures of charged colloids and ionic
wormlike micelles42 and depletion potentials induced by
charged rods were measured in colloidal rod-sphere
mixtures.43 In a recent theoretical study, liquid-state integral-
equation methods were used to model the structure and phase
behavior of mixtures of charged colloids and
polyelectrolytes.44

The purpose of the present paper is to propose, for a
simple model of a charged-colloid–neutral-polymer mixture,
an alternative theoretical approach that, in contrast to Ref.
39, treats the two components on an equal footing. The
theory is based on mapping the binary mixture onto an ef-
fective AO model, governed only by excluded volume inter-
actions, and applying free-volume theory11 and classical
density-functional theory.13 Within this conceptual approach,
we explore the qualitative influence of colloidal charge on
demixing and find that increasing the range of electrostatic
interactions can significantly stabilize the mixture against de-
mixing and correspondingly increase the liquid-vapor inter-
facial tension.

The remainder of the paper is organized as follows. The
model system is defined in Sec. II. The mapping onto the
effective AO model and the free-volume theory are described
in Sec. III. Results for the fluid-fluid demixing phase dia-
gram and interfacial tension are presented and discussed in
Sec. IV. Finally, Sec. V closes with a summary and conclu-
sions.

II. MODEL

The system of interest comprises charged colloidal par-
ticles, their dissociated counterions, and free polymer coils,
all dispersed in an electrolyte solvent. The multi-component
mixture of macroions, microions �counterions and salt ions�,
polymers, and solvent molecules spans a range of length and
time scales, presenting severe challenges to explicit model-
ing approaches. To reduce the system to a tractable model,
we make several simplifying, yet realistic, assumptions. �1�
The colloids are modeled as monodisperse charged hard
spheres—a close approximation to many real synthetic sus-
pensions. �2� The microions are modeled as monovalent
point charges and subsumed into effective electrostatic inter-
actions between macroions, as described below. �3� The
polymer coils are represented, as in the coarse-grained AO
model, as effective spheres. Nonspherical conformations,
disfavored by lower conformational entropy, can be reason-
ably neglected when the polymer coils are comparable or
smaller in size than the colloids �colloid limit�. �4� Finally,
the solvent is treated as a dielectric continuum, characterized
by a dielectric constant �primitive model of electrolytes45�.
An experimental system that closely resembles our model
system would be charge-stabilized synthetic polystyrene or
silica microspheres dispersed in an aqueous electrolyte to-
gether with a nonadsorbing, nonionic, water-soluble poly-
mer, such as hydroxyethylcellulose �HEC�38,39 or polyethyl-
ene oxide �PEO�.

Interactions between colloidal particles include steric
and electrostatic repulsions and van der Waals attractions.
Here we assume hard-sphere steric interactions and ignore
van der Waals interactions, which is valid for particles index-
matched to the solvent. Electrostatic interactions between
colloidal macroions result from bare Coulomb repulsion and
screening by surrounding microions. The classic theory of
Derjaguin, Landau, Verwey, and Overbeek �DLVO�46 pre-
dicts that, in a dilute suspension, two colloidal macroions at
center-to-center separation r interact via a pair potential of
screened-Coulomb �Yukawa� form:

vcc�r� = �� , r � 2Rc

Z2e2

�
� e�Rc

1 + �Rc
�2e−�r

r
, r � 2Rc, � �1�

where Z is the effective macroion valence, e the proton
charge, � the solvent dielectric constant, � the Debye screen-
ing constant �inverse screening length�, and Rc the colloid
radius.

More recent statistical mechanical approaches proceed
by formally integrating out from the partition function the
microion degrees of freedom to map the macroion–microion
mixture onto an effective one-component system governed
by effective interactions,47–52 determined by the distribution
of microions around the macroions. The microion distribu-
tion depends on the response—in general nonlinear—of the
microions to the macroion charge density. For sufficiently
weakly charged macroions, the microion response can be
approximated as linear. A further neglect of microion corre-
lations, which is reasonable for monovalent counterions, then
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recovers the DLVO form of effective pair potential �Eq. �1��
with a density-dependent screening constant of the form

� =	4��Z�c + 2�s�e2

�kBT
, �2�

where �c and �s are, respectively, the number densities of
colloidal macroions and salt ion pairs, kB is Boltzmann’s
constant and T is the absolute temperature. The nonzero size
of the microions may modify the microion distribution and
thus screening effect, but should not qualitatively change the
general repulsive form of the effective pair potential assumed
here. In practice, since most water-soluble polymers are less
polarizable than water, � may be best interpreted as an effec-
tive dielectric constant of the polymer-solvent mixture and �
as an effective screening constant. For the purposes of this
paper, the essential point is that the range of electrostatic
repulsion, governed by �, can be widely tuned by adjusting
the ionic strength �salt concentration� of the electrolyte sol-
vent.

As a natural byproduct of the one-component mapping,
the total free energy contains, in addition to a pair-interaction
contribution, a one-body volume energy47–52 E, given by

E

VkBT
= �Z�c + �s�
ln��Z�c + �s��3� − 1�

+ �s
ln��s�
3� − 1� −

Z2�c�	B

2�1 + �Rc�
−

Z2�c
2

2�Z�c + 2�s�
,

�3�

where V is the total volume of the system, � is the thermal
wavelength of the microions and 	B=e2 / ��kBT� is the Bjer-
rum length. In a straightforward physical interpretation, the
first two terms in Eq. �3� account for the microion entropy,
the third term is the interaction of a macroion with its own
cloud of counterions, and the final term results from charge
neutrality. Because the volume energy depends nontrivially
on colloid density, it must, in general, be included in the free
energy. At relatively high salt concentrations ��s
Z�c�,
however, the counterions are dominated by salt ions and the
volume energy can be neglected. We restrict our consider-
ations to this parameter regime.

Within the coarse-grained spherical polymer model,
colloid-polymer interactions are described by a simple
excluded-volume pair potential:

vcp�r� = �� , r � Rc + Rp

0, r � Rc + Rp,
 �4�

where r is now the macroion-polymer center-to-center dis-
tance and Rp is the polymer radius of gyration. For simplic-
ity, we assume the solvent to be near its theta temperature for
the polymer,53 allowing the polymer to be reasonably mod-
eled as ideal �mutually noninteracting�, i.e., vpp�r�=0, for all
r. In practice, the strength of polymer–polymer interactions
will depend on the properties of specific polymers and
solvents.53

Within the above assumptions, the model system is now
completely characterized by the colloid–colloid interaction
�Eqs. �1� and �2�� and the polymer-to-colloid size ratio q

=Rp /Rc. The thermodynamic states of the system are speci-
fied by the bulk number densities �i, or equivalently the vol-
ume fractions, �i= �4� /3��iRi

3, of species i=c , p.

III. THEORY

A. Mapping onto the Asakura–Oosawa model

To explore thermodynamic properties of the model
colloid-polymer mixture, we seek an approximation for the
free energy of the system. We proceed by first constructing a
mapping onto a simpler model system. A similar approach
has been developed recently by Tuinier.54 Assuming the
screened-Coulomb effective pair potential between colloids
�Eq. �1�� to be relatively steeply repulsive ��Rc�1�, the cor-
responding contribution to the free energy may be mapped,
with reasonable accuracy, onto the free energy of an effective
hard-sphere system45,55,56 interacting via an effective hard-
sphere pair potential,

vcc� �r� = �� , r � 2Rc�

0, r � 2Rc�,
 �5�

where Rc� is the effective hard-sphere colloid radius. A rea-
sonable first estimate of the effective radius is obtained from
a simple thermal criterion,

vcc�r = 2Rc�� =
Z2e2

�
� e�Rc

1 + �Rc
�2e−2�Rc�

2Rc�
= kBT , �6�

according to which colloids tend not to approach closer than
a distance at which their interaction energy is comparable to
the typical thermal energy.

Assuming high salt-to-counterion concentration ratios
��s
Z�c�, the screening constant �, and thus vcc�r� and Rc�,
are practically independent of density. In this same limit, the
volume energy �Eq. �3�� contributes to the free energy den-
sity a term that is only linear in colloid density and therefore
irrelevant for phase behavior. To demonstrate that in this
high-salt-concentration regime the effective colloid radius
may still significantly exceed the bare radius, consider the
typical example of particles of bare radius Rc=50 nm and
effective valence Z=500 suspended at volume fraction �c

=0.01 in a 1 mM aqueous salt solution at room temperature.
In this case, �s
Z�c=0.016 mM, yet the effective colloid
radius is estimated �from Eq. �6�� to be Rc��67 nm, i.e.,
about 30% greater than the bare radius, a difference that also
well exceeds typical colloid polydispersities.

The original system has thus far been mapped onto an
effective binary hard-sphere mixture, governed by the pair
interactions of Eqs. �4� and �5�. As a measure of the relative
range of electrostatic and excluded-volume repulsions, it is
convenient to define the electrostatic colloid size ratio, 
=Rc� /Rc�1, as the ratio of the effective and bare colloid
radii. The model system is now completely specified by two
dimensionless parameters,  and q. Since the polymer spe-
cies is ideal, this model resembles the AO model, with the
colloid diameter merely rescaled. However, because colloids
and polymers repel at a range of �Rc+Rp�, rather than �Rc�
+Rp�, the hard-sphere diameters are no longer additive and
the rescaling is nontrivial. Nevertheless, as Fig. 1 illustrates,
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this nonadditive mixture can be further mapped exactly onto
an effective additive AO model by introducing a fictitious
effective polymer radius Rp�, defined via

Rc� + Rp� = Rc + Rp �7�

so as to yield the correct colloid-polymer excluded-volume
interaction �Eq. �4��.

The final effective AO model is characterized by a single
dimensionless parameter, namely the effective polymer-to-
colloid size ratio

q� = Rp�/Rc� = �q −  + 1�/, for  � 1 + q . �8�

As shown in Fig. 2, the rescaled polymer-to-colloid size ratio
is always smaller than the true ratio �q��q� and with in-
creasing electrostatic colloid size ratio, q� decreases, i.e., the

polymers grow effectively smaller relative to the colloids.
For �1+q, there is no polymer depletion, and so then q�
=0. The thermodynamic states are in turn specified by effec-
tive volume fractions

�c� =
4�

3
�cRc�

3 = 3�c �9�

and

�p� =
4�

3
�pRp�

3 = �1 − � − 1�/q�3�p, �10�

where we have used the relation Rp� /Rp=1− �−1� /q�1, ob-
tained from Eq. �7�.

B. Free-volume theory

Having mapped the original mixture of charged colloids
and neutral polymers onto an effective AO model, we now
consider the Helmholtz free energy, from which all equilib-
rium thermodynamic properties may be determined. The to-
tal free energy, F=Fid+Fex, separates conveniently into an
ideal-gas term Fid, which is independent of interactions, and
an excess term Fex, which depends entirely on interactions.
For a homogeneous fluid, the ideal-gas free energy density is
given exactly by

�Fid/V = �c�ln��c�c
3� − 1� + �p�ln��p�p

3� − 1� , �11�

where �=1/kBT and �c and �p are the thermal wavelengths
of the colloid and polymer species. For the excess free en-
ergy, we apply the mean-field free-volume theory of Lek-
kerkerker et al.,11 which predicts fluid-fluid phase separation
for the original AO model in good agreement with
simulation.14,15,23,24 Within this approach, the fluid excess
free energy density is approximated by

�Fex/V = ��HS��c�� − �pln ���c�,q�� , �12�

where �HS��c�� is the excess free energy density of the effec-
tive one-component hard-sphere fluid and ���c� ,q�� is the
polymer free-volume fraction, i.e., the fraction of the total
volume accessible to the polymer centers �not excluded by
the colloids�. The free-volume fraction is related to the ex-
cess chemical potential of the polymer via Widom’s particle
insertion method:57

�p,ex = − kBT ln�exp�− �U/kBT�� = − kBT ln � , �13�

where the angular brackets denote an ensemble average over
colloid configurations and polymer positions, and �U is the
change in potential energy upon insertion of a polymer—
here infinite if the polymer overlaps a colloid and zero oth-
erwise. An approximation for � is obtained by noting that
�p,ex also equals the reversible work required to produce a
spherical cavity, of radius Rp�, in a fluid of hard spheres of
radius Rc�. The scaled-particle approximation58,59 for �p,ex

then yields

���c�,q�� = �1 − �c��exp�− Ax − Bx2 − Cx3� , �14�

with x=�c� / �1−�c��, A=q�3+3q�2+3q�, B=3q�3+9q�2 /2,
and C=3q�3. Within the same approximation, the excess free
energy of the colloids is given by

FIG. 1. Sketch of the two models of charged colloids �c� and �effective
spherical� neutral polymer �p�. The solid curves indicate the actual sizes of
the particles �radii Rc and Rp� in the original model, and the dashed curves
the rescaled sizes �radii Rc� and Rp�� in the effective Asakura–Oosawa model.
Note that the depletion layer thickness is the same in both models.

FIG. 2. Effective polymer-to-colloid size ratio q�=Rp� /Rc� vs �a� actual
polymer-to-colloid size ratio q=Rp /Rc and �b� electrostatic colloid size ratio
=Rc� /Rc.
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��HS��c��

=
3�c��3�c��2 − �c�� − 2�1 − �c��

2ln�1 − �c���
8�R�c

3�1 − �c��
2 . �15�

The pressure resulting from Eq. �15� coincides with the com-
pressibility equation of state following from the exact solu-
tion of the Percus–Yevick integral equation for hard
spheres.60,61 Taken together, Eqs. �11�–�15� provide an ap-
proximation for the fluid free energy, from which the fluid–
fluid demixing phase diagram can be computed.

IV. RESULTS AND DISCUSSION

Based on the approximate free energy of Eqs. �11�–�15�,
we have performed a coexistence analysis to determine the
equilibrium fluid–fluid demixing binodal, defined by equality
of pressures and chemical potentials in coexisting colloid-
rich and colloid-poor fluid phases. We restrict our study to
parameters for which crystallization occurs only at higher
colloid densities, well separated from fluid–fluid demixing.
Figure 3 presents the resulting phase diagrams for a fixed
polymer-to-colloid size ratio, q=1, and for effective
polymer-to-colloid size ratios q�=1, 0.8, 0.6, 0.4, corre-
sponding to electrostatic colloid size ratios =1, 1.11, 1.25,
1.43, i.e., varying ionic strengths �varying � in Eq. �1��. We
assume, as discussed in Sec. III, that  is independent of
colloid density, which is valid in the high-salt-concentration
regime ��s
Z�c�, where salt ions overwhelm counterions
and � �Eq. �2�� is essentially independent of �c. In the ex-
treme limit, �→� �→1�, we recover the binodal for the
purely entropic case of neutral colloids. With decreasing
ionic strength �decreasing �, increasing effective colloid ra-
dius�, the binodal shifts to significantly higher polymer con-
centrations and the critical point to slighty lower colloid con-
centrations. The qualitative consequence of lowering ionic
strength is thus a significant enhancement of stability against
fluid–fluid demixing. In the absence of polymer ��p=0�, the
mixture reduces to a one-component system of hard spheres
of effective radius Rc�. In this limit, crystallization occurs at
effective colloid volume fraction �c�=3�c=0.494, which is
well above the demixing critical volume fractions for  val-

ues considered here �see Fig. 3�. Note that the case =1.43 is
close to the limit beyond which demixing becomes meta-
stable with respect to the freezing transition. At higher values
of , freezing may preempt demixing—a scenario that we do
not explore here.

The enhanced stability of charged-colloid–neutral-
polymer mixtures can be physically interpreted in terms of a
weakening of polymer depletion-induced colloidal attraction.
Electrostatic repulsion increases the average separation be-
tween macroions, tending to lower the frequency of configu-
rations in which polymer is depleted from the intervening
space. In our model, as the range of electrostatic repulsion
increases �e.g., by removing salt�, the effective polymer-to-
colloid size ratio decreases, reducing the range of the effec-
tive colloid–colloid attraction, and thus diminishing the driv-
ing force for phase separation.

A physically equivalent interpretation of the electrostatic
suppression of demixing follows from considering the poly-
mer free-volume fraction �. From inspection of Eq. �14�, it is
not immediately obvious how � varies with electrostatic col-
loid size ratio , given that, with increasing , the quantities
�1−�c�� ,A ,B, and C all decrease, while x increases. As Fig. 4
illustrates, however, with increasing electrostatic repulsion
between colloids, the free volume available to the polymer
coils is monotonically reduced, even though the colloid-
polymer interaction is unchanged. The reason for this reduc-
tion is that more strongly repelling colloids remain more
widely separated, allowing less excluded volume to be hid-
den within overlapping polymer depletion shells surrounding
the colloids. The lower free-volume fraction reduces the
polymer entropy in the colloid-rich phase, thereby suppress-
ing demixing.

As a check on the consistency of the above interpreta-
tions, we consider the liquid-vapor interfacial tension � as a
function of the colloid volume fraction difference ��c be-
tween the coexisting phases. To calculate �, we exploit pre-
vious density-functional �DF� theory results19,62 for the AO
model, which have been found to be in reasonable agreement
with simulation.23,24 By appropriately rescaling the DF pre-
dictions of Ref. 19 ���c→��c /3 and ���c

2→���c
2 /2�,

we obtain the results shown in Fig. 5. Evidently, the interfa-
cial tension increases with increasing effective colloid ra-

FIG. 3. Fluid–fluid demixing binodal of charged-colloid—neutral-polymer
mixtures as a function of colloid and polymer volume fractions, �c and �p,
for fixed polymer-to-colloid size ratio, q=Rp /Rc=1, and varying electro-
static colloid size ratio =Rc� /Rc. From bottom to top, =1, 1.11, 1.25, 1.43,
corresponding to increasing effective colloid radius. Symbols represent the
respective critical points.

FIG. 4. Polymer free-volume fraction � �from Eq. �14�� as a function of
colloid volume fraction �c for fixed polymer-to-colloid size ratio, q
=Rp /Rc=1, and varying electrostatic colloid size ratio =Rc� /Rc. From top to
bottom, =1, 1.11, 1.25, 1.43, corresponding to increasing effective colloid
radius.
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dius, which is consistent with the predicted suppression of
liquid-vapor demixing. Although the mapping of DF theory
from neutral to charged systems is straightforward in the
absence of external potentials, more care may be required in
the presence of a surface. For example, a hard wall for the
neutral system becomes a nonadditive wall for the charged
system. In such cases, coupling to the external potential may
have to be explicitly built into the theory.

V. SUMMARY AND CONCLUSIONS

In summary, we have investigated fluid–fluid demixing
in mixtures of charged colloids and neutral nonadsorbing
polymers. Our theoretical approach involves first mapping a
model mixture of charged hard-sphere colloids—interacting
via an effective Yukawa electrostatic pair potential—and
ideal polymer spheres onto an effective Asakura–Oosawa
model with purely excluded-volume interactions, and then
applying free-volume theory and density-functional theory to
study, respectively, bulk phase separation and interfacial ten-
sion. The effective model is characterized by a single dimen-
sionless parameter, namely the ratio of the polymer diameter
to the effective colloid diameter.

Within this simple framework, we find that increasing
the range of the electrostatic repulsion between macroions
�e.g., by decreasing salt concentration� suppresses demixing
and increases the interfacial tension between coexisting
colloid-rich and colloid-poor phases. Hence, our main con-
clusion is that electrostatic interactions stabilize the suspen-
sion against depletion-induced phase separation. As the
depletion-induced attraction is short-ranged, the principal
mechanism is analogous to charge-stabilization against co-
agulation induced by van der Waals forces. In both cases the
electrostatic repulsion keeps the colloidal particles �at least
partially� outside the range of attraction. Within our free-
volume approach, the effect is clearly manifested through a
reduction of the effective polymer size, and a correspond-
ingly weaker depletion-induced attraction. The predicted in-
crease of miscibility with decreasing salt concentration is
qualitatively consistent with the observed behavior of mix-
tures of charged proteins and uncharged nonadsorbing
polysaccharides �e.g., gelatin and dextran�, which are con-

stituents of many food colloids.63 Future experiments and
simulations would help to further test the qualitative trends
predicted here.

A possible extension of the present theory, which could
yield more quantitative predictions, would be based on a
variational method for the free energy. This method would
split the free energy into two parts: a �zeroth-order� reference
term, describing the effective AO model, and a �first-order�
perturbative term, describing the repulsive tail of the colloi-
dal pair potential. Minimizing the total free energy with re-
spect to the effective colloid hard-sphere diameter would
give an upper bound on the true free energy. Such an ap-
proach might be better suited to describing colloid-polymer
mixtures with long-range electrostatic repulsion between the
colloids, which have been studied in recent experiments,64,65

and could be applied also to mixtures of colloids and non-
ideal polymers, e.g., polyelectrolytes,40–44 properly incorpo-
rating soft polymer–polymer interactions.29

In this paper, we have focused attention on bulk fluid–
fluid demixing in the high-salt-concentration regime. As an
outlook for future work, we mention two related phenomena
that could be addressed within a similar theoretical frame-
work. First, the fluid-solid �freezing� phase behavior of
colloid-polymer mixtures is likely to be enriched by combin-
ing electrostatic and polymer-depletion interactions. It is well
known1,66 that concentrated suspensions of charged colloids
crystallize into close-packed fcc or hcp structures at higher
ionic strengths, and into the more open bcc structure at lower
ionic strengths. It would be interesting to examine the com-
peting influences of electrostatics and polymer depletion on
freezing and the relative stabilities of crystal structures.

Second, strongly deionized suspensions of highly
charged colloids are known to exhibit surprisingly complex
phase behavior. For example, experimental observations67,68

and theoretical predictions48,50,52 indicate the possibility of
unusual bulk separation into macroion-rich and -poor phases,
driven by a competition between counterion entropy and
macroion-counterion attractive energy. Incorporating the vol-
ume energy �Eq. �3�� into the total free energy would make
possible an exploration of the influence of added depletants
on counterion-facilitated phase separation in deionized sus-
pensions.
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