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We consider a binary mixture of colloid and polymer particles with positions on a simple cubic lattice.
Colloids exclude both colloids and polymers from nearest neighbor sites. Polymers are treated as effective
particles that are mutually noninteracting, but exclude colloids from neighboring sites; this is a discrete version
of the �continuum� Asakura-Oosawa-Vrij model. Two alternative density functionals are proposed and com-
pared in detail. The first is based on multioccupancy in the zero-dimensional limit of the bare model, analogous
to the corresponding continuum theory that reproduces the bulk fluid free energy of free volume theory. The
second is based on mapping the polymers onto a multicomponent mixture of polymer clusters that are shown
to behave as hard cores; the corresponding property of the extended model in strong confinement permits direct
treatment with lattice fundamental measure theory. Both theories predict the same topology for the phase
diagram with a continuous fluid-fcc freezing transition at low polymer fugacity and, upon crossing a tricritical
point, a first-order freezing transition for high polymer fugacities with rapidly broadening density jump.
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I. INTRODUCTION

Mixtures of colloidal particles and nonadsorbing poly-
mers suspended in a common solvent �1,2� have been theo-
retically investigated on various levels of description, rang-
ing from simplistic to realistic effective interactions between
the constituent particles. The prototype of the former is the
Asakura-Oosawa-Vrij �AOV� model �3,4� which describes
the colloids as hard spheres and the polymers as ideal �i.e.,
noninteracting� effective spheres that interact via hard core
repulsion with the colloids. Despite its simplicity this model
reproduces the essential trends in bulk phase behavior of
colloid-polymer mixtures, involving colloidal gas, liquid,
and crystalline phases �5–8�, and proved to be useful for
studying a range of interfacial properties �9�, like the struc-
ture of colloidal gas-liquid interfaces and wetting of sub-
strates, issues that are experimentally relevant �10–12�.

Density functional theory �13,14� is a primary tool to treat
spatially inhomogeneous systems. For the common reference
model of additive mixtures of hard spheres, the fundamental
measure theory �FMT� �15� is many investigators’ current
choice. This approach was extended to cover the AOV model
�16�, thereby triggering much further interest in the study of
interfacial properties of this model; see, e.g., �17� for recent
work on novel effects in sedimentation-diffusion equilib-
rium. In a different direction, FMT was recently generalized
to hard core lattice models �18–21�, elucidating the very
foundation of the FMT approach.

Despite its usefulness for practical applications, the AOV
functional of Ref. �16� possesses several deficiencies that are

absent in the hard sphere FMT �see Ref. �22� for a detailed
discussion�: �i� When applied to one spatial dimension a spu-
rious phase transition is predicted �22�, which is absent �as
befits a model with short-ranged interactions� in the exact
solution �23�; �ii� in three dimensions the location of the bulk
fluid-fluid critical point lies at lower polymer fugacity as
compared to the value obtained with simulations; �iii� the
excess free energy is a linear functional of the polymer den-
sity profile.

While we will not present a full resolution of the above
issues, dealing with a lattice model allows us to go signifi-
cant steps beyond the recipe of construction of Ref. �16�.
Hence we consider a simplified version of the AOV model
by constraining the position coordinates to an underlying lat-
tice, for convenience taken to be of simple cubic symmetry.
We are inspired by the fact that similar lattice models have
been proven useful in soft matter research to make qualita-
tive predictions, as, e.g., for demixing �24,25� and three-
phase equilibria �26�. Also much vital attention has been re-
cently paid to lattice models with short-ranged attractive
interactions to address adsorption in disordered porous media
�27–31�.

We consider the case of small particle sizes, namely, such
that particles only repel other particles from nearest neighbor
sites. As the polymers are ideal, each site may be occupied
by more than one of those particles. We compare two differ-
ent density functional theories �DFTs� for the binary AOV
lattice model, both based on the lattice fundamental measure
theory �LFMT� �18–21�. The first approach allows for mul-
tioccupancy of polymers in the zero-dimensional limit, and
hence constitutes the lattice version of the �continuum�
theory of Ref. �16�. The second approach relies on the intro-
duction of polymer clusters as quasispecies that feature hard
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core interactions only. We hence arrive at an extended model
with the property that in an appropriately small cavity, there
can be only one particle. Exploiting further the fact that
LFMT can cope directly with small nonadditivities �18�, we
arrive at a theory for the AOV model that is exact when
applied to one dimension; hence it does correctly predict the
absence of phase transitions. We find that although the deri-
vations of the two DFTs, as well as their appearance at first
glance, differ markedly, the results for bulk phase behavior
in three dimensions are very similar, demonstrating the inter-
nal consistency of FMT.

The paper is organized as follows. In Sec. II we define the
lattice AOV model. Section III is devoted to the construction
of both density functional theories. In Sec. IV results for the
bulk phase diagram are presented and we conclude in Sec. V.

II. THE MODEL

We consider a binary mixture of particles representing
colloids �species c� and polymers �species p� on the
d-dimensional simple cubic lattice Zd. The interaction be-
tween colloids is that of site exclusion and nearest neighbor
exclusion, corresponding to the pair interaction potential

Vcc�r� = �� if �r� � 1,

0 otherwise,
� �1�

where r�Zd is the center-center distance between the par-
ticles. Colloids and polymers interact similarly:

Vcp�r� = �� if �r� � 1,

0 otherwise,
� �2�

while polymers are ideal �noninteracting�,

Vpp�r� = 0. �3�

In essence this is a discretized AOV model with equal-sized
components; see Fig. 1�a� for a sketch.

III. DENSITY FUNCTIONAL THEORIES

A. Overview of LFMT

As is customary in density functional theory �13,14�, we
express the Helmholtz free energy functional as F=Fid+Fex,
where the free energy of the binary ideal lattice gas is

Fid��c,�p� = �
i=c,p

�
r�L

�i�r�	ln��i�r�� − 1
 , �4�

with �i�r� being the occupancy probability of site r by par-
ticles of species i=c, p, and L denoting the lattice, here L
=Zd. For the excess contribution to the total free energy, Fex,
we will in the following use two different implementations
of LFMT. This theory permits us to obtain an approximation
to Fex for a lattice model from the exact solution obtained in
finite �and small� sets of lattice sites, alternatively called
nodes �18–21�. The essential step determining the accuracy
of the theory is the choice of maximal cavities �20,21�. Those
are maximal in the sense that any further cavity taken into
consideration can be obtained as an intersection of maximal

cavities. The common choice �inherited from the continuum
version of the theory �32–34�� for these maximal cavities is
to set them equal to zero-dimensional �0D� cavities, as de-
tailed below. Once chosen, the cavities uniquely determine
the form of the functional under the requirement that it yields
the exact result when evaluated at 0D density profiles
�20,21�. For a general binary mixture �with species labeled
by c and p� the final result possesses the form

Fex��c,�p� = �
C cavities

a�C�Fex
C ��c,�p� , �5�

where the summation runs over the set of maximal cavities
and their nonempty intersections; the a�C� are uniquely de-
termined integer coefficients �20,21�, and Fex

C is the exact
excess free energy functional of the system when confined to
cavity C.

B. Multioccupancy version of DFT

The definition of 0D cavities for lattice models with only
hard core interactions is unambiguous: Any set of nodes that
can accommodate at most one particle constitutes a 0D cav-
ity. For the present model, however, this is problematic: As
polymers are ideal, even a single lattice site can be multiply
occupied by polymers; hence no 0D cavity can contain poly-
mers, and the resulting functional will account for them only
through the ideal part, entirely ignoring the colloid-polymer
interaction. One way out is to relax the definition: Any set of
nodes in which any two particles present necessarily overlap
constitutes a 0D cavity �16�. Hence, as opposed to the first
definition, the presence of more than one particle is not ex-
cluded a priori. �For mixtures with only hard core interac-
tions, both definitions are equivalent.�

FIG. 1. �Color online� �a� Illustration of the lattice AOV model
realized in d=2 spatial dimensions. Colloidal particles �dark
rhombi� exclude their site and their nearest neighbor sites to col-
loids and polymers. Polymer particles �light rhombi� exclude col-
loids from their site and their nearest neighbor sites, but can overlap
freely with other polymers. Integers indicate the number of �over-
lapping� polymers at occupied sites. �b� Equivalent nonadditive
multicomponent hard core mixture. Clusters of overlapping poly-
mers in �a� are viewed as quasiparticles �light rhombi� that exclude
their site to other polymer clusters, and their site and their nearest
neighbor sites to colloids. Integers enumerate the different species
of polymer clusters and correspond to the number of overlapping
polymers on the lattice sites in �a�. Colloids �dark rhombi� behave
as in �a�.
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For the present model it is straightforward to show that
according to the modified �multioccupancy� definition, any
pair of adjacent nodes on the simple cubic lattice constitutes
a maximal 0D cavity �Fig. 2�a��: Such an arrangement can
hold either one colloid or an arbitrary number of �overlap-
ping� polymers. Adding an additional node destroys the 0D
character as �at least� two nonoverlapping particles will fit.
Implementing the scheme of Ref. �20� with this choice of
basic cavities we obtain

�Fex��c,�p� = �
r

��r� , �6�

with �=1/ �kBT�, where T is temperature and kB is the Bolt-
zmann constant, and the �scaled� free energy density is

��r� = ��
�=1

d

�0
AOV

„nc
����r�,np

����r�…�
− �2d − 1��0

AOV
„�c�r�,�p�r�… , �7�

depending on weighted densities

ni
����r�  �i�r� + �i�r + e��, i = c,p , �8�

where e� denotes the unit Cartesian vector along the �
=1, . . . ,d axis and

�0
AOV�	c,	p� = �1 − 	c − 	p�ln�1 − 	c� + 	c �9�

is the excess free energy of a 0D cavity for the AOV model
�16�; we give a derivation of �0

AOV�	c ,	p� in the Appendix.
Since �0

AOV�	c ,	p� depends linearly on 	p as

�0
AOV�	c,	p� = �0�	c� + 	p�0��	c� , �10�

where

�0�	�  	 + �1 − 	�ln�1 − 	� , �11�

Eq. �7� admits the rewriting

� = ��
�=1

d

�0�nc
����� − �2d − 1��0��c�

− �p ln��
�=1

d

�1 − nc
�����1 − n̄c

����

�1 − �c�2d−1 � , �12�

where, for the sake of notational simplicity, we omit here and
in the following the dependence of �c ,�p ,nc

��� on r and have

introduced the shorthand notation n̄c
���nc

����r−e��.
The linear dependence of the functional on �p�r� yields a

particularly simple form of the Euler-Lagrange equation for
the polymer density distribution,

�p = zp

�
�=1

d

�1 − nc
�����1 − n̄c

����

�1 − �c�2d−1 , �13�

which is explicit in �p �i.e., independent of the right hand
side of �p�. Given that we have eliminated �p�r� as a func-
tional of �c�r�, �c�r±e��, �=1, . . . ,d, and zp�r�, the
Legendre-transformed functional �
ex��c ,zp�=�r�

eff�r�,
with

�eff = �p ln��p/zp� − �p + � , �14�

is an excess free energy functional for the effective one-
component fluid of colloidal particles interacting through
polymer depletion; �p�r� is obtained from Eq. �13�. The
strength of the depletion interaction is controlled by zp�r�,
which in turn can be determined by an external potential
acting on the polymers and by the polymer fugacity. �A more
detailed account of the procedure to obtain functionals for
effective fluids can be found in Ref. �35�.� With the appro-
priate substitutions, we obtain

�eff = ��
�=1

d

�0�nc
����� − �2d − 1��0��c�

− zp

�
�=1

d

�1 − nc
�����1 − n̄c

����

�1 − �c�2d−1 . �15�

This completes the prescription for the lattice analog of the
continuum AOV functional of Ref. �16�.

C. Highlander version of DFT

1. Strategy of polymer clusters as quasiparticles

Here we avoid the presence of several particles inside a
cavity and aim at sticking to the stronger definition, accord-
ing to which there can be only one particle in the cavity
�because this is also the principle ruling the fights between
immortals in the movie Highlander, we will henceforth refer
to this version of DFT as the Highlander version�. For this
purpose, polymer ideality constitutes a major problem, as in
the AOV lattice model each site occupied by a polymer can
be occupied simultaneously by an arbitrary number of fur-

FIG. 2. �Color online� Maximal cavities along the X axis �the
ones along the Y axis are just 90° rotations of these ones� for the
multioccupancy �a� and the Highlander �b� DFTs. Dark nodes can
be occupied either by colloidal or by polymer particles; light nodes
can only be occupied by colloidal particles.
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ther polymers. To circumvent this problem we will hence
map the model onto an extended one. We refer to a piling of
n polymers at the same node as a “polymer cluster” and treat
polymer clusters as quasiparticles of a set of new species
labeled by n. Thus there is a one-to-one correspondence be-
tween each configuration of polymers of the original model
and a corresponding �unique� configuration of polymer clus-
ters of the new model. �Colloids are treated as before.� We
regard polymer clusters as having shapes smaller than the
original polymer; see Fig. 1�b�. As a consequence, polymer
clusters behave as hard core particles with �i� site exclusion
to other polymer clusters and �ii� site exclusion and nearest
neighbor exclusion to colloids. Clearly, feature �ii� is directly
inherited from the colloid-polymer interaction. Feature �i�
may be unexpected at first glance. Consider that a site occu-
pied by an n-polymer cluster cannot be simultaneously occu-
pied by an m-polymer cluster. Although in the original model
the site can well be occupied by m+n polymers, in the ex-
tended model such a configuration corresponds to one single
�m+n�-polymer cluster. Hence polymer clusters repel as hard
cores do.

Despite being nonadditive, this model belongs to a class
of nonadditive lattice models that are amenable to LFMT and
whose one-dimensional version was shown to be exact �18�.
The 0D cavities for the model are nontrivial and consist of
two adjacent nodes available for the colloids, one of which
�but only one� is also available to a quasiparticle �polymer
cluster� of any species �Fig. 2�b��. Clearly, the presence of
either one colloidal particle or one quasiparticle excludes
other particles from the cavity, and such cavities are obvi-
ously maximal.

Here we will construct the corresponding free energy
functional in two steps. First, for simplicity, we consider the
quasiparticle model with a single quasiparticle species n=1.
Second, we will handle the full �infinite� number of quasi-
particle species. Subsequently mapping the result back yields
a DFT for the lattice AOV model.

2. Binary mixture with one quasispecies

For the binary mixture of colloids and one-polymer clus-
ters, with density fields �c�r� and �1�r�, respectively, accord-
ing to Refs. �18,20�, the excess free energy density ��r� is
given by

��r� = �
i=1

d

��0„nc
����r� + �1�r�… + �0„nc

����r − e�� + �1�r�…

− �0„nc
����r�…� − �2d − 1��0„�c�r� + �1�r�… , �16�

with �0�	� defined in Eq. �11�. Thus, given a local fugacity
field z1�r�, the Euler-Lagrange equation for the one-polymer
cluster density is

�1 = z1

�
�=1

d

�1 − nc
��� − �1��1 − n̄c

��� − �1�

�1 − �c − �1�2d−1 , �17�

where again the dependence on r has been omitted. Equation
�17� is an implicit algebraic equation for �1�r�, so it deter-

mines �1�r� as a functional of �c�r� and z1�r�. This permits
us to obtain, as in the previous case, a functional �
ex��c ,z1�
for the effective one-component fluid.

3. Mixture with an infinite number of quasispecies

Incorporating the infinite number of quasispecies amounts
to first correctly modifying the ideal free energy functional to
�Fid��c , 	�n
�=�r�id�r�, with

�id�r� = �c�r�ln��c�r�� − �c�r�

+ �
n=1

�

	�n�r�ln�Vn�n�r�� − �n�r�
 , �18�

where �n�r� denotes the density profile of the quasispecies of
n-polymer clusters, and Vn is a thermal “volume” accounting
for the internal partition function of the polymers inside the
cluster. �It is not hard to guess that Vn=n!; nevertheless, this
result will emerge explicitly from the subsequent analysis.�
Second, we use again LFMT for the excess part of the free
energy. The necessary modification over the binary case
�Sec. III C 2� in order to include the infinite number of qua-
sispecies is actually very simple �18�: we replace �1�r� in Eq.
�16� by the total density of polymer clusters �pc�,

�pc�r�  �
n=1

�

�n�r� . �19�

As our aim is to describe the lattice AOV model, we have
to “project” the quasispecies back to polymers. Clearly, the
total cluster density and the polymer density are related via

�p�r� = �
n=1

�

n�n�r� . �20�

For convenience we will again resort to an effective one-
component description. Hence we transform to the semi-
grand potential

�
��c,zp� = min
	�n


�
r

��id�r� + ��r� − �p�r�ln zp�r�� ,

�21�

where �id�r� is given by Eq. �18�, and ��r� by Eq. �16� with
�1�r� replaced by �pc�r�. With the same notation as in Eq.
�17�, performing the minimization in Eq. �21� yields

�n =
zp

n

Vn

�
�=1

d

�1 − nc
��� − �pc��1 − n̄c

��� − �pc�

�1 − �c − �pc�2d−1 , �22�

which using Eq. �19� leads to

�pc = ��zp�
�
�=1

d

�1 − nc
��� − �pc��1 − n̄c

��� − �pc�

�1 − �c − �pc�2d−1 , �23�

with ��zp��n=1
� �zp

n /Vn�. Also, from Eqs. �20�, �22�, and
�23�, we get
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�p = zp
���zp�
��zp�

�pc, �24�

establishing a simple proportionality between �p�r� and
�pc�r�.

The function ��zp� can be easily obtained realizing that it
is independent of all densities appearing in Eq. �23�, rather it
depends solely on zp�r�. Thus if we particularize Eq. �23�,
e.g., for �c�r�=0, we obtain the simple relationship

�pc = ��zp��1 − �pc� , �25�

from which

�pc =
��zp�

1 + ��zp�
. �26�

Then, according to Eq. �24�,

�p = zp
���zp�

1 + ��zp�
= zp�ln�1 + ����, �27�

and since in the absence of colloidal particles, the polymers
form an ideal gas �hence �p=zp�, we get

�ln�1 + ���� = 1. �28�

The solution to this equation satisfying ��0�=0 is

��zp� = ezp − 1 = �
n=1

�
zn

n!
, �29�

providing the confirmation of the relationship Vn=n!.

4. Functional for the lattice AOV model

Returning to Eq. �23�, we observe that this equation for
�pc�r� is formally equivalent to Eq. �17� for �1�r� with z1�r�
replaced by the ��zp�r�� given by Eq. �29�. Recalling the
origin of Eq. �17�, this means that we can describe the origi-
nal AOV model in terms of the free energy functional
�F��c ,�pc�=�r��id�r�+��r��, with

�id = �c�ln �c − 1� + �pc�ln �pc − 1� ,

� = �
i=1

d

��0�nc
��� + �pc� + �0�n̄c

��� + �pc� − �0�nc
�����

− �2d − 1��0��c + �pc� , �30�

with the fugacity for the total density of polymer clusters,
�pc�r�, given by

��r� = ezp�r� − 1, �31�

and the polymer density obtained from �pc�r� as

�p�r� =
zp�r�

1 − e−zp�r��pc�r� . �32�

This completes the prescription of the Highlander functional
for the AOV model.

As a final note, we can alternatively obtain the effective
functional �
ex��c ,zp�=�r�

eff�r�, which, after a few alge-
braic manipulations, can be written as

�eff = �c ln �c − �2d − 1��1 − �c�ln�1 − �c − �pc�

+ �
�=1

d

��1 − nc
����ln�1 − nc

��� − �pc� + �1 − n̄c
����

ln�1 − n̄c
��� − �pc� − �1 − nc

����ln�1 − nc
����� , �33�

with �pc�r� being the solution of Eq. �23�.

D. Relationship between both DFTs

Assuming small polymer fugacity, zp�r��1, for the High-
lander DFT, from Eqs. �31� and �32� it follows that ��r�
�zp�r� and �pc�r���p�r�. The functional is then approxi-
mately given by Eq. �16�. On the other hand, small fugacities
imply small densities, so we can expand Eq. �16� to linear
order in �p�r�. Doing so and taking into account that the sum
over r allows us to shift the arguments of the functions, we
realize that the expansion is precisely the functional �7�. So
both DFTs coincide at low polymer fugacities.

IV. RESULTS

As an application we consider the bulk phase diagram for
the lattice AOV model and compare the predictions from
both DFTs. Guided by its continuum counterpart, we expect
the phase behavior of the lattice model to be determined by
the interplay of hard core colloid-colloid repulsion and the
�short-ranged� colloid-colloid attraction induced by polymer
depletion. Thus a clear framework to study the model is the
effective one-component description; cf. Eqs. �15� and �33�.
As in other �one-component� models with hard core repul-
sion and short-range attraction, both condensation �corre-
sponding to demixing from the viewpoint of the binary mix-
ture� and freezing may occur. We can study the former via a
convexity analysis of the effective �semigrand� free energy
of a uniform fluid, and the latter by considering spatially
inhomogeneous density distributions characteristic for crys-
talline states. Here the candidate is a face-centered cubic
�fcc� structure that constitutes the close packed state for the
colloids. In the following we will carry out this program for
either DFT.

A. Thermodynamics from the multioccupancy DFT

As an appropriate thermodynamic potential we consider a
�scaled� semigrand free energy per volume, Y �c�ln��c�
−1�+�
ex/V. For a uniform fluid at given polymer fugacity
zp, according to Eq. �15� this is given by

Y =
	c

2
ln�	c

2
� + d�1 − 	c�ln�1 − 	c� − �2d − 1�

�1 −
	c

2
�ln�1 −

	c

2
� − zp

�1 − 	c�2d

�1 − �	c/2��2d−1 , �34�

where 	c=2�c is the colloid packing fraction. Convexity im-
plies Y��	c��0, so the spinodal condition Y��	c�=0 yields
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	p
r,spin�	c� =

2�1 − 	c/2�2d�1 + �d − 1�	c�
d�2d − 1�	c�1 − 	c�2d−1 , �35�

where we have used the polymer reservoir packing fraction
	p

r =2zp as an alternative thermodynamic variable. The mini-
mum of this curve determines the critical point, given by one
of the roots of the cubic polynomial

�d − 1��	c
crit�3 + 2�d − 1�2�	c

crit�2 + �2d + 1�	c
crit − 2 = 0,

�36�

and the corresponding value 	p
r,crit obtained from Eq. �35�.

For d=3 the critical point is at 	c
crit=�3/2−1�0.225 �see

Fig. 3�. The liquid-gas binodal can be obtained from Eq. �34�
via a double tangent construction, in practice carried out nu-
merically.

For crystals we are guided by the close-packed state of the
colloids, and distinguish two fcc sublattices of the underlying
simple cubic lattice, each formed by the nearest neighbor
nodes of the other. The colloid density at nodes of sublattices
a and b is denoted by �a and �b, respectively. Hence the
average colloid packing fraction is

	c = �a + �b. �37�

The semigrand potential is given by

Y =
�a

2
ln �a +

�b

2
ln �b + d�1 − 	c�ln�1 − 	c� − �d − 1

2 �

�1 − �a�ln�1 − �a� − �d − 1
2 ��1 − �b�ln�1 − �b�

−
zp

2
� �1 − 	c�2d

�1 − �a�2d−1 +
�1 − 	c�2d

�1 − �b�2d−1� . �38�

The equilibrium density distribution for given values of 	c
can be obtained by minimizing Y with respect to �a and �b
under the constraint �37�, leading to the condition

�a�1 − �a�2d−1 exp�− �2d − 1�zp�1 − 	c

1 − �a
�2d�

= �b�1 − �b�2d−1 exp�− �2d − 1�zp�1 − 	c

1 − �b
�2d� .

�39�

This equation possesses one solution characteristic for fluid
states, �a=�b=	c /2, which is locally stable as long as it
minimizes Y��a ,�b�, i.e., up to the value of 	c at which

� �2

��a
2Y��a,	c − �a��

�a=	c/2

= 0, �40�

defining the freezing spinodal, which we can explicitly ob-
tain as

	p
r,fr�	c� =

2�1 − 	c/2�d�1 − d	c�
d�2d − 1�	c�1 − 	c�2d . �41�

If freezing is second order, Eq. �41� directly gives the
transition line in the phase diagram. In the case of a first-
order transition again a numerical double tangent construc-
tion is required to obtain the coexistence densities.

B. Thermodynamics from the Highlander DFT

In the fluid phase we obtain the semigrand potential

Y =
	c

2
ln�	c

2
� − �2d − 1��1 −

	c

2
�ln�1 −

	c

2
− �pc�

+ d�1 − 	c�ln� �1 − 	c − �pc�2

1 − 	c
� , �42�

with �pc being the solution of

FIG. 3. Bulk phase diagram of the lattice AOV model as a
function of colloid packing fraction 	c and polymer reservoir pack-
ing fraction 	p

r . �a� Result from the multioccupancy DFT. For small
	p

r , below the tricritical point �triangle�, there is a continuous freez-
ing transition into a fcc crystal; its location for 	p

r =0 is at a smaller
value of 	c as compared to the result by Gaunt �35� �arrow�. Above
the tricritical point freezing is discontinuous; coexistence is along
horizontal tielines �dotted lines� between the fluid and crystal
branches of the binodal �solid lines�. Also shown is the freezing
spinodal �long-dashed line� where the fluid phase loses its metasta-
bility upon increasing 	c. The gas-liquid binodal �short-dashed line�
ending in a lower critical point �filled dot� is metastable with re-
spect to freezing. �b� The same as �a�, but obtained from the High-
lander DFT. For comparison the tricritical point �open triangle� and
the metastable gas-liquid critical point �open dot� obtained from the
multioccupancy DFT are shown.
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�1 −
	c

2
− �pc�2d−1

�pc = ��zp��1 − 	c − �pc�2d. �43�

Again, the fluid-fluid spinodal can be determined by Y��	c�
=0; necessary expressions for �pc� �	c� and �pc� �	c� can be
obtained implicitly from Eq. �43�. The spinodal polymer
cluster density is

�pc
spin�	c� =

�1 − 	c��1 + �d − 1�	c�
1 + �d − 1��2d + 1�	c

, �44�

which inserted into Eq. �43� gives the liquid-gas spinodal

	p
r,spin�	c� = 2 ln�1 +

2�2d − 1�2d−1

�4d�d − 1��2d �1 + �d − 1�	c�


�2d − 1 − �d − 1�	c�2d−1

	c�1 − 	c�2d−1 � �45�

�notice that 	p
r =2 ln�1+���. The critical point is at the mini-

mum value of 	p
r,spin vs 	c, which we can obtain analytically

as

	c
crit =

1 − d�d + 1� + d�2 − 6d + 5d2

�d − 1�2�2d + 1�
. �46�

In order to treat crystalline states we use the same density
parametrization as in the treatment with the multioccupancy
version, with �a and �b being the densities of the two sublat-
tices, and 	c=�a+�b. The semigrand potential is obtained as

Y =
�a

2
ln �a +

�b

2
ln �b − �d − 1

2 ��1 − �a�ln�1 − �a − �pc
�a��

− �d − 1
2 ��1 − �b�ln�1 − �b − �pc

�b�� + d�1 − 	c�

ln� �1 − 	c − �pc
�a���1 − 	c − �pc

�b��
1 − 	c

� , �47�

and �pc
���, �=a ,b, satisfy

�pc
����1 − �� − �pc

����2d−1 = ��zp��1 − 	c − �pc
����2d. �48�

Minimizing Y��a ,	c−�a� with respect to �a leads to

�a�1 − �a − �pc
�a��2d−1 = �b�1 − �b − �pc

�b��2d−1. �49�

We obtain ��pc
��� /��� through implicit differentiation in Eq.

�48�.
As in Sec. IV A, the freezing spinodal is obtained through

Eq. �40�, yielding

��pc
�a���a=�b=	c/2 =

�1 − 	c��1 − d	c�
1 + d�2d − 3�	c

, �50�

which combined with Eq. �48� gives the analytic result

	p
r,fr�	c� = 2 ln�1 +

2�2d − 1�2d−1

�4d�d − 1��2d

�2d − 1 − d	c�2d−1

	c�1 − 	c�2d−1

�1 − d	c�� . �51�

C. Phase behavior in one dimension

It is clear from a general argument applicable to one-
dimensional systems with short-ranged forces that the lattice
AOV model does not exhibit a phase transition for d=1. In
this case the Highlander functional �16�, with �p�r� replaced
by �pc�r�, is exact �18�. �Note that the mapping of the poly-
mers to hard core polymer clusters, to which we apply the
theory of �18�, is an exact transformation.� Hence an imme-
diate consequence is that the Highlander version correctly
predicts the absence of phase transitions. We can recover this
result explicitly: the position of the liquid-gas critical point,
obtained via Eq. �46�, is 	c

crit=1 /2, 	p
r =�, consistent with

the absence of the transition. The freezing spinodal �51� re-
duces to 	p

r =�, again reflecting the absence of a phase tran-
sitions. The multioccupancy version, however, incorrectly
predicts both condensation and freezing; see Eqs. �35� and
�41�. The one fluid phase is below �in 	p

r � the liquid-gas
critical point located at 	c

crit=2 /3, 	p
r,crit=4.

D. Phase behavior in three dimensions

We display the result for the full phase diagram from
either DFT in Fig. 3, plotted as a function of colloid packing
fraction 	c and polymer reservoir packing fraction 	p

r . For
	p

r =0 the system is a pure �colloid� hard core lattice gas with
nearest neighbor exclusion. Both DFTs reduce to the �same�
LFMT which predicts a continuous freezing transition at a
�colloid� packing fraction of 	c=1/3. This is considerably
lower than the value obtained from Padé approximants �36�,
	c

crit�0.43.
Increasing 	p

r leads to a shift of the transition to smaller
values of 	c, which can be attributed to polymers substitut-
ing for colloids on crystal lattice positions and hence de-
creasing the colloid density at the transition. At a threshold
value of 	p

r the transition becomes first order and a density
gap opens up. The location of this tricritical point differs
somewhat in both treatments, being located at a larger values
of 	p

r in the Highlander DFT. Upon increasing 	p
r further, the

coexistence density gap increases strongly. The liquid-gas
transition is found to be metastable with respect to freezing.
�The liquid-gas binodal obtained from the Highlander ver-
sion is again located at higher values of 	p

r as compared to
the multioccupancy version.�

The occurrence of a tricritical point for the freezing tran-
sition is a peculiarity of the lattice model absent in the con-
tinuum version, where freezing is first order for all 	p

r �7�.
The phase behavior of the continuum AOV model depends
sensitively on the polymer-to-colloid size ratio q=�p /�c,
where �p and �c are the polymer and colloid diameter, re-
spectively. The phase diagram obtained for small values of
q�0.1 indeed roughly resembles the topology of the phase
diagram that we find for the lattice AOV model, provided 	p

r

is sufficiently high. For small values of 	p
r the broad coex-

istence region smoothly approaches the hard sphere crystal-
fluid coexistence densities in the continuum model �without
an intervening tricritical point�.

Given the fact that we do find the correct �hence also
experimentally observed� fcc crystalline structure, we hence
conclude that the current model is very suitable for the study
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of inhomogeneous situations at high 	p
r , where a dilute col-

loidal gas and a dense crystal are the relevant bulk states.

V. CONCLUSIONS

We have carried out a detailed comparison between two
density functional theories for a lattice AOV model consist-
ing of a binary mixture of colloidal particles and polymers
both with position coordinates on a simple cubic lattice. The
�pair� interactions are such that colloids exclude their site
and nearest neighbors to both colloids and polymers, and
polymers do the same with colloids, but do not interact with
other polymers. Relying on the LFMT concept we have ob-
tained two density functionals for arbitrary space dimension
d by starting with the zero-dimensional statistical mechanics
of the model. The multioccupancy version is an analog of the
DFT for the continuum AOV model �16�. The Highlander
version exploits the possibility of mapping the lattice model
to a cluster model that features hard core interaction only.
Both DFTs are exact for d=0 by construction. The High-
lander version is also exact in d=1, where the multioccu-
pancy version incorrectly gives a phase transition.

The predictions for the phase diagram for d=3 from both
approaches are very similar, and we have argued that the
topology resembles that of real colloid-polymer mixtures for
small polymer-to-colloid size ratios, where the liquid-gas
transition is metastable with respect to freezing into a fcc
colloid crystal and the coexistence density gap is very wide
for large values of polymer fugacity. We hence conclude that
both the model and DFT approaches are well suited to study
properties of inhomogeneous situations in colloid-polymer
mixtures driven by dilute colloidal fluid and dense colloidal
crystal phases.
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APPENDIX

For notational simplicity, we use 1r and 2r+e�. If
zi�x� denotes the local fugacity at node x �=1 ,2� of species i
�=c , p�, then the grand partition function of a maximal 0D
cavity will be

�0 = ezp�1�+zp�2� + zc�1� + zc�2� . �A1�

Since �i�x�=zi�x�� ln �0 /�zi�x�, from the equation above

�c�x� =
zc�x�
�0

, �A2�

�p�x� =
zp�x�ezp�1�+zp�2�

�0
. �A3�

From Eq. �A2�,

	c  �c�1� + �c�2� =
zc�1� + zc�2�

�0
, �A4�

so eliminating zc�1�+zc�2� in Eq. �A1� we obtain

ezp�1�+zp�2� = �0�1 − 	c� . �A5�

With this Eq. �A3� becomes

�p�x� = zp�x��1 − 	c� , �A6�

which allows us to obtain from Eq. �A5�

ln �0 =
	p

1 − 	c
− ln�1 − 	c� �A7�

�with the obvious notation 	p�p�1�+�p�2��.
Now, as �0

AOV=�Fex��c ,�p� in this cavity,

�0
AOV = − ln �0 + �

i,x
�i�x�ln�zi�x�/�i�x�� , �A8�

and using Eqs. �A2�, �A6�, and �A7� we finally obtain Eq.
�9�.
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