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Phase behavior and structure of model colloid-polymer mixtures confined
between two parallel planar walls
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Using Gibbs ensemble Monte Carlo simulations and density functional theory we investigate the fluid-fluid
demixing transition in inhomogeneous colloid-polymer mixtures confined between two parallel plates with
separation distances between one and ten colloid diameters covering the complete range from quasi-two-
dimensional to bulklike behavior. We use the Asakura-Oosawa-Vrij model in which colloid-colloid and colloid-
polymer interactions are hard-sphere like, while the pair potential between polymers vanishes. Two different
types of confinement induced by a pair of parallel walls are considered—namely, either through two hard walls
or through two semipermeable walls that repel colloids but allow polymers to freely penetrate. For hard
(semipermeable) walls we find that the capillary binodal is shifted towards higher (lower) polymer fugacities
and lower (higher) colloid fugacities as compared to the bulk binodal; this implies capillary condensation
(evaporation) of the colloidal liquid phase in the slit. A macroscopic treatment is provided by a symmetric
Kelvin equation for general binary mixtures based on the proximity in chemical potentials of statepoints at
capillary coexistence and the reference bulk coexistence. Results for capillary binodals compare well with
those obtained from the classic version of the Kelvin equation due to [Evans and Marini Bettolo Marconi, J.
Chem. Phys. 86, 7138 (1987)] and are quantitatively accurate away from the fluid-fluid critical point, even at
small wall separations. However, the significant shift of the critical polymer fugacity towards higher values
upon increasing confinement, as found in simulations, is not reproduced. For hard walls the density profiles of
polymers and colloids inside the slit display oscillations due to packing effects for all statepoints. For semi-
permeable walls either similar structuring or flat profiles are found, depending on the statepoint considered.
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I. INTRODUCTION

Capillary effects that are induced by the confinement
of a system are crucial to a variety of phenomena. An every-
day example is the capillary rise, against gravity, of the me-
niscus of a free gas-liquid interface at the wall of a container
that encompasses the fluid. The contact angle at which the
gas-liquid interface hits the wall is described by Young’s
equation [1] 9,c08 6= Yy~ Y1, Where the relevant interfa-
cial tensions are those between the coexisting liquid and gas
phases, v, the wall and the gas phase, v,,, and the wall and
the liquid phase, 7,,. When the contact angle is finite,
0 < @<, the liquid phase partially wets the wall; for =0 a
macroscopic layer of liquid grows between the wall and the
gas phase far away from the wall, and hence the liquid com-
pletely wets the wall; for = a correspondingly reversed
situation occurs: a macroscopic layer of gas grows between
the wall and the liquid phase far away from the wall, and
hence the wall is completely “wet” by the gas phase and
drying occurs. All these phenomena are driven by the influ-
ence of a single wall on the fluid.

Different, but related effects occur under confinement of
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fluids in pores: e.g., between two parallel planar walls. The
phase diagram of such a confined system can differ signifi-
cantly from that in bulk [2,3]. Depending on the nature of the
interactions between fluid particles and the walls, the bulk
gas with chemical potential u << pug,, where g, is the value
at saturation, can condense inside the pore and form a dense
confined liquid phase. This capillary phase transition is ac-
companied by a jump in the adsorption isotherm at a given
value of u< ug,. Confinement may lead to stabilization of a
phase that is unstable (or at least metastable) in bulk for a
given statepoint. As opposed to capillary condensation the
opposite effect, referred to as capillary evaporation, is also
feasible: A fluid with chemical potential wu> u, forms a
liquid in bulk, but evaporates inside the capillary. A simple,
yet powerful, way to quantitatively describe capillary phase
transitions is based on the Kelvin equation, derived from a
macroscopic treatment of the thermodynamics of the inho-
mogeneous system. For capillaries with planar slitlike geom-
etries [4], it predicts that liquid-gas coexistence inside the
slit will occur at u= g+ ¥1,c08(0)/h, where h is the sepa-
ration distance between the two walls. Hence, contact angles
0=60<m/2 correspond to capillary condensation, while
/2 < @< 7 corresponds to capillary evaporation.

In this work we investigate capillary phenomena occur-
ring on a mesoscopic scale using a simple model for a mix-
ture of sterically stabilized colloidal particles and nonadsorb-
ing polymer coils confined between two parallel planar
walls. Using colloids as model systems offers advantages
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over molecular substances due to easy experimental access to
the relevant length and time scales and the possibility of
using real-space techniques like confocal microscopy. Our
work is intended to stimulate such investigations in order to
gain further insights into capillary phenomena. The topology
of the bulk phase diagram of colloid-polymer mixtures de-
pends on the polymer size (as compared to the size of the
colloids) and the polymer concentration. At sufficiently high
polymer concentration and for sufficiently large polymers,
the bulk system demixes into a colloidal liquid phase that is
rich in colloids (and dilute in polymers) and a colloidal gas
phase that is dilute in colloids (and rich in polymers) [5-9].
This phenomenology is similar to gas-liquid coexistence in
simple fluids with the polymer fugacity z, playing the role of
inverse temperature and hence governing the strength of in-
terparticle attractions. However, the phase separation in
colloid-polymer mixtures is purely entropy driven, due to an
effective depletion interaction between the colloidal par-
ticles, which is mediated by the polymer [10,11]. A similar
mechanism induces an effective depletion interaction be-
tween a colloidal particle and a planar hard wall [12]. For a
review of the properties of colloid-polymer mixtures in con-
tact with a hard wall, we refer the reader to Brader et al. [13].
Recently the wall-fluid interfacial tensions [14—16] and the
contact angle of the free interface and a hard wall [17] and
the gas-liquid interfacial tension [18,19] have been studied
theoretically and with computer simulations. Moreover, com-
plete wetting of the colloidal liquid phase at a hard wall is
found, close to the critical point, in both simulation [20-22]
and theory [13,23]. Complete wetting of the colloidal liquid
is also observed in experimental realizations of colloid-
polymer mixtures in contact with glass substrates [24,25] or
glass substrates that possess the same coating with an orga-
nophilic group as the colloidal particles do [26]. On the other
hand, experiments [27] with polymer-grafted substrates (of
the same chemical nature as the dissolved polymers) showed
that the contact angle is larger than 77/2. Although the struc-
ture of the polymer coating was not studied in detail, Wijting
et al. [27] expect the polymers to form a fluffy layer with a
distribution of loops and tails. Such a layer is known to di-
minish the depletion interaction between colloidal particles
and the substrate [28]. Wessels et al. [15] modeled this type
of substrate using a semipermeable wall that is completely
penetrable to the polymers but acts like a hard wall on the
colloids. Using density functional theory (DFT) they predict
complete drying. More recently the behavior of the mixtures
in contact with porous walls was investigated, and both wet-
ting of the surface and drying into the porous matrix depend-
ing on the precise path in the phase diagram were found [29].
Porous walls are wet by the liquid phase, with a transition
from partial to complete wetting at a polymer fugacity z,
almost independent of the porosity of the wall.

Although much research has been devoted to understand-
ing the behavior of the mixture in contact with a single wall,
few studies have been reported on the effect of confinement
on the phase behavior of the mixture. Computer simulations
and theory were used to study porous matrices. When impen-
etrable to both components they were found to induce capil-
lary condensation, whereas matrices penetrable to the poly-
mers, but not to the colloids, induce capillary evaporation
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[30,31]. Furthermore, laser-induced confinement [32] was
found to induce capillary condensation. The only experimen-
tal result on capillary condensation that we are aware of is
that by Aarts and Lekkerker [25]. These authors found cap-
illary condensation for colloid-polymer mixtures confined in
a wedge formed by a glass bead placed on a glass substrate.

The aim of the present paper is to determine the phase
behavior and the structure of colloid-polymer mixtures con-
fined between two parallel planar walls for a complete range
of wall separation distances. We focus on the fluid part of the
phase diagram and present results for hard walls and semi-
permeable walls, obtained from computer simulations and
density functional theory. A preliminary account of this work
was given in Refs. [33,34]. Here we supply all relevant de-
tails of the simulation method. We also investigate the struc-
ture of the mixtures inside the pore and derive and test a
generalized Kelvin equation for binary mixtures confined in
slitlike pores and compare its predictions with our simulation
results.

II. MODEL

Consider a binary mixture of N, hard spheres of diameter
o, representing the colloidal particles and N, noninteracting
spheres of diameter o, representing the (ideal) polymers in a
volume V at temperature 7. This is a simple model for a
colloid-polymer mixture as the interaction between sterically
stabilized colloids can be made such that it resembles closely
that of hard spheres and a dilute solution of polymers in a 6
solvent is weakly interacting. Colloids and polymers interact
via a hard-sphere-like potential, as the polymers are excluded
from a center-of-mass distance (o + O'p)/ 2 from the colloid,
where 0,=2R, and R, is the radius of gyration of the poly-
mer coils. We treat the solvent as an inert continuum. This
so-called Asakura-Oosawa-Vrij (AOV) model [35-37] is de-
fined by the pair potentials

Ucc(Rij) = {OOO

where R;;=|R;—R}| is the distance between two colloidal par-

if R;; < o,

(1)

otherwise,

ticles, with R; the position of the center-of-mass of colloid i,
Upp(rij) = 0, (2)

where r;;= |r,-—rj| is the distance between two polymers, with
r; the position of the center-of-mass of polymer i and

if [R, = 7 < (0. + 0,)12,

vepl|Ri = 7)) =
R 0 otherwise,

3)

where |R;—7)| is the distance between colloid i and poly-
mer j.

The size ratio g=0,/0, is a geometric parameter that
controls the range of the effective depletion interac-
tion between the colloids. We denote the packing fraction by
ne=(maN,)/(6V), with k=c, p for colloids and polymers,
respectively. As alternatives to 7,, we use as a thermody-
namic variable the colloidal fugacity z. or the polymer res-
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FIG. 1. (Color online) (a) Illustration of the AOV model of
hard-sphere colloids (gray circles) of diameter o, and ideal poly-
mers (transparent circles) of diameter oy, confined between parallel
hard walls of area A and separation distance H. Colloids behave as
hard spheres, polymers cannot penetrate colloids, and polymers
may freely overlap. The walls are impenetrable to both components.
The z axis is perpendicular to both walls, and the origin is located in
the middle of the slit. (b) Same as in (a) but for walls that are
penetrable for polymers and impenetrable for colloids (semiperme-
able walls) of area A and separation distance H.. Polymers are
confined between parallel hard walls (solid line) with separation
distance H,. This is a model for substrates at distance H), coated
with a polymer brush (not shown) of thickness (H,—H,)/2; the free
distance between both polymer brushes is H.. Solute polymers are
able to penetrate the brush (dashed lines) but not the substrate; the
brush acts like a hard wall to the colloids.

ervoir packing fraction 77, which satisfies the (ideal gas)
relation

o
7,= o Zp- (4)

The hard walls are modeled such that neither polymers
nor colloids can penetrate the walls. The wall-particle poten-
tial acting on species k=c, p is

0 if —(H-0)2<z<(H-0y)/2,
ka(Z = . (5)
otherwise,

where z is the coordinate normal to the walls and H is the
wall separation distance. We define the volume of the system
as V=AH, where A is the (lateral) area of the confining walls.
Figure 1(a) shows an illustration of the model.
Semipermeable walls are defined by the external potential

( )_ 0 if —(Hk—Uk)/2<Z<(Hk—0'k)/2,
Vwil2) = otherwise,

(6)

where H,_ is the wall separation distance that the colloids
experience, while H, is the wall separation distance that the
polymers feel; the latter can be interpreted as the distance
between substrate walls. We define the volume as V=AH.,.
Figure 1(b) shows an illustration of this model. Any choice
of H,>H +20, leads to decoupling of the (inner) colloid
and (outer) polymer wall, since the ideal gas of polymers
cannot mediate correlations from the substrate to the interior
of the system.
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II1. SIMULATION METHOD

We perform Gibbs ensemble Monte Carlo (GEMC) simu-
lations to determine the phase behavior of the AOV model in
bulk and confined between two parallel planar walls. The
number of colloids, N, the number of polymers, Np, and the
volume V are kept fixed and are divided into two sepa-
rate subsystems a and b with volume V?* and V°, respect-
ively, with the constraints that V=V"+ Vb, NC=N2+N‘S, and
Np=Ng+Ng. The two subsystems are allowed to exchange
both particles and volume in order to satisfy the conditions
for phase equilibrium—i.e., equality in both phases of the
chemical potentials of the two species and of the pressure.
The method can be applied to bulk as well as to confined
systems [38,39] and will be described briefly below; for
more details, we refer the reader to Ref. [40].

In more detail, the bulk equilibrium conditions between
two coexisting phases require equal temperature 7, equal
chemical potential w; for each species i (i=c, p in our case),
and equal pressure P. In our model, the temperature T is
irrelevant; because of the hard-core nature of the interaction
potentials, it acts only as a scaling factor setting the thermal
energy scale. In the GEMC method, the two coexisting
phases are simulated simultaneously in two separate (cubic)
boxes with standard periodic boundary conditions. The ac-
ceptance probability for a trial move to displace a randomly
selected particle is

P= min{l?exp[_ B( Unew - Uold)]}s (7)
where
1 if BU,., =0,
exp[— ﬁ(Unew - Uold)] = {0 1; ﬁﬁU — (8)

with U, and U,y the energy of the new and old generated
configurations and B=1/(kzT) the inverse temperature, with
kg being the Boltzmann constant. Note that U, 4=0 as con-
figurations with U, y=2 are excluded by a vanishing Boltz-
mann factor (regardless of the temperature). Transfer of
(single) particles between the two boxes is used to satisfy
equal chemical potentials for both species. We select at ran-
dom which subsystem is the donor and which is the recipient
as well as the species (colloid or polymer) of the particle
transfer. Subsequently, a specific particle is randomly se-
lected in the donor box and transferred to a random position
in the recipient box with probability

b v

where i=c, p is the species of the selected particle, V?* is the
volume of the donor box, and V? is the volume of the recipi-
ent box.

In addition, volume changes of the boxes are used to sat-
isfy the condition of equal pressure in both subsystems. We
hence perform a random walk in In(V,/V,) with the accep-
tance probability

P= mln{l ’R eXP[— E(Unew - Uold)]}’ (10)

7) = min exp[_ B( Unew - Uold)] ’ (9)

where
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o ( Vzew>Ng+N§+l ( Vgew )NB+NE+1 m
Vi]d Vbld

0.
and with the condition that the total volume V=V +V>,
=V2  +Vb  is constant, where the subscript old (new)
marks quantities before (after) the trial displacement.

Phase equilibria in confined geometries, like, e.g., inside
slit pores as considered here, can be determined by either
determining the adsorption isotherm in simulation or by em-
ploying the GEMC simulation method extended to a slit pore
[39]. In the first method, the pore is coupled to a reservoir of
bulk fluid. The adsorption of the fluid inside the pore is then
measured at constant temperature for different bulk densities
of the reservoir; i.e., the chemical potentials of the various
species are fixed. A jump in the adsorption isotherm corre-
sponds to capillary condensation or evaporation in the slit
pore. However, this method is inaccurate for determining
phase coexistence due to hysteresis.

In order to determine the binodal lines, we hence employ
the GEMC method adapted to a slit pore [39]: Two separate
simulation boxes are simulated, one containing the confined
gas and one containing the confined liquid. Each box has
periodic boundary conditions in both directions parallel to
the walls. Capillary coexistence implies equality of tempera-
ture, chemical potentials for both species as well as equality
of the wall-fluid interfacial tension. Fulfilling the first two
conditions is performed similar to the procedure for deter-
mining bulk phase equilibria—i.e., using particle displace-
ments with acceptance probability given by Eq. (7) and par-
ticle transfers with acceptance probability given by Eq. (9).
We satisfy the third requirement of equal wall-fluid interfa-
cial tension in both phases by exchanging the wall area (and
hence volume) between the two boxes, while fixing both the
wall separation distance H in each box and the total lateral
area of both boxes, A2+AP=A, is constant, with A* and AP
the area of the subsystems a and b, respectively. A random
walk in In(A%/AP) is then performed with an acceptance
probability given by

P= min{l,R eXP[— ﬁ(Unew - Uold)]}’ (12)
with
a N4+N+1/ b\ N24aP+1
A T A <p
TR R L
Aold Aold

We determine the fugacities of the colloids and of the
polymers by applying the GEMC version of the particle in-
sertion method [41]:

b Va,b -1
a.
7z =\ ——— exp[- BAU , k=c, 14
k Ni,b + 1 p[ B ] p ( )
where a and b label the two simulation boxes and AU is the
energy defined by the acceptance rule of Eq. (9). We deter-
mine the densities of the two coexisting phases by sampling
histograms of the probability density P(7,, 77,) to observe the
packing fractions 7, and 7, for the polymers and colloids,
respectively. The two maxima of P(7,, 7,) correspond to the
coexisting packing fractions in the thermodynamic limit
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[41]. Statistical uncertainties of the sampled quantities were
determined by performing three or four independent sets of
simulations. The standard deviation of the results from the
simulation sets was used as the error estimate.

IV. KELVIN EQUATION FOR BINARY MIXTURES

In this section, we derive expressions for the shift in
chemical potentials for the gas-liquid binodal of a binary
mixture confined between parallel plates assuming knowl-
edge of bulk quantities like the bulk coexisting densities, the
chemical potentials at bulk coexistence, and the liquid-wall
and gas-wall interfacial tensions, 7y, and y,,, respectively.
Using a macroscopic picture we employ the grand potential
of the mixture confined in a slit of two parallel walls with
area A and separation distance /& between the two walls:'

Qpter py) = Ah(pe, ) + 2A (e, pp, 1) (15)

where . and u, are the chemical potentials of colloids and
polymers, respectively, w is the bulk grand potential density
(per unit volume), and 27y is the interfacial tension of the
mixture and the plates at distance h. For large i, we can
approximate the latter quantity by twice the interfacial ten-
sion of the mixture in contact with a single wall—e.g.,
2YwalMes itp), Where a=1, g are for the liquid and gas phases,
respectively. The aim is to predict the grand potential in the
capillary given knowledge of the thermodynamics of the
bulk at coexistence—i.e., at a state point specified through
the bulk values of the chemical potentials ,uj and ,u:. Hence,
we can reexpress the chemical potentials of both species for
the confined fluid as w.= ,u,z+A,u,c and p,= ,u:+ App. Quan-
tities at coexistence carry a superscript a=1,g, where 1 and g
indicate liquid and gas, respectively.

The thermodynamic relations for the bulk densities of the
colloids and polymers, p. and p,, respectively, read

__ Yo
P e

w

. (16)
Iy

He

pp=_

Hp
while the (excess) adsorption of the colloids and the poly-
mers, I'; and I',, are given by

9Ywa
e

_ 9%wa
’ p -
My Ity

I =

C

(17)

He

Using Egs. (16) and (17), we can perform a Taylor expansion
of the right-hand side of Eq. (15):

1 * ok a «
A_hQ(luc’ /'Lp) =~ (L)(,LLC, lu’p) —Pc AIu’(: - ppAlup

2
+ Z[vwa +T¢Apc+ oA, (18)

where the bulk densities p; and p;' and the (excess) adsorp-
tions I'Y and Fg are evaluated in one of the coexisting phases
a=1,g at the state point given by ,u,z and ,u:.

'We will discuss the relationship of /4 to our model parameter H
(see Sec. II) in more detail in Sec. V E.
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FIG. 2. Phase diagram of the AOV model with size ratio
g=0p,/0.=1 as a function of the colloidal chemical potential . and
the polymer chemical potential w,. The bulk binodal from free vol-
ume theory (thick solid curve) is shown along with isobaric lines
(thin solid curves) for two bulk reference points. The thick dashed
curves indicate the normal paths for the same reference points. The
thin dashed curves are an illustration of the possible prediction of
the Kelvin equation for the capillary binodals. For clarity we omit-
ted the paths with constant polymer chemical potential.

We next consider the capillary to be at phase coexistence;
i.e., we might envisage two capillaries in contact with each
other, one being filled with gas, the other being filled with
liquid. Phase equilibrium between both capillaries implies
equality of the chemical potential of each species and of the
grand potential in both phases,

Qg(ﬂ/c’lu’p) = Ql(lu'c’/-l“p)’ (19)

where (), and (), are the grand potential of the gas and the
liquid phase, respectively. Using the approximation (18) in
(19) yields

2 2
(plc —pe— (- F‘E’))Aﬂc + <pL -pi- Z(Fi’ - F§)>Aﬂp

SN

[t es ) = Vvt )] (20)

In the limit 4 is large compared with the microscopic
lengths and that the adsorptions remain finite, we can neglect
the terms proportional to (F}—F;‘?)/ h. Hence, Eq. (20) simpli-
fies to

2
(plc - pg)AMC + (pi) - P%)A,up = Z(YWI - ng)’ (21)

which constitutes a single equation for the two unknown
shifts in the chemical potentials, Au, and Au,. In order to
obtain a closed system of equations one requires another as-
sumption. We will present three different approaches in the
following. Each approach can be viewed as a different choice
of an “optimal” bulk reference state as illustrated in Fig. 2. A
comparison with the numerical results will be presented in
Sec. VE.
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A. Constant polymer chemical potential

The bulk reference state is chosen to be at the same poly-
mer chemical potential. This requirement is similar to impos-
ing the same temperature in a simple substance. The optimal
bulk reference state with the same chemical potential of
polymers leads to

Ap,=0. (22)

Equations (21) and (22) readily yield a one-component
Kelvin equation

2 Ywm—
Ape == (23)
h Pc = Pc

Clearly this result can be obtained with less labor by directly
dealing with the effective one-component system of colloids
interacting with a depletion potential and rather serves as a
illustration for the validity of the reasoning leading to Eq.
(21).

B. Constant pressure

This reference state was used by Evans and Marini Bet-
tolo Marconi in Ref. [4]. The bulk reference state is chosen
to possess the same pressure. In order to derive a correspond-
ing condition consider the (finite-difference version of the)
Gibbs-Duhem relation

(S/V)AT - AP + p Ape + pyAp, =0, (24)

where S is the entropy. Clearly, for athermal systems A7T=0.
We use Eq. (24) to compare the state point at capillary co-
existence with the reference state point at bulk coexistence
that possesses the same pressure—i.e., AP=0; hence,

a

AMP == p_gAMcs

a=g,l. (25)

As shown in Fig. 2 the constant-pressure paths (for which the
Gibbs-Duhem relation is a good approximation close to the
bulk binodal) have a discontinuity at bulk coexistence. To
predict the capillary phase behavior for state points that lie
on the gas side of the bulk gas-liquid binodal (hence to pre-
dict capillary condensation), the correct reference state is the
coexisting gas phase, and we use Eq. (25) with a=g. To-
gether with Eq. (21) we obtain the classic result for capillary
condensation,

z Ywl — ’)/wg

Ap.= ,
h pe = (p4/p2)p)

2 Y= e

=— . 26
h ply = (p%/p%)p: 20
Alternatively, predicting the capillary phase behavior for
state points that lie on the liquid side of the bulk gas-liquid
binodal (and to predict capillary evaporation), we choose the
coexisting liquid phase as a reference. Equation (25) with
a=1 together with Eq. (21) leads to the following result for
capillary evaporation:

Ap,
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A,LL - g Ywl — YWg
T hpE-(ppppt
) _
A:U’p — _ML (27)

h pE— (ph/p)pt
The derivation presented here yields the same results as
given in Ref. [4], where a single capillary is considered in
contact with a bulk reservoir. We note that this procedure
leads to two different equations for the two phenomena of
capillary condensation and evaporation.

C. Normal-path relation

As a third, novel alternative we choose the reference state
such that the state point of interest lies on a path in the phase
diagram that crosses the bulk liquid-gas binodal in the per-
pendicular (or normal) direction in the plane of chemical
potentials. This implies optimizing the proximity in the .-
M, plane between both state points.

The corresponding relation can readily be established
starting from the relation of the slope of the bulk binodal to
the difference in coexisting densities,

dp. __Po™hp (28)
du pe—pE
p | coex c c

Hence a path normal to the bulk binodal is given by

1 g
;% bempe (29)
p | normal pp pp
from which we deduce the finite-difference version
1 _ e
Apy="2=E0 0, (30)
Pe~ Pc
which, together with Eq. (21), yields
2 pe—pE
A= O = 1) T e (e
2 pp— P
Apy =~ (Va1 = Yuug) = (31)

h (Pt = P92+ (- p)*’

valid both for capillary condensation and evaporation. As
shown in Fig. 2 the normal paths are symmetric with respect
to the gas and liquid sides of the bulk binodal. The somewhat
subtle choice of reference state, which is different for the two
phenomena in Sec. IV B, resulting in using either Eq. (26) or
(27), is now avoided. The procedure described here leads to
one equation, which can be used for both phenomena. This
might be advantageous for mixtures where the corresponding
phases are less obvious, like, e.g., confined liquid crystals.

V. RESULTS

In this section, we focus on colloid-polymer mixtures
with a size ratio g=1, a previously well-studied and also
experimentally accessible case. We have performed GEMC
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FIG. 3. Bulk phase diagram of the AOV model with size ratio
g=0,/o.=1 as a function of the colloidal packing fraction 7. and
the polymer reservoir packing fraction 7. Coexistence is along the
horizontal tie-lines (not shown). Shown are GEMC simulation re-
sults for volumes V=30000"z (circles) and V=12500€ (diamonds),
as well as the simulation results from Ref. [20] (squares). We also
display the result of the fit of Egs. (32) and (33) (solid line) to the
simulation data to and the binodal obtained from DFT or, equiva-
lently, free volume theory (dashed line).

simulations with 4 X 108 steps discarding the initial 10® steps
for equilibration. The acceptance probability of particle dis-
placement was kept around 10%—-20%, and the acceptance
probability for volume exchanges was around 50%, while the
acceptance probability for transfer of particles was strongly
dependent on the state point and varied between 50% and
5% for the polymers and from 10% to less than 0.1% for the
colloids. The probability of a successful particle transfer
typically decreases with increasing particle density. The sta-
tistical error of the fugacities serves as a good indicator of
the efficiency of the particle transfer between the two boxes;
an unreasonably high error indicates that the simulation re-
sults are unreliable due to too low particle transfer probabili-
ties. Using this indicator the maximum packing fraction that
could be reached in our simulations was 7.~ 0.34.

Figure 3 shows the bulk phase diagram obtained from
simulations with a simulation box of volume V= 30000% .
Simulation runs with smaller system sizes display negligible
finite-size effects. In the 770—7/; representation, the shape of
the binodal is similar to that of a simple fluid upon identify-
ing 77; with the inverse temperature. The tie-lines, connecting
the coexisting phases, are horizontal (not shown) as 77; pos-
sesses the same value in the two coexisting phases. We have
checked that our results agree well with those obtained by
Dijkstra and van Roij [20] who performed simulations of an
effective one-component system, which was obtained by for-
mally integrating out the degrees of freedom of the polymers
in the partition function.
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FIG. 4. Capillary phase diagram of the AOV model with size
ratio g=0,/0.=1 confined between parallel hard walls with sepa-
ration distance H/o.=2, 3, 5, 10, and % as a function of colloid
packing fraction 7, and polymer reservoir packing fraction 7;{,.
Shown are results from simulation (symbols) and DFT (solid lines).

To estimate the location of the critical point, we fitted the
binodals using the scaling law

B
n‘c—n§=A< : —L> (32)

(ﬂ;)cm 7’rp
and the law of rectilinear diameter

1 1
771;+ ﬂ§=2(7]c)cm+3< T __r)’ (33)
(np)crit 77p

where 77}3 is the colloid packing fraction of the coexisting
liquid phase, 7 is the colloid packing fraction of the coex-
isting gas phase, and the subscript “crit” indicates the value
at the critical point. A and B are two free parameters deter-
mined from the fit, and 8=0.32 is the three-dimensional
Ising critical exponent. We used the standard functional form
of the two laws [40] but replaced the temperature by the
inverse of the polymer reservoir packing fraction. The solid

TABLE I. Capillary critical points of the AOV model between
parallel hard walls with separation distance H/o.=%,10, 5, 3, and
2 obtained from the fit of Egs. (32) and (33) and from DFT.

Hlo, (n;))crit (7) it DFT (n;))crit DFT () erit
0 0.86(1) 0.117(2) 0.638 0.103
10 1.00(1) 0.124(1) 0.670 0.120
5 1.09(1) 0.123(2) 0.710 0.111
3 1.27(2) 0.116(3) 0.815 0.100
2 1.76(2) 0.119(1) 1.044 0.091
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FIG. 5. The same as Fig. 4, but as a function of colloid fugacity
zcoﬁ and polymer reservoir packing fraction 77;,. State point A is in
the gas region of the phase diagram for wall separation distances
H/o.=%, 10, and 5 and in the liquid region of the phase diagram
for wall separation distances H/o.=3 and 2. The arrow indicates
the direction of the binodal shift upon increasing confinement (de-
creasing values of H/o.) of the mixture between parallel hard
walls.

curve in Fig. 3 is the result of the fit of Egs. (32) and (33).
The fit is remarkably good, but we point out that this only
gives an estimate of the critical point. To get a more precise
value of the critical packing fractions, it would be necessary
to carry out simulations in a region of the phase diagram

FIG. 6. (Color online) Snapshots from computer simulations
of the model colloid-polymer mixture with a polymer-colloid
size ratio g=o0p,/0,=1. Colloids (dark red) and polymers (light
blue) are immersed between two parallel plates with separation dis-
tance H/o,=10 and orientation perpendicular to the horizontal axis.
Shown is the confined colloidal gas phase (left) in coexistence with
the confined colloidal liquid phase (right). The polymer reservoir
packing fraction is 7,=1.088.

051502-7



FORTINI, SCHMIDT, AND DIJKSTRA

0 1 | 1 | L |
0 0.1 0.2 0.3

e

FIG. 7. Capillary phase diagram showing the gas-liquid binodal
for the AOV model with g=0,/0.=1 between two parallel semi-
permeable walls with separation distances H./o.=2, 4, 10, > as a
function of colloid packing fraction 7, and polymer reservoir pack-
ing fraction 77,. Shown are results from simulations (symbols) and
DFT (lines).

much closer to the critical point than is possible with GEMC
simulations.

In Fig. 3, we also compare our results with those obtained
from (DFT). We use the approximation for the Helmholtz
excess free energy for the AOV model as given in [42]. For
a given external potential, the density functional is numeri-
cally minimized using a standard iteration procedure. The
discrepancies between theory and simulation can be under-
stood by considering that the DFT for homogeneous (bulk)
fluid states of the AOV model is equivalent to the free vol-
ume theory of Lekkerkerker et al. [43]. Dijkstra et al. [8]
showed that this theory is equivalent to a first-order Taylor
expansion of the free energy around 77;=0,

BF(NC’V7 77;) =:8F(chv’ 77;=0)
; IBF(N,, V(%)
+jn d(’?:)),< B ([9( : I(WE) ))
0 77p) (77;)’

= ﬁ‘ (N( s Vs 7; 0) 1; < ree>7]‘_— ’
P p} P 0

neglecting terms O((77,)%) and where (Viee) - is the free
volume available for the polymer in the purpe hard-sphere
reference system. It is evident in Fig. 3 that the theory
(dashed curve) performs better at high 7, where the system
is so crowded that it resembles the reference hard-sphere
system and (Vfree>(,7;),=0:(Vf,ee>(,71£)),=,7;. For very small 7,
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FIG. 8. The same as Fig. 7, but as a function of colloid fugacity
zca'z and polymer reservoir packing fraction 77;. The arrow indicates
the direction of the shift of the binodal upon increasing confinement
of the mixture (decreasing values of H./o,) between two parallel
semipermeable walls.

the free volume is close to the total volume of the system V
for both the pure hard-sphere reference system and the actual
mixture. For high 77;, the gas-liquid coexistence is very
broad and quantitatively well predicted by the theory. The
critical point of the AOV mixture for size ratio g=1 is in the
region of 7.~ 0.1, and the theory underestimates the critical
value of 17;. Furthermore, the discrepancy in location of the
critical point arises from the mean-field critical exponent of
the theory against the three-dimensional (3D) Ising critical
exponent of the simulation [19].

A. Phase diagrams

First we present the results for the colloid-polymer mix-
tures confined between two smooth, planar hard walls at dis-
tance H. In Fig. 4 we show a set of phase diagrams for
H/o,=» (bulk), 10, 5, 3, and 2, in the 770-7/; representation.
Upon decreasing the plate separation distance H/o,, the
critical value of 171rD shifts to higher values, in accordance
with the decrease in critical temperature of simple fluids. The
theoretical binodals agree well with those from simulation,
except close to the critical point. The theory underestimates
for all plate separations the critical value of 7];, as it does for
the bulk system [20]. We observe that the deviation increases
upon decreasing H/o.. In Table I we show the critical pack-
ing fractions obtained from the fit of Egs. (32) and (33) and
from DFT. We used the 3D Ising critical exponent for all
wall separations. Although recent studies [44] suggest a criti-
cal behavior for small wall separations that is neither three
dimensional nor two dimensional, the difference is likely to
be negligible at the level of precision of our GEMC simula-
tions.
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FIG. 9. (Color online) Snapshots from computer simulations of
the model colloid-polymer mixture with g=0y,/0.=1. Shown is the
confined colloidal liquid phase (right) in coexistence with the con-
fined colloidal gas phase (right). Colloids (dark red) and polymers
(light blue) are immersed between two parallel semipermeable
walls with separation distance H./o.=10 and orientation perpen-
dicular to the horizontal axis. The polymer reservoir packing frac-
tion is 77,=1.394.

In Fig. 5 we show a set of phase diagrams for H/ g .=¢,
10, 5, 3, and 2 in the zc—nlr) representation. The coexistence
gap in colloid packing fractions collapses to a line since two
phases at coexistence possess the same colloid fugacity. Note
that the system is in the gas phase for fugacity z, <z:*, while
it is in the liquid phase for z,>z3", where z3* denotes the
colloid fugacity at bulk coexistence. State point A is gas like
for H/ o.=5, but is liquid like for H/o.=<3. Hence, planar
slits with H/o.<3 are filled with liquid phase, while the
bulk reservoir is in the gas phase, proving the occurrence of
capillary condensation upon reducing the width of the slit
that is in contact with a bulk gas. Figure 6 shows typical
colloid-polymer configurations of a coexisting colloidal gas
and liquid phase confined between parallel hard walls at a
distance H/o.=10.

We now turn our attention to colloid-polymer mixtures
confined between two smooth, planar semipermeable walls
at distance H,. In Fig. 7 we show a set of phase diagrams for
H./o.=%, 10, 4, and 2 in the nc-n; representation. Upon
increasing the confinement (via reduction of H./o.), the
critical value of 7];3 shifts to higher values. The trend is simi-
lar to the behavior of the slit with hard walls, although we
find a smaller shift of the critical point (see Table II). In Fig.
8 we show a set of phase diagrams for H/o,=%, 10, 4, and 2
in the zc—nlr) representation. State point B is liquid like for
H./o.=10, but is gas like for H./o,=<?2. Hence, planar slits
with H /o.<?2 are filled with gas, while the bulk reservoir is
in the liquid phase, indicating the occurrence of capillary
evaporation. Typical colloid-polymer configurations of the
colloidal liquid phase in coexistence with the colloidal gas
phase immersed between two parallel semipermeable walls
with H./o.=10 are shown in Fig. 9.

B. Structure at coexistence

We next analyze the density profiles of both species at
capillary coexistence of gas and liquid phases. Such fluid
states are translationally invariant against lateral displace-
ments, and the density distributions (of both species) depend
solely on the (perpendicular) distance from the walls. We
compare theoretical and simulation results for coexistence
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FIG. 10. Density profiles of the coexisting liquid (left) and gas
(right) phases of the AOV model confined between parallel hard
walls with separation distance: (a) H/o.=10 at 7]2:1.23(1), zcaz
=66.3(1), (b) H/ 0.=5 at 77;=1.39(1), zco'2=99.4(3), (c)Hl/o,=3 at
77;)=l.68(1), zC0€'=128(2), and (d) H/o.=2 at 77;=2.23(1), zcog
=228(10). Shown are results from simulations for the density pro-
files of the colloids (crosses) and polymers (circles), along with
results from DFT (solid lines).

states at the same values for 7. In practice, we have used the
result for 7]; from the simulations and have calculated the
corresponding DFT profiles. The value for z. used in the
DFT calculations was adjusted according to the respective
theoretical capillary binodal. Recall that the quantitative dif-
ferences in results for the capillary binodals from simulation
and theory are small.

The results for a slit of hard walls are shown in Fig. 10.
The colloidal profiles in the liquid phase display strong
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TABLE II. Capillary critical points of the AOV model between
parallel semipermeable plates with separation distance H/o,
=,10, 4, and 2 obtained from the fit of Egs. (32) and (33) and
from DFT.

H/ g (n;)crit (nc)crit DFT (ﬂ;)erit DFT (ﬂc)crit
o 0.86(1) 0.117(2) 0.638 0.103
10 1.09(2) 0.13(1) 0.660 0.075
4 1.11(4) 0.10(3) 0.699 0.076
2 1.29(1) 0.11(4) 0.818 0.092

layering at either wall. For wall separation H/o.=10, at
7;;= 1.23+0.01 and zc02=66.31-0.1, these oscillations decay
to flat, bulklike behavior in the center of the slit. For smaller
wall separations—namely, H/o.=5 at 7,=1.39+0.01 and
2.0,=99.4%03, H/o.=3 at 7,=1.68£001 and z.o0;
=128+2, and H/o.=2 at 7];:2.2310.01 and
zco’2=228110—we observe the presence of five, three, and
two well-defined layers of particles, respectively. Although
their density is much lower, the polymers in the liquid phase
display similar behavior. The layering is weaker, but we can
observe that a maximum in the colloid profile corresponds
also to a maximum in the polymer profile. This result sug-
gests that for such low concentrations polymers behave as
hard spheres as packing effects are concerned. In the gas
phase, for wall separations H/o.=10 and 5, we find strong
adsorption of the colloids at both walls (see also the snapshot
in Fig. 6) and a tendency of the polymers to desorb from the
walls. In the center of the slit almost no colloids are present
and the polymers display flat density profiles with a packing
fraction very similar to the polymer reservoir packing frac-
tion. For wall separation distances H/o,=3 and 2, we ob-
serve an almost flat polymer density profile, while the den-
sity of the colloids is very low throughout the slit. Different
from the liquid profiles, a maximum in the colloidal profile
corresponds to a minimum of the polymer profiles.

Figure 11 displays density profiles for the slit of semiper-
meable walls. For wall separation distance of H./o.=10
at 77{;1.3910.01 and zcoﬁz 1675, we clearly observe
for the liquid-state points the presence of a gas layer between
the wall and the liquid phase centered in the slit. For wall
separation H./o.=4 at 7/TP=1.3510.01 and zca*2=318110,
the gas layers at the walls disappear and indications of
layering effects appear. For wall separation H./o.=2 at
7/;= 1.61+0.01 and zcof=2950i200, the colloid density pro-
file displays very significant peaks at both walls. Moreover,
we do find layering at larger wall separations for state points
well inside the liquid phase. We will discuss this in more
detail in the next section. In the gas phase, the density of
colloids is very low throughout the slit, while the polymer
density profile is almost flat with a packing fraction close to
the polymer reservoir packing fraction.

The comparison between DFT and simulation indicates
good agreement of results from both approaches. Differences
in structure can be traced back to differences in the phase
diagrams. For fixed 7]; the DFT predicts higher colloid den-
sities and smaller polymer densities, and these differences
are reflected by the discrepancies in the profiles. For wall
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FIG. 11. Density profiles of the coexisting liquid (left) and gas

(right) phases of the AOV model confined between two para-
llel semipermeable walls with varying separation distance: (a)
H.o.=10 at 17]')=1.39(1), 2.0.=167(5), (b) H.o.=4 at 7/;
=1.35(1),
203 =318(10), and (¢) H/o.=2 at 7,=1.61(1), z.07=2950(200).
Shown are results from simulations for the density profiles of the
colloids (crosses) and polymers (circles), and results from DFT
(solid lines).

separations where the state point is close to the critical point
the agreement is worse, especially close to the walls. Such
discrepancies between simulation and DFT were previously
reported in studying the wall-fluid tension and the adsorption
of colloid-polymer mixtures [16].

C. Structure off-coexistence

We next consider density profiles for a fixed-state-point
off-coexistence. For slits with hard walls we chose state
point A [7,=1.494 and In(z.07)=4.6] of Fig. 5, which lies in
the stable gas region of the bulk phase diagram. We carried
out simulations for wall separation distances H/o0.=10, 5, 3,
and 2. Figure 12 shows that for wall separations H/o,=10
and 5 the slit is filled with gas. However, for wall separation
of H/o,=3 we observe that the capillary fills with liquid.
Hence, for this particular state point, the critical wall sepa-
ration distance for capillary condensation lies between three
and four colloid diameters, consistently with the findings of
Sec. V A. Reducing the wall separation to H/o.=2, the lig-
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FIG. 12. Density profiles of the AOV model with g=1 between parallel hard walls with varying separation distance: (a) H/o.=10, (b)

H./o.=5

, (¢c) H,/0,=3, and (d) H,/o,=2 at state point A of the phase diagram of Fig. 5—i.e., for polymer reservoir packing fraction 17p

=1.49 and colloid fugacity ln(zLO' )=4.6. Shown are results from simulations for the density profiles of the colloids (crosses) and polymers

(circles) and results from DFT (solid lines).

uid phase remains stable. The density profiles in the gas
phase possess adsorption peaks in the colloid profile and
corresponding desorption peaks in the polymer profiles. In
the liquid phase we observe strong layering of the colloids
and, to a lesser extent, of the polymers. The agreement be-
tween simulation and DFT results is good. The differences
seem to be related to the vicinity of state point A to the
critical point. The critical point for wall separation H/o.=3
and 5 is much closer to state point A than the critical points
for wall separations H/o,=10 and 2, where we find a better
agreement between simulation and theory profiles.

We next discuss the structure of the mixture inside the slit
with semipermeable walls (Fig. 13). We fix the fugacities of
both spec1es to those at state point B [7] =1.60 and
In(z.07)=7.3]; see Fig. 8. The state point B is in the liquid
part of the bulk phase diagram phase. The liquid fills slits
with wall separations H./o,=10, and 4, while for H./o.=2
the slit is filled with gas. This is an indication of capillary
evaporation consistent with the findings of Sec. V A. The
liquid phase is characterized by structureless polymer pro-
files and a layering of colloids for both H./o.=10 and 4.
Note that we did not observe such layering for the state
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FIG. 13. Density profiles of the AOV model between two parallel semipermeable walls with varying separation distance: (a) H,/ U'C
=10, (b) H./o.=4, and (c) H, /0'C 2 at state point B of the phase diagram of Fig. 8—i.e., for polymer reservoir packing fraction 7,
=1.60 and colloid fugacity 1n(zLa' )=7.3. Shown are results from simulations for the density profiles of the colloids (crosses) and polymers

(circles) and results from DFT (solid lines).

points at coexistence (see previous section). Simulation and
theory are in good agreement at all wall separations.

D. Two-dimensional limit

We next analyze the dimensional crossover from three to
two spatial dimensions by reducing the distance of the hard
walls towards H/o.— 1. The two-dimensional system en-
countered for H/o.=1 is identical to a two-dimensional mix-
ture of colloidal hard disks and ideal polymer disks. Two-
dimensional mixtures were previously studied with both
theory [45,46], and experiments [47]. For H very close to o,

the polymer reservoir packing fraction scale as

N,o*

T AH=-o,)

We eliminate the divergence using scaled variables for
the polymer reservoir packing fraction 7,(H-o,)/H and
for the colloidal fugacity z.(H-o,)/H. Effectively, we
map the three-dimensional system with packing fractions
;=m0 N;/(6AH) to the two-dimensional system with pack-
ing fractions 7,= wa?N;/(4A), where i=c, p.
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FIG. 14. Phase diagrams showing the binodals for the AOV
model between parallel hard walls with separation distance
Hl/o.=%,10,5, 3,2, 1.01, and 1.005. Shown are results from simu-
lation (symbols), from three-dimensional DFT (dashed curves), and
from DFT for the AOV model in two dimensions (solid lines).
(a) The gas-liquid binodal as a function of the scaled variable
7,(H=-0,)/H and 7. (b) The gas-liquid binodals as a function of
the scaled variables zca'g(H —0.)/H and n;(H -0,)/H.

In Fig. 14(a) we plot the phase diagrams in the scaled 7,-
7. representation and we observe that the binodals for
H/o.=1.01 and H/o,=1.005 are superimposed, demonstrat-
ing that this is a reliable estimate for the binodals of the
two-dimensional system. The comparison with a two-
dimensional DFT [46] equivalent to a two-dimensional free-
volume theory [45] indicates poorer agreement as in the
three-dimensional case. The discrepancy in the critical poly-

PHYSICAL REVIEW E 73, 051502 (2006)

mer reservoir packing fraction is very substantial. We also
find that in this representation the binodals of the three-
dimensional system of the slits collapse over the bulk bin-
odal, indicating a scaling of the critical value of 77; as
(17))cric~ 1/(H—07p). In Fig. 14(b) we see that the collapse of
the binodals onto a master curve in the scaled n;-scaled Ze
representation is not as good as in the other representation;
moreover, the sequence of binodals is inverted, indicating
that the critical value of the colloid fugacity scales differ-
ently.

E. Kelvin equation

In this section, we compare the simulation results with the
predictions of the Kelvin equations that we derived in sec-
tion. First, we address the relationship of the parameter &, we
used in the Kelvin equations, to our model parameter H.
There are two, a priori—equivalent, choices that we investi-
gate: namely, h=H and h=H-o,.. Second, the Kelvin equa-
tions need, as an input, the difference in the gas and liquid
tensions at the wall interface. Since these data are not readily
available, we will assume, in the case of capillary condensa-
tion, the relation ,,,— ¥,,/= ¥, strictly valid only in the com-
plete wetting regime, to hold at all state points considered.
Likewise, for the capillary evaporation case, we assume
Ywi— Ywg= Yig valid in the complete drying regime to hold at
all state points. For the liquid-gas interfacial v, tension we
use DFT data from Ref. [48].

Figures 15(a) and 15(c) display the simulation results for
the hard-wall slit together with the predictions of the Kelvin
equations (22), (26), and (31) for h=H- 0o, and h=H, respec-
tively. The Kelvin equation (22), derived from the path with
constant polymer chemical potential, is superimposed at all
separation distances with the Kelvin equation (26) derived
using the constant-pressure path. This is consistent with the
observation of Aarts and Lekkerkerker [25]. Now we can
offer an alternative explanation. As shown in Fig. 2, for the
capillary condensation case the bulk in the gas phase
(polymer-rich phase) and the path with constant polymer
chemical potential is almost equivalent to the constant pres-
sure path. In other words, the bulk reference point for Egs.
(22) and (26) is very similar in the case of capillary conden-
sation. The Kelvin equation (31) derived using a normal path
predicts a smaller shift with respect to Eq. (26). To estimate
the error introduced by the complete wetting approximation
(Vg V1= "Yig)» We show few points (solid diamonds) pre-
dicted by Eq. (26) using the actual difference in wall ten-
sions, as published in our previous work [33].

Figures 15(b) and 15(d) display the simulation results for
the semipermeable wall slit together with the predictions of
the Kelvin equations (22), (27), and (31) for h=H-0, and
h=H, respectively. The prediction of Egs. (27) and (31) are
superimposed at all separation distances considered. This is
surprising since they are derived from very different “paths,”
as shown in Fig. 2.

We can conclude that the Kelvin equation we derived,
gives predictions that are consistent, and in quantitatively
agreement with, the prediction of the classic equation. In
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FIG. 15. Phase diagram of colloid-polymer mixtures in the colloidal chemical potential ln(zco*z) and the polymer reservoir
packing fraction 17; representation. (a) Results for slits with hard walls and h=H-o,. (b) Results for the slit with semipermeable walls and
h=H-o,. (c) Results for the slits with hard walls and 2=H. (d) Results for the slit with semipermeable walls and ~=H. In (a) and (c) the
simulation results (symbols) are compared with the prediction of the Kelvin equations (22), (27), and (31) assuming complete wetting
(Vg Ywi= Vi) The solid diamonds are results from Eq. (26) using the difference in wall tensions, ¥,,,— %, taken from Ref. [33]. In (b) and
(d) the simulation results (symbols) are compared with the prediction of the Kelvin equations (22), (27), and (31) assuming complete drying
(Vwi= Yiwg= Vig)- For the liquid-gas interfacial tension y;, we used the DFT data from Ref. [48]. Few lines are superimposed; see text for the

explanation.

addition our equation is the same for capillary condensation
and evaporation, and the choice of reference state, which is
different for both phenomena, is avoided. As the Kelvin
equation is based on macroscopic arguments, it is surprising
that we find reasonable quantitative agreement for nearly
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two-dimensional systems. The shift of the critical polymer
fugacity towards higher values upon increasing confinement,
as found in simulations, is not reproduced, because the
Kelvin equation is entirely based on properties of the
(semi) infinite system. Finally, the two choices of & we pre-
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sented give essentially the same results for wall separations
H/o, as small as 4.

VI. CONCLUSIONS

In conclusion, we have studied the effect of strong con-
finement provided by two parallel walls on the phase behav-
ior and structure of model mixtures of colloids and polymers
of size ratio g=1. The densities of the gas and liquid phases
at coexistence, as well as the chemical potentials, were com-
puted by GEMC simulations and DFT. Two different models
of confining walls were investigated: (i) Hard walls, impen-
etrable to both colloids and polymers, as a model for glass
walls in contact with colloid-polymer mixtures were found to
stabilize the liquid phase for state points that lie in the gas
part of the bulk phase diagram; this effect is referred to as
capillary condensation. (ii) Semipermeable walls, impen-
etrable to colloids but penetrable to polymers, could be ex-
perimentally realized using polymer-coated substrates [27].
If the coating density is not too high, the polymer brushes
can act as impenetrable for colloids while being penetrable
for polymers. We find that the effect of semipermeable walls
is to stabilize the gas phase for state points in the liquid part
of the bulk phase diagram; this effect is referred to as capil-
lary evaporation. Both capillary evaporation and condensa-
tion are consistently predicted by GEMC simulations and
DFT. The differences between simulations and DFT in the
vicinity of the critical point are confirmed for bulk mixtures
and were found to be larger for the confined mixtures. The
differences reach a maximum in the limit of two-dimensional
colloid-polymer mixtures.

We have studied the structure of the mixture between par-
allel walls by measuring the density profiles in the direction
normal to the confining walls. For the liquid phase, rich in
colloids and poor in polymers, we found the layering of col-
loids with an oscillation period roughly equal to the diameter
of the particles for all wall separations and state points con-
sidered. In the case of semipermeable walls, the structure—
i.e., the layering of colloids and the adsorption or desorption
of gas layers at the semipermeable walls—depends strongly
on the state point and on the length scale of the confinement.
For the gas phase, rich in polymers and poor in colloids, we
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found flat polymer profiles with moderate desorption of
polymers from the hard walls. We found that density oscil-
lations for colloids and polymers are correlated in the liquid
phase and anticorrelated in the gas phase. This can be under-
stood by the following argument. In the liquid phase the
fraction of polymers is small and a polymer is always sur-
rounded by other colloids to which it interacts with a hard-
core potential. Clearly the polymer structure must be similar
to that of the colloids. In the gas phase the fraction of poly-
mers is large with respect to the colloids and the entropy is
increased by the segregation of colloids, so if a region is
locally denser in polymers than the average polymer density,
it will be more dilute in colloids. The comparison between
simulation and DFT is overall good, with small differences
in the vicinity of the critical point. Our findings of capillary
condensation for hard walls and capillary evaporation for
semipermeable walls are consistent with the experimental
findings of Aarts and Lekkerker [25] and Wijting et al.
[26,27]. Nevertheless, the comparison is only qualitative. Ex-
periments with better-controlled geometries are needed to re-
late directly to our predictions. The use of the surface force
apparatus, for example, should be possible for colloid-
polymer mixtures. Simulations and theory should proceed to
more realistic models for colloid-polymer mixtures [49-51].
For example, the inclusion of excluded-volume interactions
between polymer coils has given accurate results for the bulk
phase diagram [49]. The use of realistic models for confined
mixtures should help in understanding the surface phase be-
havior of real colloid-polymer mixtures. Work along this line
is in progress.
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