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Density functional theory for colloidal mixtures of hard platelets, rods, and spheres
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A geometry-based density-functional theory is presented for mixtures of hard spheres, hard needles, and hard
platelets; both the needles and platelets are taken to be of vanishing thickness. Geometrical weight functions
that are characteristic for each species are given, and it is shown how convolutions of pairs of weight functions
recover each Mayer bond of the ternary mixture and hence ensure the correct second virial expansion of the
excess free-energy functional. The case of sphere-platelet overlap relies on the same approximation as does
Rosenfeld’s functional for strictly two-dimensional hard disks. We explicitly control contributions to the excess
free energy that are of third order in density. Analytic expressions relevant for the application of the theory to
states with planar translational and cylindrical rotational symmetry—e.g., to describe behavior at planar
smooth walls—are given. For binary sphere-platelet mixtures, in the appropriate limit of small platelet densi-
ties, the theory differs from that used in a recent treatment [L. Harnau and S. Dietrich, Phys. Rev. E 71, 011504
(2004)]. As a test case of our approach we consider the isotropic-nematic bulk transition of pure hard platelets,
which we find to be weakly first order, with values for the coexistence densities and the nematic order
parameter that compare well with simulation results.
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I. INTRODUCTION

Dispersions of nonspherical colloidal particles are model
systems to study a broad range of phenomena in condensed
matter ranging from fluid phase separation to the emergence
of liquid-crystalline ordering. Examples of such systems are
clay suspensions [1,2], dispersed gibbsite platelets [3], mix-
tures of silica spheres and silica-coated boehmite rods [4],
wax disks [5], and nonaqueous suspensions of laponite and
montmorillonite [6]. While already pure systems often pos-
sess complex liquid-crystal phase behavior, binary mixtures
additionally may demix into bulk phases with different
chemical compositions—e.g., like in dispersions of disks and
spheres [5]. Such mixtures are often viewed as composed of
a primary species (here the spheres) that interact with an
effective depletion potential that is generated by the second
component referred to as the depletion agent (here the disks).
The depletion interaction is primarily attractive with a range
of attraction similar to the size of the depletant agent and
with a strength that is ruled by the concentration of the
depletion agent. Under appropriate conditions the depletion
interaction may be sufficiently strong in order to drive a
phase transition that is anaologous to the gas-liquid phase
separation in simple substances and that manifests fluid-fluid
demixing when regarding the full mixture.

Recent theoretical work has been devoted to fluids of
platelike particles near a hard wall [7], an interaction site
model for lamellar colloids [8], wetting and capillary nema-
tization of binary hard-platelet and hard-rod fluids [9], the
lamellar Zwanzig model [10,11], and colloidal hard-rod flu-
ids near geometrically structured substrates [12]. The phase
diagram of mixtures of hard colloidal spheres and disks was
obtained within a free-volume scaled particle approach [13].
The depletion potential between two spheres immersed in a
sea of platelets was studied in detail [14,15] and found to
compare well with predictions from the Derjaguin approxi-
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mation [14]. Sedimentation was found to influence liquid-
crystal phase transitions of colloidal platelets [16], as well as
multiphase equilibria in mixtures of platelets and ideal poly-
mer [17].

The fundamental-measure theory (FMT) is an (approxi-
mate) density-functional theory (DFT) [18,19], originally
proposed by Rosenfeld for additive hard-sphere mixtures
[20]. An early extension to convex nonspherical particles has
been given in Refs. [21,22]. When applied to homogeneous
and isotropic fluid states, this theory yields the correct sec-
ond virial coefficient of the equation of state, but fails to
recover the exact density functional up to second order in
density. To remedy the latter problem, an interpolation be-
tween the hard-sphere Rosenfeld functional and the Onsager
functional for elongated rods was proposed [23] and applied
to the bulk isotropic-nematic transition. An FMT that origi-
nated from the treatment of parellel hard cubes [24-26] was
also used very successfully for the Zwanzig model; see e.g.
[27,28]. See also Refs. [29-31] for the treatment of various
hard-body systems. Recently attention was paid to binary
mixtures of hard rods and polymers [32,33]. Also notable is
the treatment of hard-body fluids based on two-point mea-
sures [34-36].

The Bolhuis-Frenkel model of hard spheres and vanish-
ingly thin hard needles [37] can be considered as the sim-
plest model hard-core mixture of spheres and rods. Previous
work was concerned with the formulation of a DFT for this
model [38] and an extension to include rod-rod interactions
on the Onsager (second virial) level [39,40]. Predictions for
the orientation ordering of the rods at a free interface be-
tween (isotropic) sphere-rich and sphere-poor phases [39]
were successfully confirmed by simulations [41]. Adding a
third component to this system, the fluid demixing phase
behavior of ternary mixtures of spheres, rods, and model
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polymers was found to be rich [42]. Quenching one of the
components led to investigations of hard spheres immersed
in random rod networks [43] and of the isotropic-nematic
transition of rods in matrices of immobilized spheres [44].
The present paper is concerned with the introduction of hard
platelets to the FMT framework.

Central to FMT is the so-called deconvolution of the
Mayer bond f;; between particles of species i and j into
“weight functions” w;" that are characteristic of the shape of
particles of each species i; the label v indicates the type of
weight function. Recall that the Mayer bond is related to the
pair interaction potential V;; between species i and j via f;;
=exp(-=BV;;)—1, where B=1/(kgT), kp is the Boltzmann
constant, and 7 is temperature. For hard bodies f;;=-1 if the
two particles overlap and f;;=0 otherwise. In the FMT
framework a convolution integral is used to express f;; as a
sum of terms each of which is bilinear in the weight
functions—i.e., possesses the structure w; *w}, where i,j la-
bel the species, v, 7label the type of weight function, and the
asterisk indicates the (three-dimensional) convolution. The
weight functions are characteristic of the geometry of single
particles—i.e., vanish (already) beyond the physical extent
of one particle. Note that this is different from the behavior
of f;, which extends to larger separations and vanishes pro-
vided two particles do not overlap. However, the convolution
of pairs of (shorter-ranged) weight functions restores the cor-
rect (longer-ranged) nonlocality of the Mayer bond. This
concept was originally introduced for hard-sphere mixtures
[20]. An extension to arbitrarily shaped convex bodies was
proposed in Refs. [21,22], which yields the correct second
virial coefficients, but gives only an approximation for the
Mayer bonds. This is insufficient to describe, e.g., nematic
ordering (see, e.g., Ref. [23] for a discussion). However, ob-
taining exact deconvolutions is possible in principle, as the
cases of the Mayer bond between a sphere and a vanishingly
thin needle [38] and between a pair of thin rods [39] dem-
onstrate.

To give an overview of the general structure of FMT, the
weight functions w; are used to to build so-called weighted
densities via convolution with the bare one-body density dis-
tribution (of each species in the case of a mixture). The
weighted densities are then input as arguments to an (analyti-
cally given) excess free-energy density ®. Integrating ® over
space (and director space in case of anisotropic particles)
yields the excess free energy of the system, which is the only
unknown contribution to the grand potential functional being
the central quantity in (classical) DFT. For any external po-
tential (like describing gravity or a wall) minimizing the
grand potential with respect to the one-body density distri-
bution(s) gives both the value of the grand potential and the
structural information contained in the density profile(s).

Here we show how to treat platelet-shaped particles and
mixtures with both spheres and needles in the FMT frame-
work. The relevant weight functions are given, and it is
shown explicitly how all Mayer bonds for the ternary mix-
ture are obtained through convolutions. For two-dimensional
hard disks the Rosenfeld functional only yields an approxi-
mation for the exact Mayer bond. Despite this deficieny the
two-dimensional Rosenfeld functional is considered to be a
useful tool to study inhomogeneous situations; see, e.g., Ref.
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[45] for an investigation of laser-induced freezing and melt-
ing of confined colloidal particles. The treatment of the
sphere-platelet case inevitably leads to the same defect. We
do achieve, however, exact deconvolutions of the Mayer
bonds for platelet-platelet and platelet-needle interactions.

Furthermore, we treat explicitly contributions to the ex-
cess free-energy functional that are of third order in densi-
ties. While the treatment of second-order terms was a crucial
input for the original construction of FMT for hard spheres
[20], this route has been only recently pursued in detail [46],
and the authors conclude that they come “close to the edge of
FMT” in attempting to incorporate properties of the exact
expansion of the free-energy functional in density on the
third virial level into the approximate framework of FMT. In
particular these delicate cases appear when particles touch—
i.e., configurations that are close to the edge of the particles.

Hence we approximate the exact third virial level (the
triangle in the diagrammatic Mayer f;; expansion) by terms
that are nonvanishing only for cases with common triple in-
tersection of the three particles involved. Global prefactors
are used to compensate for the “lost cases” [46,47] in order
to yield reasonable third virial coefficients.

As a test case for the accuracy of the theory we consider
the pure system of hard platelets. This is known to undergo a
weak first-order isotropic-nematic phase transition [48]. In
contrast to the application to thin rods, the Onsager (second
virial) functional for platelets yields only a qualitatively cor-
rect account of the phase transition: The transition density,
density jump, and value of the nematic order parameter in
the coexisting nematic are significantly overestimated. Our
theory has the same (exact) second-order contribution to the
free energy, but also sports a further third-order term. Higher
than third-order terms are absent due to the scaled-particle
roots [54] of the approach; the vanishing thickness and hence
vanishing volume of the platelets effectively truncate the se-
ries. Our results show that FMT considerably improves on
the Onsager treatment and yields a quantitatively correct pic-
ture, albeit with slightly too small transitition densities.

Harnau and Dietrich recently considered bulk and wetting
phenomena in a binary mixture of colloidal hard spheres and
hard platelets [49], an interesting limiting case of the present
ternary mixture. We postpone a detailed discussion of the
relationship of the current work to Ref. [49] to Sec. IX.

The paper is organized as follows. In Sec. II we define the
model of a ternary hard-body mixture of spheres, needles,
and platelets. In Sec. III the Mayer bonds are represented as
convolutions of (weight) functions characteristic for single
particles. In Sec. IV we proceed to control the third virial
level. Readers who are interested in the structure of the re-
sulting theory rather than its derivation might wish to skip
Secs. IIT and IV and directly go to Sec. V where the weighted
densities are defined as convolutions of the weight functions
with bare density profiles. Section VI presents the excess
free-energy functional. Explicit expressions for the relevant
quantities in planar and uniaxial geometry are given in Sec.
VII. We apply the theory to the isotropic-nematic transition
of hard platelets in Sec. VIII and conclude in Sec. IX.

011409-2



DENSITY FUNCTIONAL THEORY FOR COLLOIDAL...

II. MODEL

We consider a mixture of hard spheres (species S) with
diameter o=2R, where R is the radius, hard platelets (species
D) of diameter 2R, and vanishing thickness, and hard
needlelike rods (species N) of length L and vanishing thick-
ness. The pair interaction potential V;; between any two par-
ticles of species i,j=S,D,N is infinite if their geometrical
shapes overlap and zero otherwise. The one-body density
distribution of species i=S,D,N is denoted by py(r),
pp(r,Q), and py(r, ), respectively, where r is the position
of the particle center and € is a unit vector pointing along
(normal to) the shape of the needle (platelet) describing the
particle orientation in space.

III. DECONVOLUTION OF THE MAYER BONDS
A. Sphere-sphere and sphere-needle Mayer bonds

For completeness we first summarize results from the lit-
erature for hard spheres and their mixtures with needles.
Rosenfeld’s hard-sphere weight functions [20] are

w3(r) = O(R - r|), (1)
wi(r) = 8(R - |r|), (2)
w§2<r>=w§<r>|§, (3)

where ©(-) is the unit-step (Heaviside) function and &(-) is
the Dirac distribution. Here and in the following the w' are
quantities with the dimension of (length)™; the subscript v
indicates a vectorial quantity. Further, linearly dependent,
weight  functions  are wf(r):w‘;(r)/(477R), wg(r)
:w‘;(r)/ (47R?), and w‘jl(r):wiz(r)/ (47R). For pure hard
spheres the Mayer bond is obtained through

— fss(r)/2 = w3(r) # wi(r) + wi(r) # wi(r) - wi,(r) * w),(r),

(4)

where the (three-dimensional) convolution is defined as

h(r) * g(r) = f dxh(x)g(x - )

and also implies a scalar product between vectors, as appears
in the last term on the right-hand side (RHS) of Eq. (4).

A pair of vanishingly thin needles does not experience
excluded-volume interactions, but needles do interact with
hard spheres. For such a binary mixture the needle weight
functions used in Ref. [38] were obtained from the prescrip-
tion of Refs. [21,22] and are given by

dwe=t{ofr-Lo)edestol| o
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1 L/2
w?’(r,ﬂ):z f dis(r - 19Q). (6)

-L/2

Introducing a “mixed” weight function that is nonvanishing
on the surface of a sphere, but carries a dependence on ori-
entation,

wiM(r, Q) = 2|w,(r) - Q

: (7

allows one to obtain the Mayer bond between sphere and
needle through convolutions,

— Fon(r, ) = wi(r) = wj (r, Q) + w3 (r, Q) = w)(r,Q);
(8)

see Ref. [39] for the explicit calculation. For the case of
residual rod-rod interactions in the Onsager limit, fyy can
also be deconvolved into weight functions; see Ref. [39,40]
for the details. In the following, however, we will restrict
ourselves to the case of vanishingly thin needles.

B. Strictly two-dimensional hard disks

As a prerequisite for our subsequent treatment of platelets
in three dimensions, we give an overview of Rosenfeld’s
functional for the model of strictly two-dimensional disks.
This constitues a prerequisite for considering the overlap be-
tween a hard sphere and a hard platelet in three dimensions
(Sec. IIT E below). Here we deal with a multicomponent two-
dimensional mixture of disks with radii R; of species i and
characterized by the pair potential V;;(r)= if r<R;+R; and
zero otherwise, where r is the center-center distance between
the disks of species i and j. (When regarded from the view-
point of the three-dimensional model, all disks possess the
same orienation £, perpendicular to the two-dimensional
plane of position coordinates; we will not delve into this
delicate dimensional crossover in the following.) Rosenfeld’s
weight functions for this model are

wi(r) = OR,; - |r|), (9)
wi(r) = &R; - |r|), (10)
wi(r) = wd(r) -, (11)

|r

and there is an additional linearly dependent weight function
wg)(r)zw(]’)(r)/ (27R;). The exact Mayer bond f;; between
species i and j is then approximated through f;;=~ f:.;,, with

— (1) =w(0) = wd (1) + w (r) 5wl (r)
" ZL[W(ID(I') s w{(r) - wil () = wil(r)],
’7T

(12)

where here (and only here) * denotes the two-dimensional
convolution,
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FIG. 1. Overlapping pair of strictly two-dimensional hard disks
with radii R; and R; and center-center distance r. Shown are the x
and y axes of the coordinate system used, the angle « between the
y axis and R;, as well as half of the part (bold) of the circumference
of disk i that lies inside disk j.

h(r) * g(r) = f dxh(x)g(x - 1),

and again the convolution implies a scalar product between
vectors.

As our subsequent treatment of the three-dimensional
sphere-platelet overlap relies heavily on Eq. (12), we calcu-
late the explicit functional dependence of f;}(r) on r and
discuss some of its properties. We choose two-dimensional
Cartesian coordinates r and x, such that r=(0,r) and x

2 S 2
15} {1.5
S {1
S
0.5} {0.5
0 N B 0
0 02 04 06 08 1 12

rlo

FIG. 2. Rosenfeld’s approximation for the (negative) Mayer
bond, f;(r) of two-dimensional hard disks of radii R; and R;, for
size ratios R;/R;=0.44,0.71,1 (from left to right) as a functlon of
the (scaled) center—to center distance r/o, where o=2R;. In Sec.
II1 E the same result is obtained for the Mayer bond in three dimen-
sions between a sphere of radius R and a platelet of radius R, as a
function of the (scaled) distance r/o between the center of the
platelet and the axis of the sphere (parallel to the orientation € of
the platelet), where o=2Rp. The (scaled) distance between the cen-
ter of the sphere and the plane of the platelet is 0, 0.7, 0.9 (right to
left) and R=Rp. The result for the Mayer bond obtained is exact in
cases (not shown) where the platelet (i) fully cuts through the
sphere or (ii) lies completely inside the sphere (provided R <R).
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=(x" sin ¢’ ,x’ cos ¢'), which allows us to write the first term
on the RHS of Eq. (12) as

J dzxw((f)(x)wy)(x -r)

21 o0
1
=f d(p'f x'dx' Sx" - R)
0 0 27TR1
XO(R; - Vx'2 472 =2rx" cos ¢') (13)
1 P +R-R?
:—arccos<—lL O2rR,; - |r +R2 Rz), (14)
T 2rR;

which is, by the cosine theorem, equal (up to a factor of 27)
to the length of the arc which the rim of the disk i traces
across the interior of disc j (see Fig. 1). By symmetry, the
second term on the RHS of Eq. (12) gives Eq. (14) with R,
and R; interchanged. To calculate the remaining third term on
the RHS of Eq. (12), we use the same setup as above and
obtain

— f dzx[w (x)wj (x — r)— W(’)(X) . wgl)(x -r1)]

d(pf dx'x"8(R; —x")

2w

X E(Rj— VP +x'2=2rx" cos @)
1 (x'sin¢’ x" sin ¢’

X 1——( 90)-( ¢ ) (15)
RR;\x" cos ¢’ x' cos ' —r

1 = (R;—R))

= Lo~ [k )RR (46)

G V4R — (P + R} - R)?

In the special case that both platelets have the same radius,
R;=R;, as relevant for describing the pure hard-disk system,
Eq. (16) further simplifies to

€ f A w{ ()wi (x - 1) - w(x) - wi (x - 1)]
2

’
= Q2R - r)—F——. 1

Ok~ (17

We plot fl.*j(r) in Fig. 2 for three typical values of the size
ratio R;/R;=0.44,0.71,1. For small separations r, such that
the (small) disk i lies completely inside the (big) disk j, the
result is exact, f {(r)=—1 for r<R;—R;. As r increases, fU
first decreases and then increases, exh1b1t1ng a divergence at
contact, r=R,+R;. Beyond this threshold, for r>R,+R;, l'j is
(correctly) indentically zero. Note that the deviations around
the exact value inside the core, f;;=—1, balance such that the
second virial coefficient is exact, [d*rf;(r)=[d*f; ()
=—m(R;+R )2
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C. Platelet-platelet Mayer bond in three dimensions

Although the particle shapes appear to be equivalent,
overlapping pair configurations are very different for freely
rotating platelets in three dimensions as compared to the
strictly two-dimensional case. Note that in three dimensions
we only need to consider cases of differing orientations of
both platelets, £ # ', as configurations with strictly equal
orientations, =€), carry vanishing statistical weight. The
intersection volume differs markedly from the two-
dimensional case (area of intersection), requiring very differ-
ent weight functions to express the Mayer bond. This task
can be accomplished exactly, in contrast to the two-
dimensional case above. The direct application of Rosen-
feld’s recipe [21,22] to platelets yields the scalar weight
functions

wh(r,Q) =20(Rp - [r])8(r - Q), (18)
wi(r,Q) = 8(Rp - |r|)&(r - Q)/8, (19)

1
we(r,Q) = 2R, XF~ r])olr- Q). (20)

corresponding to the surface, 5123 =27TR%), integral mean cur-
vature, é? =mRp/4, and Euler characteristic, §0D =1, of the
platelets, respectively. The weight function that describes the
particle volume vanishes, w’3) (r,Q)=0, due to the vanishing
thickness and hence vanishing volume of the platelets, §3D
=0.

In contrast to Rosenfeld’s treatment [21,22], we here aim
at an exact deconvolution of fp(r,Q’,L), where r is the
center-center distance vector between both particles and
and €)' are their orientations. We introduce

2
W?D(r,ﬂ;ﬂ’)=R—|Q~(Q’ X)wlr,Q), (21
D

where w?(r,Q), given through Eq. (19), describes the plate-
let rim and €' is the orientation of the second platelet. Keep-
ing Rosenfeld’s surface weight function w5 (r,€2) as given in
Eq. (18), we recover the Mayer bond between platelets via
convolution,

_fDD(rﬁﬂ;Q,) =W1DD(raQ;Q’) * Wg(r9ﬂr)
+wh(r, Q) «whP(r, Q" Q). (22)

As the RHS of Eq. (22) consists of two symmetric terms, it
is sufficient to consider the first one; the second one gives
an equivalent contribution to fp,. Without loss of generality
we place the particles such that one platelet is located at the
origin with its orientation vector pointing up (into the posi-
tive z direction) and place the center of the other platelet
in the y-z plane; see Fig. 3 for an illustration. The chosen
coordinates are r=(0,r,z), Q=(0,0,1), and Q’
=(V1-7Z%sin é,vyl—fzcos @,2), and the integration variable
is x=(r" sin ¢’ ,r' cos ¢’,z’). Using Egs. (19) and (21) we
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insert the explicit form wP’(r,Q;Q")=|Q’-(r X Q)|8(R),

—|r)) &(r-Q)/(8R) into the first term on the RHS of Eq. (22)
to obtain

f d3xwll)D(x,Q;ﬂ’)w12)(x—r,Q')

1 2 o 0 0 VI- Z_>2 sin 6
=— dcp’j dz’J dr'r'1 0 V1-Z2cos &
2RpJy o 0
I z
r' sin ¢’
X | ¥ cos ¢’ SRy —\r'?+2')8(z")
Z’

XO(Rp —|(r" sin ¢ ,r' cos @' —r,z2' — 7))

. = . _
r' sin ¢’ V1 —Z*sin &
X8| | r' cos ¢’ —r V1-72cos & (23)
7' -z z

/ _2 —
—\V1l-Z"cos @

. sin ¢’
Rp , , —= . _
=? d(p CcoS ¢ VI-7 sin @
0 0 0
XO(Rp—|(Rp sin @' ,Rp cos ¢’ —r,—7)|)
Rp sin ¢’ V1-Zsin @
X| | Rpcos @' —r || V1= cos & (24)

R 2 .
TDf de'[\N1=2 sin(g- ¢)|O 2Ry,
0

I ——)
Xcos @' —r? =22 8(rV1 = 7% cos g— Rp\1 - 7°

Xcos(¢o' — @) +z27) (25)

/ =2 —_ —
r\1—7z"cos qo+zz>

1
== @(ZrR cos(qB + arccos
2 b RD\J"I _ 22

+

—r2—z2)®(RD\ﬂ1—z_,2—|r\rl—z_,2 cos @+ 27]), (26)

where the integrations over z' and ' in Eq. (23) are straight-
forward. From Eq. (24) to Eq. (25) we rewrote the argument
of the Dirac ¢ distribution such that ¢’ appears only once,
using the identity sin ¢’ sin @+cos ¢’ cos p=cos(¢’ — ).
Given the complexity of the overlap condition between
two arbitrarily oriented platelets in three dimensions, it is not
surprising that Eq. (26) is an involved expression. It can be
viewed as counting the number of intersections between the
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| o

FIG. 3. Setup for the calculation of the platelet-platelet Mayer
bond. Platelet D is located in the x-y plane with its center at the
origin. Platelet D’ has its center in the y-z plane and an arbitrary
orientation. The calculation checks for the intersection of the rim of
D and the interior of D’ (bold dot). The one-dimensional intersec-
tion volume of the two platelets is shown as a bold line.

platelet D’ and the rim of platelet D." The second term in Eq.
(22) counts the number of intersections between platelet D
and the rim of platelet D’. Hence in total there are two (zero)
intersections for an overlapping (nonoverlapping) configura-
tion, and indeed the Mayer bond between platelets, Eq. (22),
is recovered through convolution of (orientation-dependent)
single-particle measures.

D. Platelet-needle Mayer bond

We next consider the platelet-needle Mayer bond
Son(,Qp;Q)), where r is the difference vector from disk
center to needle center and €, and Qy are the orientations
of the disk and needle, respectively. We define a “mixed”
weight function for the platelets that is nonvanishing on the
platelet surface, but carries an additional dependence on the
rod orientation,

WA (e, Qp; Q) = 2| - QWD (r,Q),  (27)

where wg (r,Q), as given in Eq. (18), describes the platelet
surface. This allows us to obtain the Mayer bond between
platelet and needle via

'We use D and D' to refer both to the platelets and points of their
origins. Consider the triangle A between the center of platelet D, the
intersection I of platelet D’ with the rim of D, and the center of D’
projected onto the x-y plane (call this point A). This triangle has by
construction two known sides, Ry and r. The length of the third side
of A can be calculated by the cosine theorem from the angle ZADI.
Using the Pythagorean theorem on the triangle between / and the
real and projected centers of D', the length |[D’I| can be calculated
and compared to the radius of D', Rp. This is accomplished by the
first step function. In order to calculate the angle needed for the
cosine theorem, consider A and the right-angled triangle A’ that is
obtained by continuing AJ over I to form a right angle at the new
point B. Then, |AB|=|r cos @| and |AI|=|zz]/V1-Z>. Therefore, the
arccosine equals the angle £~ DIB, and we obtain the angle ZADI
by adding @. The second step function in Eq. (26) checks if the
plane defined by D' intersects with the rim of D.
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— fon(r, Qp; Q) = W?N(r,ﬂD;QN) * ng(r,QN)~ (28)

The validity of Eq. (28) can be seen by employing cylindri-
cal coordinates and putting the platelet on the y axis, its
orientation being along the z axis. Position the needle in such
a way that its intersection with the x-y plane is the origin (cf.
Fig. 4). The nee% is  described by ry
=(zy/ZV1 -7 sin §,zy/ZV1-7Z% cos &,zy) and Q,
=(y1-Zsin §,V1-72 cos $,z). The coordinates of the
platelet are r,=(0,rp,0) and Q,=(0,0,1); the integration
variable is x=(x' sin ¢’,x’ cos ¢’,z’). From Egs. (27) and
(18) we obtain the explicit expression w5V(r,Qp;Qy)
=40 (Rp—|r))8(r-Qp)|Qp-Qy|, which we insert together
with w’lv (r,Qy), as given in Eq. (6), into Eq. (28) to obtain

— fon(r,Qp;Qy)

= J dSXWiV(X — Iy, QN)WQN(X -1p,Qp; Q) (29)

o 2 0 L2
=f dz’f dcp’f dx’x’f d/
— 0 0 -L12

—

X 8(x" sin ¢ — zy/zV1 — 2% sin § + l\"/l—_z_.2 sin @)

X 8(x" cos ¢’ — zN/z_\/l—_Z2 cos @+ l\s’rzz cos @)
X8z —zy+12)

XO(Rp —|(x" sin ¢’ ,x" cos @' —rp,2")D|Z]8z")  (30)

2 ®
=f dcp'J dx'x" 8(x" sin ¢")8(x’ cos ¢’)
0 0

L
XCKRD—I&’ﬂn¢ﬁmeS¢’—nﬁD®<§§Y-kM>

@31

0k~ 0| L1 . (32)

where the integrals over z' and [ are straightforward to cal-
culate. In Eq. (31), the integral over ¢’ is performed first,
rendering the x’ integral trivial.

The result, Eq. (32), is indeed the Mayer bond between
platelet and needle: Due to the setup, an overlap can occur
only at the origin and the step functions in Eq. (32) provide
a means to assess whether or not this is the case. The first
step function checks whether the origin is inside the platelet
while the second step function checks whether the needle
intersects the origin.

E. Sphere-platelet Mayer bond

Treating the sphere-platelet Mayer bond leads to the most
involved geometry of pairwise particle overlap in the ternary
mixture under consideration. It turns out that this case is
intimately related to the Mayer bond of the strictly two-
dimensional hard-disk mixtures. As detailed in Sec. III B the
FMT gives only an approximate representation in this case.
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FIG. 4. Setup for the calculation of the platelet-needle Mayer
bond. The needle is located at ry in such a way that it points at the
origin. The platelet is located at rp,.

Still the Rosenfeld functional for two-dimensional hard disks
is a reasonably accurate theory; see, e.g., [45] for a recent
study. Here we deal with this problem on the same level of
approximation as the two-dimensional Rosenfeld case. Note
that cutting the sphere with the plane of the platelet yields a
disk as the shape of intersection. We need to consider its
overlap with a platelet and introduce the weight functions

wiP(r, Q) = j—T\e‘"l —(r- Q/R)*wi(r), (33)
w(r,Q) = 4Mw§(r), (34)
W2 (r.Q) = —wP(r,Q), (35)

Rp

where wg(r), as given in Eq. (2), describes the sphere surface
and w’lj (r,Q), as given in Eq. (19), describes the platelet rim.
Equation (34) defines a vector field tied to the surface of the
sphere (with radius R). In contrast to the “radial hedgehog”
of the (classic) vector weight function wfz(r), as given in Eq.
(3), the direction of the current vector field is radial with
respect to the (platelet) Q direction and its magnitude de-
creases towards either pole—a configuration one could refer
to as a “cylindrical hedgehog.” Note further that w‘gD
=|w%|, in accordance with w3=|w>,|. The vector field of Eq.
(35) resembles a corona and is the straightforward generali-
zation of the corresponding two-dimensional hard-disk
weight function Wf}li(l‘), given in Eq. (11). We use these func-
tions to approximate fgp= f, with

—f;D(r,Q) = wg(r) * wg(r,ﬂ) + wf(r) * wg(r,ﬂ)
+ wgD(r,Q) * wlD(r,Q)

- ng(l',ﬂ) * Wllj)l (r’ﬂ)y (36)

where again the convolution implies a scalar product be-
tween vectors. The three terms on the RHS of Eq. (36) rep-
resent the arc that the rim of the platelet traces inside the
sphere, the arc that the sphere traces on the platelet (as illus-
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Q

FIG. 5. Setup for the calculation of the sphere-platelet Mayer
bond. The platelet is located at the origin. The convolution wg *wg

is equal to the angle under which the arc shown in bold appears.

trated in Figs. 5 and 6, respectively), and an additional con-
tribution of the cusps where the two arcs meet. We put the
platelet into the x-y plane with its center at the origin. The
center of the sphere is located in the y-z plane (see Fig. 5);
the coordinates chosen are r=(0,r,z), £=(0,0,1), and x
=(r" sin @', r' cos ¢',7’).

We obtain for the first term on the RHS. of Eq. (36),

J d3xw€(x,ﬂ)w§(x -r)

1 2 oe) o |
= J d(p’f dz'f r'dr' SRy —\r'? +7'?)
27RpJ, o 0

X 8(x - Q)O(R - |x —rl) (37)
1 <r2+Ré+z2—R2>
=—arccos\ ———————————
T 2rRp
XO(2rRp - |+ R3 + 22 - R?). (38)

By the cosine theorem, this is equal (up to a factor of 27) to

Q

FIG. 6. Setup for the calculation of the sphere-platelet Mayer
bond. The platelet is located at the origin. The convolution w3 w5
is equal to the angle under which the arc shown in bold appears.
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the length of the arc which the rim of the disk traces inside

the sphere; see Eq. (14). Note also that R>—z? is the squared

radius of the circle that the platelet cuts out of the sphere.
For the second term on the RHS of Eq. (36) we obtain

f Eowix)wd(x - r,Q)

2
dzf dgof dr'r 5(R—\'r +7'%)

X20(Rp—\r? + 12+ (z' =2)>=2rr' cos ') 8z’ - 2)
(39)

" 47R

1 2
=—f de'O(R-z])
21T

0

XORy -\ +R2—2—2rR =2 cos ¢')  (40)

ks

1 <r2+R2—z2—R§))

=— arccos —
2rJR? =72

XOQ2rR?* -2 —|r*+R* -2 - Rf)

(41)

which is indeed the length of the arc that the sphere traces on
the platelet divided by 27r; see Eq (14).

The relevant weight functions to treat the third and fourth
term on the RHS of Eq. (36) are explicitly wfg (r,Q)
=48R~|r|)[r—(r-Q)Q])/(7R) and w2 (r,Q)=48R,
—|r])8(r-Q)r/(8Rp); hence,

fd3x[w§D(x)w (x-r)- W (x)wvl(x r)]

2
=5 d(pJ dr’r'f dz’ 5(R—\rr +7'?%)

XS Rp—= N2 +r2=2rr cos @' +(z' —2)) 8z - 2)

r' sin ¢’ r' sin ¢’
r' cos ¢’ r'cos @' —r
y r’ 0 7' -z
- [
\'/r'2+z RD\/r,2+Z12
(42)
2
=— d@f rdr5(R—\r +79)
27
X 8(Rp - NP2+ 72 =21 cos ')
’ 12 ’ ’
r r's—rr’ cos ¢
X(’/z 2 [72, 2 ) (43)
N+ z Rp\Nr'“+7

R 2
=_J de¢’ 3(Rp - \’/V2+Rz—z2—2r\/R2—z2 cos @)
2 0

[p2 2 [p2 2
VR -z VR -z
X (1— OR-[z)) (44

—rcos <p’)
R

Rp
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1 [ —
=7—T®(2r\R2 —_ Z2 - |r2 + R2 - Z2 - RéD@(R - |Z|)

R*— (VR* = 72— Rp)?

(45)
\/4r2(R2—22)—(1"2+R2—z2—R%))2
1 > = (R}, - Rp)*
=—O(R, - |R), r|) ——2 . (46)
T "Ry —(r"+ Ry —Rp)

Considering again that R’DZ=R2—Z is the squared radius of
the circle that the plane of the platelet cuts out of the sphere,
we recover Rosenfeld’s approximation for the Mayer bond of
hard disks in two dimensions; see Eq. (16). Hence the same
defect, as displayed in Fig. 2 for two-dimensional hard disks,
is encountered for the overlap between sphere and platelet.
Based on the very reasonable quality of the two-dimensional
Rosenfeld functional, we expect this to do little harm in typi-
cal applications of the theory.

IV. THIRD VIRIAL LEVEL: TRIANGLE DIAGRAMS

The contribution of third order in densities to the excess
free energy of a mixture has the generic exact form of a sum
of triangle diagrams,

—E

l/k
X fij(8,8" ) fil(s",8") fuls,s"), (47)

where i,j,k label the species, the sum runs over all species,
fij(s,s") is the Mayer bond between particles of species i and
j with coordinates s and s’, respectively, and s (and its
primed versions) is a composite variable appropriate for the
species under consideration; i.e., for the case of (uniaxial)
rotators like platelets s=(r, ), fds=[dr [dQ/(4m7), and for
spheres simply s=r, [ds=[dr.

Even for one-component hard spheres FMT yields only an
approximation to Eq. (47) due to the occurrence of “lost
cases” [46,47]: The FMT approximation for the triple prod-
uct of Mayer bonds in Eq. (47) is nonvanishing only for
configurations r, r’, and r”, such that three spheres with
(hard-sphere) radius R centered at these positions share a
nonvanishing common volume of intersection. Note that the
existence of such triple intersection implies pairwise inter-
sections, but not vice versa: An illustrative example is that
constituted by three touching spheres; see, e.g., [46] for an
in-depth discussion. The lost cases are compensated by over-
counting the cases with triple intersection, such that a rea-
sonable (exact in the pure hard-sphere case) third virial co-
efficient for the bulk fluid results. The upshot is that new
weight functions result, which can be, via weighted densities,
incorporated to improve the accuracy of the density-
functional approximation.

Here we follow a similar strategy and aim at controlling
the dependence on positions and orientations through appro-
priately constructed weight functions. For triplets of platelets
in configurations with common triple intersection we can
express

dSPi(S)fdS/Pj(S/)fds"pk(s”)

011409-8



DENSITY FUNCTIONAL THEORY FOR COLLOIDAL...
fop(r =1, 2:Q")fpp(r - 1", Q; Q") fpp(r' — 1", 2", Q)
=ADDD f dXWDDD(I‘ X, Q Q, Q”)

Xw’zj(r’ —x,ﬂ’)wf(r”—x,ﬂ"), (48)

where Appp is a constant, w3 (r, Q) is the surface weight
function defined in Eq. (18), and we introduce an additional
surface weight that carries a dependence on two further
(platelet) orientations,

8
wiPP(r, Q00" =—|Q - (Q' X Q")Wwi(r,Q),
ar

(49)

with normalization such that

J j fdﬂ’f aQy’ DDD(I‘Q Q- Q/I)

=& = 27TRD.

Setting Appp=7/64=0.0491 yields equality in Eq. (48) for
particle configurations with common triple intersection of the
three particle shapes. Considering the bulk equation of state
for pure platelets from scaled particle theory (SPT), and in
particular its (approximative) third virial coefficient, the
compensation for the lost cases (those without common
triple intersection, but with pairwise intersections) results in
Appp=/32=0.0982. In the following we will rather use the
value from FMT, Appp=1/(47)=0.0796, which is numeri-
cally similar to the SPT result. The advantage of the FMT
scheme is that it consistently applies to mixtures; see Ref.
[50] for a detailed discussion.

For the platelet-sphere mixture the triangle diagram stem-
ming from a pair of platelets and a single sphere, provided
that there is a a common intersection of all three particle
shapes, can be expressed as

fSD(r;r,’Q,)fDD(r,’Q,;r",ﬂ”)‘st(r;r"’Q”)
=fdx{ASDDwgDD(r—X;Q’;ﬂ")wg(r’ -x,Q)
X, Q") + wir —x)[wPP(r' - x,Q';Q")

X, Q") +wi(r - x,Q WP -x,Q",Q")]},
(50)

X w2 (r" -

X w2 (r" -

where Agpp is a constant and we have introduced a sphere
weight function that depends on two platelet orientations,

8
WP (r Q") = —[(Q' X Q") - w;,
w

(51)

with the normalization

dQy’
j f f SDD(r Q- Q// §S 47TR2

Again Agpp= 77/64 00491 yields Eq. (50) provided that
there is common triple intersection. We will use the FMT
compensation Agpp=1/(4)=0.0796.
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The remaining case is that of triplets consisting of a single
platelet and a pair of spheres. This case involves similar
geometry as the platelet-sphere overlap, and hence we do not
aim at an exact treatment. Again in the spirit of the two-
dimensional hard-disk case (cf. Sec. III B), we use an ap-
proximation

fss(x' =x")fsp(r";r, Q) fsp(r";r, Q)
f dx{w3(r - X)wg(r” x)w0 (r-x,Q)

+ wg(r —x)W3P(r" - x; QwP(r—x,Q)

- WU2 D" -x;Q)-w Ul(r -x,Q)]

+ w;(r" -x)[w; SD(p! - X;Q)WID(I‘ -x,Q)

— W = x:0) WO (- x, Q)]

+ASSDW2 (r-x 9)[W2D(1‘ - X; Q)WgD(l'" x,Q)

~ W - x:Q) - W - s Q)T (52)

where Aggp=1/16 generates the best possible approximation
and Aggp=1/(4) compensates for the lost cases in the FMT
approximation.

V. WEIGHTED DENSITIES

We first summarize the novel weight functions that de-
scribe the platelet degrees of freedom in the ternary mixture.
From the original Rosenfeld prescription we have obtained
[see Egs. (18)—(20) in Sec. III C]

w5 (r, Q) =20(Rp - |r) 8(r - Q), (53)
wP(r, Q) = 8Rp - |r|) 8(r - Q)/8, (54)
Dy, Q) = ! r-Q 55
wy (r, )_277RD —[r[)(r - Q). (55)

In order to treat platelet-platelet and platelet-needle overlap
we have introduced [see Eq. (21) in Sec. Il C and Eq. (27) in
Sec. 11 D]

2
W?D(r,ﬂ;ﬂ’)=R—|Q‘(Q X r)|wl(r,Q), (56)
D

respectively. To treat sphere-platelet overlap we use [see Eq.
(33)—(35) in Sec. IIT E]

wgD(r,Q) = j—T\e"l —(r- Q/R)zwg(r), (58)
w(r, ) =4 VL (59)
7R
wo(r,Q) = —w1 D(r, Q). (60)
D

Consideration of the third-order contributions to the excess
free energy has led to [see Egs. (49) and (51) in Sec. IV]
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8
wyPP(r,0;Q";,0") =—|Q - (Q' X Q")|w)(r,Q),
a

(61)

8
wyPP(r; Q' Q") = _l@rxan. wi(m)|.  (62)
All weight functions are used to build weighted densities
via convolutions with the bare density profiles. For hard
spheres the scalar and vectorial weighted densities are, re-
spectively, given by

n(r) =wi(r) # pg(r), v»=0,1,2,3, (63)

n3(r) = wi(r) * pg(r),

where wi(r) and wi(r) as given in and below Egs. (1)—(3)
are the classic Rosenfeld hard sphere functions. Adding non-
spherical particles requires convolving the sphere density
profile with orientation-dependent weight functions. The
coupling to needles is accomplished via

n3"(r, ) =w3"(r, Q) * py(r), (65)

v=vl,02, (64)

where w3"(r, Q) as given in Eq. (7) is a mixed sphere-needle
function. Treating the platelets follows a similar outline,

" (r, Q) = wy"(r, Q) # pg(r), (66)
SR, Q) = wi(r,Q) = py(r), (67)

PP (r; Q") = wiPP(r; Q; Q') * py(r), (68)

with w2D (r,Q) and w (r Q) given in Egs. (33) and (34),
respectively, and w3" D (r Q';Q") as given in Eq. (51).
For needles the pure weight functions are

nh(r, Q) =w)(r,Q) # py(r,Q), v=0,1,  (69)

where wgl(r,ﬂ) and wllv(r,ﬂ) are given in Egs. (5) and (6),
respectively. In case one considers needle-needle interac-
tions, additional weighted densities need to be taken into
account [39].

The degrees of freedom of the platelets are modeled
through the weighted densities

n(r, Q) =w)(r,Q) # pp(r.Q), »=0,1,2, (70)

0, (r, Q) = w,) (r,Q) * pp(r,Q), (71)

dQ
n?D(l‘,Q')=fEW?D(I‘,Q;Q’)*PD(I‘,Q), (72)

dQ”
né)DD(r;ﬂ;Q’)=f T Q0500 % pp(r.Q),

(73)

with the weight functions w5 D(r,0), w? (r,Q), and wOD (r,Q),
as given in Egs. (18)—(20), respectively, and wvl(r Q) as
given in Eq. (35). The double orientation-dependent weight
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function wPP(r,Q;Q’) is given in Eq. (21). The weight
function that we have introduced to control the triangle dia-
grams, w, DPD(r ©':Q";Q"), is given in Eq. (49).

The remaining coupling of the platelets to the needles is
achieved via

dQ
2.0 = [ w000 ). 04

where we have used w3 (r, Q) as given in Eq. (27) to build
a mixed weighted density.

VI. FREE ENERGY FUNCTIONAL

In Ref. [38] the excess Helmholtz free-energy functional
for particles with rotational degrees of freedom was ex-
pressed not only as a spatial integral (as was proposed in
Refs. [21,22]), but also as an integral over the director space.
In our present explicit consideration of three-particle corre-
lations an additional integration over director space is re-

quired,
B = f ar j 4 f Loy, 03

where the (reduced) free-energy density @ is a function of
the set of weighted densities, {n’;,}, where i labels the species
and v labels the type of weight function.

For hard spheres ®=®d4 with

3 s
SS § _§ _(”2) _"2nv2 n,
s sy, M~y Ny,
bg=—nyIn(1-n3) + 5 + R
1 —n; 8m(1 —n3)

(76)

where we have suppressed here and in the following the
dependence of the weighted densities on the space coordi-
nate r. Equation (76) is the original Rosenfeld form [20] that
yields, for bulk fluids, the (reduced) free energy-density as
obtained by the Percus-Yevick compressibility (or scaled-
particle) route. Improved versions exist that feature exact
dimensional crossover [51,52] and the Carnahan-Starling
equation for bulk fluid states [53].

For binary mixtures of spheres and needles the reduced
free-energy density is ®=D g+ Dy, where Dy is given in Eq.
(76) and ®gy describes the effect of needle-sphere interac-
tions [38], given as

()3 (@)

Dy =- ng(ﬂ)ln(l - ng) + 5
1 —n3

. (1)

where we suppress the dependence of the weighted densities
on r, but make the dependence on orientation explicit in the
notation. The free energy for bulk fluid states obtained from
Eq. (77) is the same as that obtained from a thermodynamic
(free-volume-like) perturbation theory [37], which results in
a fluid-fluid demixing binodal that compares well with re-
sults from simulations.
For a system of pure platelets ®=d,, with
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1
d,= nll)D(Q)nlz)(Q) + Eng(ﬂ)nlzﬂm(ﬂ,ﬂ’)ng(ﬂ'),

(78)

where the prefactor of the third-order term in density is ac-
cording to Rosenfeld, A=1/(24m)=0.01326. Scaled-particle
theory [50,54] gives a slightly different value—namely, A
=1/192=0.01636; see Ref. [50] for a detailed comparison of
the predictions of these approaches for bulk fluid properties.
Equation (78) is the simplest form of a free-energy density
that features the correct second virial level and a similar free
energy for bulk isotropic fluid states as scaled-particle
theory.

For binary sphere-platelet mixtures we obtain &=y
+®gp, where the hard-sphere contribution @ is given in Eq.
(76) and

byp=- ng(ﬂ)ln(l - ng)

+n1n§(n)+n§D(Q)n’3(m n’>(Q)-n?(Q)
S

1 —nj
n??(Q)n5(Q)
+ s
1 —n3
[n (Q)n32(Q) -nf(Q) - nf2(Q)]n5(Q)
8m(1 - n3)2
nPP(Q, Q")) (Q)nk(Q')
8m(1 - n§)2
nSPP(Q, Q" )nd(Q)nd(Q) 79)

24r(1 - n3)?

For a binary platelet-needle mixture the free-energy den-
sity is =P+ Dy, where the pure platelet contribution ®,
is given in Eq. (78) and a simple second-order coupling be-
tween both species is introduced via

G py=nN(Q: QY (Q). (80)

Due to the vanishing thickness of particles of both species,
any higher-order terms vanish according to SPT.
Finally, for ternary sphere-platelet-needle mixtures the
free-energy density is
SN Q" )n) (Q)

s 81
- (81)

where the first three terms on the RHS are given through
Egs. (76), (77), and (79), respectively.

VII. PLANAR GEOMETRY

In many practical situations one is faced with inhomoge-
neities that depend only on a single (Cartesian) state coordi-
nate, while being translationally invariant in the two remain-
ing directions. A smooth planar wall, where the fluid density
profile(s) only depend on the perpendicular distance z from
the wall, is a primary example. For rotators an additional
simplification arises from (cylindrical) rotational symmetry
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around the z axis. Hence such problems are characterized
solely by z and the tilt angle ) between the particle orienta-
tion and the z axis. We give in the following explicit expres-
sions for (reduced) weight functions appropriate for efficient
numerical treatment of such situations. For completeness we
also give the results for spheres and needles [39].

Let us start by defining the full set of reduced densities;
we use the parametrizations r=(x,y,z) and Q=(9,¢). For
the spheres,

wi(z)=fdxfdywi(r), v=3,2,1,0,02,v1. (82)

Further mixed weight functions couple spheres to needles,

3z, 0) f fdyw (r,Q), (83)

and spheres to platelets,

wgD(z, ﬁ)zfdxf dysz(r Q), (84)

D(z,9) = J J fdyw (r,Q), (85)
SDD / de [ d¢’ SDD /
w5 (Z,ﬁ,ﬁ)=f;fgjdxjdywz (r,Q,Q).

(86)

For the needles,

wf(z,ﬁ)=fdxfdwa(r,ﬂ), v=0,1. (87)

For the platelets the effective weight functions for planar
geometry are obtained by integrating over the lateral coordi-
nates,

wf(z,ﬂ)=fdxjdyw13(r,ﬂ), v=0,1,2, (88)

and

wP (z,9) = f ;—: f dx J dyw?, (r,Q), (89)

d !
WwPP(z,9,9") = f i J dx f dyw?2(r,Q,Q") (90)

Wé)DD(Z,ﬂ,’l?,,ﬂ”)

f J fdxfdywlz)DD(r,Q,ﬂ',Q"),

C2))

de
WZDN(Z,ﬂD;ﬂN)zj Zsjdxfdywé)N(r,QD;QN).
(92)
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Using the effective weight functions the weighted densi-
ties can then be written as

00 (2, 9) = w2 (2. 9) * ps(2), (93)

n2(z,9) =wh(z,9) # pp(z,¥), v=0,1,2, (94)

n} (z,9) = w5 (z,9) * pp(z, ), (95)

1 w
@9 =3 f d® sin 9wpP(z, 93 9) * pp(z, 9),
0

(96)

1 am
nyPP(z,9,9") = 2 J dY'WEPP (2,993 8") * pplz, V")
0
(97)
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1 aw
Nz, &' =5 f 49 sin WPV (z, 9:9") * pp(z. 9).
0

(98)

where in Egs. (93)—(98) (and only here) * denotes the one-
dimensional convolution, g(z)*h(z)=[g(z' —z)h(z'). In con-
trast to the needle case the integrands depend nontrivially on
®.

We finally give all results for the effective weight func-
tions in planar geometry. For hard spheres the well-known
results are

w3(z) = m(R* = 22)O(R - |z]), (99)
wi(z) = 2RO(R - |z]), (100)
Wi (2) =2mzO(R - |2))e,, (101)

where e, is the unit vector pointing along the z axis. The
linearly dependent weight functions are w7 (z)=®(R-|z])/2,
w(2)=O(R-|z|)/(2R), and w5 (z)=z0(R~|z|)e./(2R). The
mixed sphere-needle weight function is given through

e 2 . [zcot(D) ) | .
8VR”sin” 9 -z~ + 8z cos Jarcsin| ———= | if |z| < Rsin ¥,

2 _ 2
SN VR -z
wy (z,0) = 102
2 @9 41)z|cos & if R sin 9 <|z| <R, (102)
0 otherwise.
Further mixed sphere weight functions are
2 o
wiP(z,9) = ?(B(R - |z|)f deVR? —[(R* - z%)cos ¢ sin O + z cos 9%, (103)
0
8
w2 (2, 9) = o~z sin® 9VR, — Z2O(R - [2] e, (104)
D
o —lf if 2> 57,
wyPP(2,9,9") = O(R - Izl)f dg” ) (105)
0 (\'sz — 2+t arcsin —) otherwise,
s
where e, is a unit vector in the z direction, t=z sin ¥ sin ¢’ sin ¢’, and
s = VR* - 22\sin? dcos?® + cos? Isin®®’ — 2 sin & cos ¥ sin ¥’ cos ¥’ cos @'
I
For the needles the effective weight functions are v 1 (L
WO(Z,'ﬂ)ZE > cos -z| . (107)

L
w(z,9) = (4 cos 15‘)‘1®<5 cos 1‘}—|z>, (106)

Carrying out the integrations in Eq. (88) yields
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[p2 _ 2/ 2 o
4Ry, — z7/sin” O
wh(z,9) = DsiT@(RD sin 9 —|z]), (108)
RpO(Rp sin 3 —|z])
D pY\Utp
wi(z,9) = , (109)
l 4V/R%) sin 9% - 7*
O(Rp sin 9 - z]) (110)

D
wg(z,Y) = —F—7———==
0 W\Ré sin 9% — 72

Comparing Egs. (109) and (110) to the corresponding ex-
pressions for needles, Egs. (106) and (107), reveals that the
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different particle geometries imprint marked differences in
the functional dependence on z and . Clearly this can be
traced back to the differences in the full weight functions for
needles [ Egs. (5) and (6)] and platelets [ Egs. (19) and (20)].
Note that for the present case of vanishing particle thick-
nesses, wg (z,) has no needle counterpart to compare with,
as the needle surface vanishes. Furthermore, we obtain:

2.2 2
z R, sin 09—z
e, (111)
8Rp sin” ¥ Ry -z '

Wé)l (z,9) =

p
0 if p2 <0,
1
—cos ¥ if p? sin(9— ' )sin(I + ¥') > 2% sin® ¥,
wPP(z,9,9") =1 2 (112)
1 sin® &' cot ¥’
—< \/(12 +pY)——— - p> +plcos ¥'| arcsin %) otherwise,
7P sin” & VZ* + R, cos? O
where p=\Rpsin®> 9-22,
DDD 8 2 Z o 2 2 2
w5 (z,ﬁ,i}’,ﬁ”):z Ry — Sl o de"u(9,9,9",¢")O(Ry, sin” ¥ —z7), (113)
where
p
|cos &' sin ¥ sin ¢”| if [k(9, 0,9, ¢")| > 1,
——({sin® &'[sin & cos I cos ¢’ — sin ¥ cos V']
(9,9, 9", ¢") = mlsin I (114)
+sin(9 + 9)sin(¥ — Isin® ¥ sin® ¢"}"?
L+ sin ¥ sin 9" cos ¥’ sin ¢” arcsin k(3,9 , 9", ¢")) otherwise,
and
sin 9 sin ¥ cos ¥’ sin ¢”
k(9,9",8",¢") = L4 (115)

For the remaining mixed weight functions we obtain

™ ; - ; ; .
Vsin? 9'[(sin 9" cos ¢” cos ¥ — sin 9 cos ¥")* + cos® & sin’ V" sin® ¢"]

selves further to the pure system of platelets

. In bulk this

—
4 cot ¥p cos ﬁNvRé -z
R}, — Z%sin’ O

XO(Rp sin Iy - |z]).

whN(z, Op; Oy) =

(116)

VIII. RESULTS

Already the binary subsystems with platelets (leaving
aside the full ternary mixture)—i.e., the sphere-platelet and
rod-platelet mixtures—are expected to display rich bulk and
interfacial properties due to the competition between deple-
tion and orientational order. In order to find a simple yet
demanding test case for the present theory, we restrict our-

undergoes an isotropic-nematic phase transition, where
pp(r,Q)=pp=const in the isotropic phase and pp(r,€)
=pp(0) in the nematic phase being peaked around the nem-
atic director that indicates the preferred direction of align-
ment of the particles; 6 is the angle between £ and the
nematic director. The strength of the nematic order is conve-
niently measured via the nematic order parameter,

_ [ d*Q
S=pp f EPD(Q)PZ(COS 0), (117)

where P,(x)=(3x?—1)/2 is the second Legendre polynomial.
We use the generic form of the free energy, Eq. (75), as a
multiple integral over a free-energy density appropriate for
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pure platelets, @, as given in Eq. (78). This function de-
pends on the weighted densities ng s n?D , and n?DD , as de-
fined in Egs. (70) (with »=2), (72) and (73), respectively.
The weighted densities in turn are built as convolutions of
the bare platelet one-body density, p(r,€2), with the weight
functions sz, W?D, and w?DD, as given in Egs. (18), (21),
and (49) [and summarized in Egs. (53), (56), and (61)], re-
spectively. To carry out the actual calculations, we have
started from the corresponding expressions in planar geom-
etry (see Sec. VII), which we have further (numerically) re-
duced to z-independent quantities, as appropriate for the spa-
tially homogeneous isotropic and nematic phases.

Alternatively, our FMT excess free-energy functional for
hard platelets can be viewed as being composed of the exact
second-order virial contribution and a further (approximate)
third-order term that (i) vanishes for configurations without
common triple intersection of three platelets and (ii) is con-
stant for configurations with common triple intersection; the
constant is adjusted to give a reasonable value for the third
virial coefficient. Note that the theory for the full ternary
mixture has a similar structure, but features higher-order (in
density) contributions that arise from the finite volume, and
hence finite packing fraction, of the hard spheres.

We minimize the grand potential functional

- Q
Qup.Lpp)) = Fidlpp) + Fexllpp] = o f dr f Z_ﬂ_PD(l’,Q),

(118)

where the ideal gas contribution is given by

dQ)
Fid[pD]=fdrf EPD(T,Q)DH(PD(P,Q)A%)— 1],

(119)

where up is the chemical potential, the dependence on tem-
perature and volume has been suppressed in the notation, and
we formally set the thermal wavelength equal to the platelet
radius, Ap=Rp, to fix an arbitrary additive constant to the
chemical potential. For a given value of the (scaled) chemi-

cal potential u*=pBup, we minimized Q with respect to
pp() in either phase. Inserting the resulting distribution
into Eq. (118) yields the grand potential of the system and
the condition for equality of the grand potential in both
phases locates the phase transition.

The numerical implementation uses free minimization;
i.e., no parametrized form of pp(6) is assumed a priori. We
use an equidistant grid in @ space with 100 grid points in the
interval [0,7/2]. The integration over ¢” in Eq. (113) to
obtain wy”” was done with 200 grid points in [0,27]; this
only needs to be performed once at the start of the calcula-
tion. We have used alternatively fixed-point iteration or
simulated annealing to minimize the density profile; results
from both approaches were consistent. Up to 1000 steps
were sufficient to obtain convergence.

The resulting values of the densities in the coexisting iso-
tropic and nematic phases, pj,” and ppy"", respectively, as well
as the value of the order parameter in the coexisting nematic
phase, S, are in good agreement with Frenkel and Eppen-
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TABLE 1. Results for the bulk isotropic-nematic phase transition
from different approaches. Given are values for the (scaled) coex-
isting densities in the isotropic and nematic phase, p‘f,"R% and

nem

PEMRY . respectively, the (scaled) density jump, AppR3=(pjs
—pi,;")RS, and the value of the nematic order parameter in the co-
existing nematic phase, S, as obtained from FMT, and the simu-
lation results by Frenkel and Eppenga [48], as well as theoretical
results obtained from the Onsager second virial functional for hard

platelets.

FMT simulation Onsager
PSR 0.418 0.473 0.667
PEmRS 0.460 0.509 0.845
AppR3) 0.041 0.036 0.178
Spem 0.492 0.37 0.781

ga’s classic simulation results [48]; see Table I. The FMT
values somewhat underestimate the coexistence densities and
give a too high value for S.,,. The Onsager second virial
functional, on the other hand, overestimates significantly the
coexistence densities as well as S,.,,. Hence the actual phase
transition, as characterized by the jump in coexistence den-
sities and in order parameter, is weaker than predicted by the
Onsager treatment. To further illustrate our findings, we plot
in Fig. 7 the variation of S with «" and in Fig. 8 the variation
of § with pDRf). We also plot the behavior of the metastable
nematic branch—i.e., for state points where the nematic
phase remains locally stable against small fluctuations, al-
though globally the grand potential for the isotropic phase is
the lower one. It is apparent that the value of S, very
sensitively depends on the precise location of the phase tran-
sition. Taking this into account we find the overall the agree-
ment of the FMT results with simulation data to be very
reasonable and to give confidence both into applications to
interfacial phenomena of platelets and into the accuracy of
the FMT for the full ternary mixture.

0.8 , . : : : —

07}

06 | /

05t

w o4l
03t

0.2 r

0.1

0 . 1 1 1 1 L @
4.8 5 5.2 5.4 5.6 5.8 6 6.2

L

FIG. 7. Nematic order parameter S for a bulk system of pure
hard platelets as a function of the (scaled) chemical potential, "
Shown are results from FMT in the stable (solid line) and meta-
stable (dashed line) nematic. Values in the coexisting nematic and
isotropic phases, S,em and Sis,=0, are shown as obtained from FMT
(squares) and the Onsager-type second virial treatment (dots).
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FIG. 8. Same as Fig. 7, but as a function of the (scaled) density
of platelets pDR?). Note the considerable reduction of the coexist-
ence density gap obtained from FMT as compared to the Onsager-
like treatment.

IX. CONCLUSIONS

In conclusion we have derived a geometry-based density-
functional theory for hard-body mixtures of spheres, plate-
lets, and needles. Both the needles and (circular) platelets
possess vanishing thickness and hence constitute the simplest
examples of prolate and oblate model particles, respectively.
Our treatment of the mixture is based on the so-called de-
convolution of the Mayer bond into single-particle functions
which vanish beyond the extent of the particle. The Mayer
bonds are recovered upon convolution of the single-particle
functions. The construction of the full functional relies fur-
ther on controlling the third virial level and on Rosenfeld’s
scaled-particle treatment. In order to facilitate future applica-
tions, like wetting of planar walls or capillary phenomena in
planar slits, we have given explicit reduced expressions for
the relevant quantities in planar geometry.

In a recent contribution Harnau and Dietrich propose and
apply a DFT for binary platelet-sphere mixtures [49]. They
obtain a platelet-sphere functional by starting from the rod-
sphere functional of Refs. [38,39] and, in particular, from the
explicit expressions for the needle weight functions in planar
and uniaxial geometry. Modifying the definition of the rel-
evant angle between the particle orientation and the z axis
the rod weight functions are taken to play the role of platelet
weight functions. The resulting excess free-energy functional
is linear in the platelet density, limiting the theory to small
densities of platelets. Recall that for binary mixtures where
one component (the depletant) is ideal, the absence of higher
than linear-order terms in the density distribution of this
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component is a good approximation. Examples are the above
rod-sphere mixture and the Asakura-Oosawa model of
colloid-polymer mixtures, where the polymers are described
as noninteracting spheres. While in these cases the pure de-
pletant system is an ideal gas, pure platelets constitute an
interacting system. Hence higher than linear-order terms in
the platelet density should only be irrelevant at low platelet
densities. The current theory is in accordance with scaled-
particle theory [54] and yields second- and third-order con-
tributions to the excess free energy, but higher-order terms
are absent. This behavior can be traced back to the vanishing
volume of the platelets.

In the present work we have shown explicitly how our
DFT for the sphere-platelet mixture reduces to the correct
low-density limit. In contrast to the procedure in Ref. [49],
we have treated the full three-dimensional problem and have
obtained, up to a defect already present for two-dimensional
hard disks, the deconvolution of the sphere-platelet Mayer
bond and hence the appropriate platelet weight functions.
Projecting those onto planar and uniaxial symmetry (appro-
priate for fluid states at a planar smooth wall like investi-
gated in Ref. [49]) reveals that the expresssions differ mark-
edly from those for sphere-rod mixtures. This might come as
no surprise given the fact that the genuine shapes of the
particles are one of the building blocks of the geometry-
based DFT. An immediate consequence is that the platelet
weight functions, and hence the form of the excess free-
energy functional, also differ from the expressions used in
Ref. [49].

Our successful description of the bulk isotropic-nematic
transition of hard platelets can be viewed as the first genuine
FMT treatment of liquid crystalline ordering in a continuum
model (without any interpolation such as, e.g., in Ref. [23]).
Possible future applications of our theory include capillary
and wetting phenomena, influence of gravity or other exter-
nal fields, and the study of free interfaces between demixed
(and possibly liquid-crystalline) phases. Further testing the
accuracy of the theory—i.e., for the predictions of the bulk
direct correlation functions (see, e.g., [55])—against results
from computer simulations is clearly desirable.
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