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We study bulk and interfacial properties of a model suspension of hard colloidal platelets with continuous
orientations and vanishing thickness using both density functional theory, based on either a second virial
approach or fundamental measure theory (FMT), and Monte Carlo (MC) simulations. We calculate the bulk
equation of state, bulk isotropic-nematic (IN) coexistence, and properties of the (planar) free IN interface
and of adsorption at a planar hard wall, where we find complete wetting of the nematic phase at the isotropic-
wall interface upon approaching bulk IN coexistence. We investigate in detail the asymptotic decay of
correlations at large distances. In all cases, the results from FMT and MC agree quantitatively. Our findings
are of direct relevance to understanding interfacial properties of dispersions of colloidal platelets.

I. Introduction

Dispersions of nonspherical colloidal particles are model
systems to study a variety of phenomena in condensed matter,
including fluid phase separation, liquid crystalline ordering, and
the influence of magnetic, electric, or gravitational fields on
macroscopic properties. The bulk phase behavior of nonspherical
colloids is considerably more complex than that of spherical
particles due to the stability of partially ordered (liquid
crystalline) phases with properties between those of liquids and
those of crystals. One particularly important example is the
phase transition from an isotropic (I) fluid to an orientationally
ordered nematic (N) fluid. The nematic phase is characterized
by macroscopic orientational order, such that the particles align
preferentially along a common nematic director; the spatial
distribution of position coordinates remains homogeneous. The
IN transition was first observed experimentally in suspensions
of (rodlike) tobacco mosaic virus particles,1,2 and its first
theoretical description was given by Onsager.3 This famous
derivation of macroscopic ordering from anisotropic particle
shapes constitutes a paradigm for understanding the competition
between position and orientation degrees of freedom that
maximizes the overall entropy of the system. Onsager’s theory
can be viewed as a truncation of the Taylor expansion of the
Helmholtz excess free energy functional at second order in
density and becomes exact, due to a scaling argument, in the
limit of thin rods at high concentration. However, such a scaling
does not hold in the case of (vanishingly) thin hard platelets;
when applied to this system, the theory is known to predict the
bulk isotropic-nematic (IN) transition correctly to be of first
order but to overestimate the transition densities and value of
the nematic order parameter at coexistence quite severely as
compared to simulation results.4,5 The peculiar features of the

bulk IN transition of hard platelets are the very small density
jump at coexistence and the very low value of the nematic order
parameter,S ∼ 0.5, in the coexisting nematic phase.

During recent years, considerable experimental, simulation,
and theoretical work has been devoted to gaining understanding
of the behavior of platelet dispersions. A well-established
experimental model system is gibbsite platelets dispersed in
toluene, for which the existence of the IN transition in a colloidal
platelet system was for the first time observed with polarization
microscopy.7 In the same system the nematic-columnar phase
transition,8 the hexagonal-columnar liquid crystal phase,9 and
gelation and nematic ordering10 were investigated subsequently.
Furthermore, the influence of external potentials was considered,
e.g., that of gravity11,12 and of electric13 and magnetic fields.14

Also, platelike clay particles15,16 and mixtures of colloidal
platelets and polymers17,18have received considerable attention.
Theoretical investigations were devoted to the influence of
gravity on phase behavior19 and the phenomenon of nematic
density inversion.20 An interaction site model for lamellar
colloids was investigated.21 The phase diagram of a mixture of
hard colloidal spheres and disks was calculated using a free
volume approach,22 and the free IN interface in fluids of charged
platelike colloids was investigated using the Zwanzig model
with discrete orientations.23 Ref 24 is devoted to the effects
caused by polydispersity in a mixture of rods and platelets. A
model fluid of hard platelike particles has also been used to
describe the structure factor of macromolecular solutions of
stilbenoid dendrimers.6

The presence of a substrate commonly leads to rich phenom-
enology of surface phase behavior. The smooth hard planar wall
is a basic model for a substrate which despite its simplicity
induces intriguing phenomenasand has accordingly attracted
interest for a variety of hard core models. As energy is irrelevant
in such systems, one refers to “entropic wetting”,25 and examples
include ordering of rods near a hard wall,26 the uniaxial-biaxial
transition of hard rods,27-29 wetting and layering transitions for
model colloid-polymer mixtures,30-37 and wetting of hard

* Corresponding author.
† Heinrich-Heine-Universita¨t Düsseldorf.
‡ Debye Institute, Soft Condensed Matter, Utrecht University.
§ Institute for Theoretical Physics, Utrecht University.
| University of Bristol.

7825J. Phys. Chem. B2007,111,7825-7835

10.1021/jp068870b CCC: $37.00 © 2007 American Chemical Society
Published on Web 06/19/2007



spheres in a planar hard slit.38 Also, the entropic torque acting
on a single hard rod in a solvent of hard spheres close to the
wall was investigated.39 The isotropic phase of platelets in
contact with a wall has been considered in ref 40 using Onsager
theory, and results were compared to those for a hard rod fluid.
For the Zwanzig model of platelets,41 wetting and capillary
effects were investigated,42 as well as bulk and interfacial
properties of binary mixtures.43

Here, we consider vanishingly thin circular hard platelets with
continuous orientations addressing the bulk equation of state,
the densities of the bulk isotropic-nematic (IN) coexistence,
density profiles, and the interface tension of the (planar) free
IN interface, as well as the wetting properties when the system
is exposed to a planar hard wall. We use Monte Carlo (MC)
computer simulations, Onsager theory, and a recently proposed
fundamental measure theory (FMT) density functional.44 The
latter includes contributions to the free energy that are of third
order in density and gives values of the coexistence densities
and order parameter at the IN transition in good agreement with
simulation results. We investigate in detail the results from the
respective approaches for the asymptotic decay of density
profiles at large distances from a wall.45-49 A short account of
this work has been published as part of ref 50.

This paper is organized as follows. In section II, we describe
the model interactions. Section III gives an overview of density
functional theory (DFT) and introduces both the Onsager and
the FMT approximations. We present results in section IV for
the bulk properties, the IN transition, the free IN interface, and
wetting at a hard wall and conclude in section V.

II. Model

Consider a fluid of infinitely thin hard circular platelets of
radiusR. The platelets interact with a hard core pair potential
φ(r , ω, ω′) that depends on the center-to-center distancer
between both platelets and on both orientations, andω andω′,
taken to be unit vectors perpendicular to the plane of the particle.
The value ofφ(r , ω, ω′) is infinite provided that the two particles
overlap and vanishes otherwise.

In addition, the system is confined by a planar smooth hard
wall, which we take to be perpendicular to thez-direction and
to be located atz ) 0, such that only the halfspacez > 0 is
accessible to the particles. Hence, the interaction between the
hard planar wall and a platelet is described by an external
potential,

whereθ is the angle between thez-direction (normal to the wall)
and the particle orientationω (normal to the platelet), which
we can choose to be in the range 0< θ < π/2 due to the
inflection symmetry,ω f -ω, of the particles. See Figure 1a
for an illustration of the model.

The one-body density distribution of the platelets is denoted
by F(r , ω), wherer is the position coordinate of the particle
center. As a bulk parameter, we use the scaled densityFR3; the
normalization is chosen such thatF ) ∫dr dω F(r , ω)/(4πV),
whereV is the system volume. As we do not expect biaxiality
to occur, we can assume invariance with respect to rotations
around thez-axis, as well as translational invariance in thex-
andy-directions. The remaining relevant angleθ is that between
the orientationω and thez-axis; see Figure 1a. It follows that
the (number) density distributionF(r , ω) ) F(z, θ).

III. Density Functional Theory

A. Overview. In DFT, the grand potential is expressed as a
functional of the one-body density distribution,51

whereFexc[F] is the excess (over ideal gas) contribution to the
total (Helmholtz) free energy functional that arises from
interparticle interactions,Vext(r , ω) is an external potential acting
on the particles,µ is the chemical potential, and the ideal gas
(Helmholtz) free energy functional for uniaxial rotators is given
by

wherekB is Boltzmann’s constant,T is the absolute temperature,
and Λ is the (irrelavant) thermal wavelength for which we
chooseΛ ) R; the dependence on volumeV and temperature

Vext(z, θ) ) {∞ if z < Rsin θ
0 otherwise

(1)

Figure 1. (a) Model of hard platelets with radiusR and vanishing
thickness at a planar hard wall. The angle between thez-direction,
perpendicular to the wall, and the platelet orientationω is denoted by
θ. For convenience, we also consider a second parallel wall at a distance
L. (b) Snapshot from MC simulations using 110 000 particles at a (bulk)
density of FR3 ) 0.455. The system possesses periodic boundary
conditions in thex- andy-directions. Particles are colored according
to their orientation.

Ω̃([F], µ) )

Fid[F] + Fexc[F] + ∫dr ∫dω
4π

F(r , ω)(Vext(r , ω) - µ) (2)

Fid[F] ) kBT∫dr ∫dω
4π

F(r , ω)(ln(F(r , ω)Λ3) - 1) (3)
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has been suppressed in the notation. In the following, we use
the scaled chemical potentialµ* ) âµ with â ) 1/kBT.

For any given external potentialVext(r , ω), minimizing the
grand potential with respect to the one-body density distribution
F(r , ω) gives the equilibrium density profile,

which can be rewritten, using eq 2, as an Euler-Lagrange
equation

wherec1([F], r , ω) ) -(kBT)-1δFexc[F]/δF(r , ω) is the one-
body direct correlation functional. One systematic way to write
down the excess free energy functional is to expand it in a virial
series,

where f(r , ω, ω′) ) exp(-âφ(r , ω, ω′)) - 1 is the Mayer
function that for hard bodies is-1 if the two particles overlap
and vanishes otherwise. In practice, one has to resort to
approximations toFexc[F] and Onsager’s theory relies on
truncating eq 6 after thesecond orderin density. This is known
to be a good approximation for thin rods; we will investigate
in detail how it fares for platelets below.

Several approximations ofFexc[F] for nonspherical (convex)
hard bodies have been proposed: ref 52 gives an FMT for
parallel hard cubes; refs 53 and 54 investigate the properties of
the Zwanzig model; ref 55 is devoted to the role of three-body
correlations in a system of hard rectangles. In ref 56, an
interpolation between the Rosenfeld functional57 for hard spheres
and the Onsager functional for elongated rods was proposed.
Our present investigation relies on the theory of ref 44 for a
ternary mixture of hard spheres, needles, and platelets with
continuous orientations. For completeness, but also to disen-
tangle the pure platelet case from the full ternary mixture, we
summarize the main features of the FMT hard platelet functional
briefly in the following.

B. Fundamental Measure Theory.The fundamental mea-
sure theory (FMT) was built originally for additive hard sphere
mixtures.57 The extension to arbitrarily shaped hard convex
bodies, proposed in refs 58 and 59, yields the correct second
virial coefficients in the isotropic phase but only an approxima-
tion for the Mayer bond(s), such that even the lowest (second)
order term in the virial expansion (6) of the excess free energy
functional is not correct. This is not sufficient to describe, e.g.,
nematic ordering (see, e.g., ref 56 for a discussion). The theory
of ref 44 remedies this deficiency for the case of hard platelets
of vanishing thickness. Hence, it possesses the correct contribu-
tion of second order in density and also features a term of third
order in density. Higher order terms are absent, which is
intimately connected to the scaled-particle roots of the approach
and can in particular be traced back to the vanishing volume of
the particles, which leads to a vanishing packing fraction. The

third-order term is different from the exact third virial contribu-
tion (as given in eq 6). It is nonvanishing (and constant) for
cases with common triple intersection of the three particles
involved. Global prefactors are used to compensate for the “lost
cases”60,61in order to yield reasonable values for the third virial
coefficients (of the ternary mixture). For a more detailed
discussion, we refer the reader to ref 44.

The excess free energy functional is expressed as an integral
over space and (in the present case of platelets) twice over
director space,

where the (reduced) free energy density,Φ, is a function of a
set of weighted densities,{ni

ν}, whereν andi label the type of
weighted density (detailed below); the argumentsr , ω, andω′
of the weighted densities have been omitted in the notation.
For pure platelets, the free energy density is

where the first term on the right-hand side (rhs) when combined
with eq 7 recovers the exact second virial contribution toFexc-
[F] (see section III.C of ref 44 for an explicit derivation). The
weighted densities are related to the bare one-body density,
F(r , ω), via

where * denotes the three-dimensional convolution and the
weight functions are given by

whereΘ(‚) is the unit step (Heaviside) function andδ(‚) is the
Dirac distribution. We have kept the notation of ref 44 where
the upper index D refers to the species (disks) and its number
of appearances indicates the number of particle orientations that
appear in the weight function, eqs 12-15. The lower indexi
indicates whether the weight function is characteristic of the
rim (i ) 1) or of the surface (i ) 2) of the particles.

C. Numerical Procedure. To obtain the weight functions
and hence the weighted densities in planar geometry, we
integrate over the in-plane coordinatesx and y in eqs 9-11,
assuming azimuthal symmetry such that the density distribution
only depends onz andθ; See section VII of ref 44 for explicit
results. Our numerical implementation of eq 5 uses free
minimization, i.e., noa priori form of F(z, θ) is assumed. For
practical reasons, we add a second hard wall, such that the walls
are located atz ) 0 andz ) L, with typically L/R ) 51, which

δΩ̃[F]

δF(r , ω)
) 0 (4)

kBT ln(F(r , ω)Λ3) - kBTc1([F], r , ω) + Vext(r , ω) ) µ
(5)

âFexc[F] )

- 1
2∫dr ∫dω

4π ∫dr ′ ∫dω′
4π

F(r , ω)F(r ′, ω′)f(r - r ′, ω, ω′)

- 1
6∫dr ∫dω

4π ∫dr ′ ∫dω′
4π ∫dr ′′ ∫dω′′

4π
F(r , ω)F(r ′, ω′)F(r ′′, ω′′) ×

f(r - r ′, ω, ω′)f(r - r ′′, ω, ω′′)f(r ′ - r ′′, ω′, ω′′) + O(F4)
(6)

âFexc[F] ) ∫dr ∫dω
4π ∫dω′

4π
Φ({ni

ν}) (7)

Φ({ni
ν}) ) n1

DD(r , ω)n2
D(r , ω) +

1
24π

n2
D(r , ω)n2

DDD(r ; ω; ω′)n2
D(r , ω′) (8)

n2
D(r , ω) ) w2

D(r , ω)*F(r , ω) (9)

n1
DD(r , ω) ) ∫dω′

4π
w1

DD(r , ω′; ω)*F(r , ω′) (10)

n2
DDD(r ; ω; ω′) ) ∫dω′′

4π
w2

DDD(r , ω′′; ω; ω′)*F(r , ω′′)
(11)

w1
D(r , ω) ) δ(R - |r |)δ(r ‚ω)/8 (12)

w2
D(r , ω) ) 2Θ(R - |r |)δ(r ‚ω) (13)

w1
DD(r , ω; ω′) ) 2

R
|ω ‚ (ω′ × r )|w1

D(r , ω) (14)

w2
DDD(r , ω; ω′; ω′′) ) 8

π
|ω ‚ (ω′ × ω′′)|w2

D(r , ω) (15)
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we find to be large enough to prevent significant capillary
effects. An equidistant grid in thezdirection with 20 grid points
per particle radiusR is used. The angleθ is discretized on a
nonequidistant grid with 20 grid points in the interval [0;π/2].
This adds up to a total of∼2 × 104 grid points. The numerical
minimization is performed using molecular dynamics-type
simulated annealing.62-64 Our convergence criterion relies on
the normε defined as the maximum of the standard Euclidean
vector norm for the difference of the numerical “vector”F(z, θ
) const) between two minimization steps, and we takeε <
10-6 as the threshold. For low values of the chemical potential
µ*, and hence far away from the coexistence region,∼102 steps
were sufficient to obtain convergence. At higher values ofµ*,
close to its value at IN coexistence, up to∼105 steps were
necessary to obtain convergence.

IV. Results

A. Bulk Properties of Hard Platelets. For the bulk IN
transition we obtain from FMT the value of the chemical
potential at coexistence, density of the isotropic and the nematic
phase, and order parameter in the isotropic and the nematic
phase, asµcoex

/ ) 5.004,FIR3 ) 0.419,FNR3 ) 0.469,SN )
0.531,SI ) 0.045, respectively. These values differ slightly from
those reported in ref 44, where noz-dependence was resolved
and hence higher angular resolution with 100 grid points could
be used, resulting in44 FIR3 ) 0.418,FNR3 ) 0.460,SN ) 0.492,
and SI ) 0. Both data sets are in good agreement with the
simulation results,5 which areFIR3 ) 0.460,FNR3 ) 0.498, and
SN ) 0.45 - 0.55. Second virial theory givesFIR3 ) 0.666,
FNR3 ) 0.849, andSN ) 0.79; hence, it correctly predicts a
first-order transition but overestimates both the density jump
and the order parameter at coexistence. Figure 2a shows the
order parameterSas a function of the scaled bulk densityFR3

across the IN transition to illustrate these results. In Figure 2b,
we plot the equation of state, i.e., the pressureP as a function
of FR3. In the isotropic phase within DFT, we useP(F) )
-∂/∂V(Fid[F ) const]+ Fexc[F ) const]), and from FMT, we
obtainâP(F) ) F + π2R3F2/2 + 2π2R6F3/3 with âFid[F ) const]/
V ) F(ln(FR3) - 1) and âFexc[F ) const]/V ) π2R3F2/2 +
π2R6F3/3. In Onsager theory, the pressure and the excess free
energy are given by the same expressions without the contribu-
tion of third order in density. In the nematic phase, we insert
the equilibrium density distribution into the grand potential
functional (2) and useP ) -Ω̃([F], µ)/V. For comparison, we
have determined the equation of state from isobaric MC
simulations using very long runs of up to 106 cycles for a system
of 500 particles. Figure 2b shows that these simulation results
are consistent with those of earlier simulation studies4,65,66and
are very well reproduced by the FMT. Onsager theory under-
estimates the pressure in the isotropic phase and overestimates
the pressure in the nematic phase. This is due to the too large
coexistence densities leading to a too large density of the
coexisting nematic phase. Note also that the slope dP/dF is too
small in the Onsager treatment.

B. Free Isotropic-Nematic Interface. At bulk IN coexist-
ence, a planar interface that separates the isotropic and nematic
phases will be stable. The behavior of such an inhomogenous
system is conveniently analyzed using an orientation-averaged
density profile, which gives the density of platelet midpoints at
distancez (measured from the position of the Gibbs dividing
interface) and is obtained from the full density profile as

To assess the degree of local nematic order, we use the nematic
order parameter profile, defined as

whereP2(x) ) (3x2 - 1)/2 is the second Legendre polynomial.
(The normalization is such thatS) 0 indicates isotropic states,
while S ) 1 indicates parallel alignment of particles.)

We first investigate properties of the free IN interface as
obtained from FMT. Figure 3a shows the density profile across
the interface for perpendicular alignment of the nematic director
with the surface, i.e., such that the platelets tend to lie flat against
the free IN interface. The preference for homeotropic anchoring
was consistently found by experimental investigations50 and for
the Zwanzig model.43 The interface is smooth and crosses over
monotonically between the densities of the coexisting phases,
without any signs of oscillations. We have analyzed the
asymptotic decay of the density profile into the bulk phases in
detail. For monotonic behavior, we expect that forz f -∞,
i.e., on the nematic side of the interface,|F(z) - FN| ∝
exp(-|z/êN

F |), while for z f ∞, i.e., on the isotropic side,
|F(z) - FI| ∝ exp(-|z/êI

F|), whereêI
F andêN

F are the correlation
lengths in the coexisting I and N phases, respectively (the upper
index is a reminder of their relationship toF(z)). We hence plot
in the insets of Figure 3a ln|F(z) - FI| on the isotropic side and

Figure 2. (a) Nematic order parameterS and bulk densityFR3 at
coexistence as obtained from FMT (big stars), MC simulations
(squares), and Onsager theory (closed circles). Also shown isS as a
function of FR3 in the nematic phase from FMT (full line) and MC
simulation (small squares). (b) Scaled pressurePR3/kBT as a function
of the bulk densityFR3 as obtained from FMT (full line), MC
simulations (black squares), and Onsager theory (dashed line). Also
shown are the MC simulation results of ref 4 (open circles) and those
obtained from sedimentation profiles (dotted line); see ref 66. The small
open and closed circles indicate the theoretical results for the isotropic
and nematic coexisting phases, respectively.

S(z) ) [F(z)]-1∫0

π/2
dθ sin(θ)F(z, θ)P2(cosθ) (17)

F(z) ) ∫0

π/2
dθ sin(θ)F(z, θ) (16)
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ln|F(z) - FN| on the nematic side of the interface as a function
of z. The observed linear dependence confirms the expectation,
and from the slopes we obtainêI

F/R ) 1.32 andêN
F /R ) 1.35.

Corresponding results forF(z) from Onsager theory are shown
in Figure 3b and will be discussed below. Figure 3c shows the
order parameter profile across the IN interface as obtained from
FMT. Again, we have analyzed the asymptotic decay of the
profile and find that the order parameter decays forz f -∞ as
|S(z) - SN| ∝ exp(-|z/êN

S|), whereêN
S/R ) 1.33, and forz f ∞

as |S(z) - SI| ∝ exp(-|z/êI
S|) whereêI

S/R ) 1.28; see the inset
of Figure 3c. (Note thatSI is nonvanishing only for numerical
reasons.) We expect thatêI

F ) êI
S andêN

F ) êN
S and indeed find

this to good accuracy to be fulfilled, demonstrating the internal
consistency of our calculations.

Results from Onsager theory for the density profile and order
parameter profile at the free IN interface are plotted in Figure
3b and d, respectively. Indeed weak oscillations at theisotropic
side of the free IN interface can be observed. See the insets
(left) on the nematic side of Figure 3b and d, whereF(z) and
S(z) are shown, respectively, on a logarithmic scale. At the
nematic side of the interface, Onsager theory predicts a
monotonic exponential decay, both for the density and the order
paramer, with a decay length given byêN

F /R ) êN
S/R = (0.67(

0.01). This shorter decay length, compared to that from the FMT
calculations, is also reflected by the sharper interface and the
steeper slopes in the Onsager profiles. We will discuss the
relationship of the asymptotic decay at the free IN interface
with that at a hard wall in more detail in section IV C.

To illustrate the properties of the free IN interface further,
we plot in Figure 4 results from FMT forF(z, θ) as a function
of z/R for seven different values ofθ. We find that forθ f π/2
the density in the nematic phase is lower than in the isotropic
phase, which is due to the ordering in the nematic phase around
the nematic director atθ ) 0; this causes lower densities around
θ ) π/2. Furthermore, the inset of Figure 4 showsF(z, θ) as a
function ofθ for three different fixed values ofz/R, wherez/R
) -10 is on the nematic side,z ) 0 is at the Gibbs dividing
surface, andz/R ) 10 is on the isotropic side of the interface.
The crossover from an isotropic orientation distribution to one
characteristic for the nematic phase is clearly visible.

In the following, we explore the repercussions of the
interfacial properties of the free IN interface on the adsorption
behavior of platelets at a hard wall.

C. Adsorption of Platelets at a Hard Wall. The hard wall
constitutes a basic yet realistic model for a substrate, e.g., a
container wall, that a colloidal dispersion is exposed to.
Although only represented by a hard core constraint, the hard
wall induces coupling of orientation and translation degrees of
freedom, because the restriction of available orientations depends
on the distance of the particle center to the wall (see eq 1 for
the definition of the external potential). Figure 5a shows
orientation-averaged density profiles,F(z)R3 (as defined in eq
16), obtained from FMT for a range of chemical potentials
approaching bulk IN coexistence. For low values ofµ*, and
correspondingly low values of the scaled bulk density,FR3, a
pronounced “correlation hole” is apparent close to the wall.40

This originates from the reduction in available configurations
due to overlap of the platelet with the wall. Atz ) R, there is
a sharp cusp, followed by weak oscillations for larger distances
z. Quite unexpectedly, but consistent with the monotonic decay
at the free IN interface, these oscillations disappear upon
increasingµ*. A further shoulder appears very close to the wall,
z ∼ 0.5R, which develops into an independent peak that grows
in size and becomes eventually larger than the cusp atz ) R.
A pronounced wetting film grows upon approaching bulk IN
coexistence. The film decays from a plateau with a value that
is very similar to the density of the coexisting nematic phase
smoothly to the value of the isotropic bulk. To demonstrate the
similarity between the wetting film at the hard wall and the
free IN interface, we superimpose the density profile of the free
IN interface onto the profile exhibiting the thickest wetting film
in Figure 5a. We show results from Onsager theory for density
profiles at the hard wall for a range of different bulk densities

Figure 3. Density profileF(z)R3 (parts a and b) and order parameter
profile S(z) (parts c and d) across the free IN interface as obtained
from FMT (a and c) and Onsager theory (b and d). The insets show
ln|(F(z)R3 - FI,NR3| and ln|(S(z)) - SI,N|, revealing an asymptotic
monotonic exponential decay into the bulk phases in all cases except
for the oscillatory decay into the isotropic phase as predicted by the
Onsager theory in b and d.

Figure 4. Variation ofF(z, θ)R3 with zacross the free IN interface for
seven different angles,θ ) 0, 0.2, 0.36, 0.47, 0.58, 0.78, and 1.57)
π/2 (from top to bottom) as obtained from FMT. The inset showsF(z,
θ)R3 as a function ofθ for z ) -10, 0, and 10 (solid line, dashed line,
and dotted line, respectively).
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in Figure 5b. The profiles for small bulk densities are very
similar to those obtained from FMT. With increasing density,
a nematic wetting layer develops. The behavior close to the
wall is very similar to that found in FMT. Also a wetting film
develops, but this is much more pronounced compared to the
FMT results, consistent with the trend of the differences in
coexistence densities obtained from both approaches.

In order to test the theoretical results we have carried out
NVTMC simulations using very large system sizes with up to
N ) 7 × 104 hard platelets confined between two planar hard
walls. As the interfacial tension between the isotropic and
nematic phase is very low, we needed large (lateral) wall areas
in order to stabilize the nematic film against thermal fluctuations.
Moreover, large wall separations were needed to prevent
capillary nematization. The density profiles obtained from MC
simulations are shown in Figure 5c. Note that the bulk densities
chosen are different from those considered in DFT to account
for differences in the bulk coexistence densities. The density
profiles from MC simulations confirm the existence of a
correlation hole close to the wall and the cusp atz ) R for low
densities. With increasing density, this peak is overshadowed
by a growing peak atz ∼ 0.5R, in agreement with the results
from DFT. The growing wetting film is very similar but
somewhat more diffuse than that found by FMT. We attribute
this to the presence of additional (capillary wave) fluctuations
in the simulations that are not captured in DFT.

We next investigate the origin of the maximum atz ∼ 0.5R
that occurs for high bulk densities; see Figure 5 for results from
both DFTs and from simulations. In Figure 6, we have chosen
FR3 ) 0.4184 as an example value and have plotted the wall

density profileF(z, θ) as a function ofz for seven different fixed
values of the angleθ. We find that the first (contact) peak moves
away from the wall for increasing values ofθ. This is due to
the orientation-dependent hard core repulsion that the wall exerts
on the particles; in particular, only platelets withθ ) 0 are
allowed to lie with their centers directly at the wall,z ) 0. The
inset in Figure 6 shows the wall contact value of the density
distributionF(R sin θ, θ) sin θ as a function ofθ; the spherical
volume element is accounted for by the factor sinθ. We find
thatsdue to the sinθ termsthe maximum liesnot at the wall.
Together with the fact that the averaged density profileF(z)R3

Figure 5. (a) Density profiles from FMT as a function of the distance from the wall,F(z)R3, for values of the scaled (bulk) densityFR3 ) 0.186,
0.343, 0.393, 0.416, 0.4182, and 0.4184 (from bottom to top). The dotted line is the profile across the free IN interface. Bulk isotropic and nematic
coexistence densities are indicated by the open and closed circles. (b) Density profiles from Onsager theory as a function of the distance from the
wall, F(z)R3, for values of the scaled (bulk) densityFR3 ) 0.187, 0.411, 0.579, 0.657, 0.663, and 0.665 (from bottom to top). Bulk isotropic and
nematic coexistence densities are indicated by the open and closed circles. (c) Density profiles as a function of the distance from the wall,F(z)R3,
from MC simulations, for bulk densitiesFR3 ) 0.125, 0.25, 0.38, 0.45, 0.46, and 0.475 (from bottom to top). Bulk isotropic and nematic coexistence
densities are indicated by the open and closed circles.

Figure 6. Variation of F(z, θ) with z for seven different angles,θ )
0, 0.2, 0.36, 0.47, 0.58, 0.78, and 1.57) π/2 (from top to bottom) as
obtained from FMT on a logarithmic vertical axis. The inset shows
the contact valueF(R sin θ, θ) sin θ as a function ofθ.
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is defined as an integral overθ (see eq 16), this helps to explain
the maximum atz ∼ 0.5R.

In Figure 7a, we show the order parameter profileS(z) at the
hard wall from FMT for the same statepoints as considered in
Figure 5a. Upon approaching the wall, the order parameter
approaches unity, as platelets with small separation distances
from the wall must be well aligned with the wall to avoid
overlap. For low bulk densities, there is a minimum ofS(z) near
z ∼ 2R. Strikingly, upon increasing the chemical potential, a
growing zone of nematic order is found. This confirms that
indeed the film of high density possesses nematic order. Figure
7b shows order parameter profiles at the hard wall as obtained
from Onsager theory for the same bulk densities as considered
in Figure 5b. Again, results from FMT and Onsager are very
similar for small densities. A strongly pronounced nematic
wetting layer is also found for bulk densities close to IN
coexistence. Corresponding results from MC simulations are
shown in Figure 7c. Although the MC data contain some
statistical noise and the minimum inS(z) is not found in the
simulations, the overall agreement to the results from FMT is
striking.

Figure 8 shows the asymptotic behavior ofF(z) for large
distances from the wall for three different (bulk) densities as
obtained from FMT (a), Onsager (b), and MC (c) simulations.
To scrutinize the behavior, we plot ln|F(z)R3 - FR3|, which
allows the observation of oscillations with small amplitude more
easily than a linear plot does. Note that zeros ofF(z) - F
correspond to (negative) poles of ln|F(z)R3 - FR3|. For
numerical reasons, the curves in Figure 8 display only a finite
negative minimum value; these (relatively) deep local minima
correspond to the zeros ofF(z). While the first minimum is due
to the initial increase of the density from the wall, the subsequent

minima stem from oscillations of the density profile that extend
into the bulk. Hence, the monotonic decay of the upper profiles
obtained from FMT in Figure 8a indicates that the oscillations
disappear upon increasing density. This finding is supported
by the MC simulations, although in Figure 8c forz/R > 3.5 the
statistical errors are considerable. In contrast to this scenario,
Onsager theory predicts oscillations over the full range of
densitites in the isotropic phase; see Figure 8b. The oscillations
move away from the wall with increasing density, but do not
disappear. In Figure 9a and b, we show the results for the order
parameterS(z) obtained from FMT (corresponding to Figure
8a) and Onsager theory (corresponding to Figure 8b), respec-
tively. Again, the FMT results indicate a crossover from
oscillatory to monotonic decay upon increasing density, while
Onsager theory predicts oscillatory decay over the full range
of densities in the isotropic phase. Crossover from monotonic
to oscillatory decay of density profiles at the free interface
between demixed nematic phases was found in mixtures of large
and small Zwanzig platelets,43 and the authors conclude that a
Fisher-Widom line separating these different regimes must exist
in this system. Here, however, we find such structural crossover
in the isotropic phase.

The nature of the wetting scenario can be analyzed in more
detail by considering the adsorption, either obtained fromF(z)
or from S(z), via

Figure 7. (a) Nematic order parameter profile from FMT,S(z), as a function of the distance from the hard wall for the same values ofFR3 as in
Figure 5a. The dotted line showsS(z) across the free IN interface. (b) Order parameter profiles from Onsager theory, as a function of the distance
from the wall. Plotted are results for the same bulk densities as in Figure 5b. (c) Nematic order parameter profile,S(z), from MC simulations as a
function of the distance from the hard wall, for the same values ofFR3 as in Figure 5c.

ΓF ) ∫0

∞
dz [F(z) - F(∞)] (18)

ΓS ) ∫0

∞
dz [S(z) - S(∞)] (19)
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In Figure 10a, we have plottedΓF as obtained from FMT as a
function of the scaled densityFR3 in the isotropic and nematic
phase. The adsorption is negative for low densities and has a
minimum atFR3 ≈ 0.2. ForFR3 > 0.3, we find positive values
of ΓF, and eventually, a sharp increase asF approaches its value
in the coexistent isotropic phase. This hints at complete wetting
of the wall by the nematic phase. In the nematic phase, the
adsorption decreases monotonically as a function ofFR3. This
can be explained with increasing nematic ordering in the bulk
and hence a loss of structure close to the wall. The film
thickness, defined viadF ) ΓF/(FN - FI) anddS ) ΓS/(SN - SI),
is shown in the inset of Figure 10a as a function of-ln(∆µ*),
with ∆µ* ) µcoex

/ - µ*. From the fact that we find a linear
dependence in this representation, we can conclude that the
nematic phase wets the wall completely, i.e., that the film
thickness diverges as bulk coexistence is approached as67

which is indeed appropriate for complete wetting in the present
case of short-ranged interparticle forces. Complete wetting of
a hard wall by the nematic phase has also been found for the
Zwanzig model for platelets with restricted orientations.42 We
find êN

F /R ) 1.32 andêN
S/R ) 1.22. While the agreement with

the data from the decay of the free IN interface forêN
F is very

good, the above given value forêN
S is slightly smaller than that

found at the free IN interface, which we attribute to the larger
sensitivity of the order parameterS to numerical uncertainties.

In addition, we consider Young’s equation for the contact
angleϑ at which the free IN interface hits the wall,

whereγWN, γWI, andγIN are the interfacial tensions between
the wall and the nematic phase, between the wall and the
isotropic phase, and between the isotropic and the nematic phase,
respectively. Results for the tensions are obtained from the
general definition of the interfacial tension,

whereΩinh is the grand potential of the inhomogenous system
exhibiting the interface,p is the bulk pressure,V is the system
volume, andA is the interface area. Within DFT,Ωinh is obtained
from inserting the equilibrium result forF(z, θ) into eq 2, i.e.,
Ωinh ) Ω̃[F(z, θ)]. Within FMT, we find γWNR2/kBT ) 0.3327,
γWIR2/kBT ) 0.3391, andγINR2/kBT ) 0.006656 (see section
IV B) from eq 23, which yields cosϑ ≈ 0.96. BecauseγIN is
obtained from two numerically similar quantities via (23), the
resulting value has a relatively large numerical uncertainty.
Keeping this in mind when usingγIN in (22), the result cosϑ
≈ 0.96 is consistent withϑ ) 0 as appropriate for complete
wetting. The corresponding values from Onsager theory are
given byγWIR2/kBT ) 0.4387,γWNR2/kBT ) 0.3878,γINR2/kBT
) 0.0508, such that cosϑ ) 1.003, again within the numerical
accuracy consistent withϑ ) 0 and hence complete wetting.

In the simulations we use thermodynamic integration to
determine the free energy difference of a bulk system and a
system with a wall. We approximate the hard wall by a finite

Figure 8. (a) Variation of ln|F(z)R3 - FR3| with z/R for the same values of (bulk) density as in Figure 5a, as obtained from FMT. (b) Same as part
a but from Onsager theory for the (bulk) densities of Figure 5b. (c) Same as a and b but as obtained from MC simulations forFR3 ) 0.306, 0.444,
and 0.459 (from bottom to top).

dF ) êN
F ln(∆µ*) + const (20)

dS ) êN
S ln(∆µ*) + const (21)

cosϑ )
γWI - γWN

γIN
(22)

γ ) (Ωinh + pV)/A (23)
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barrier, such that a zero barrier height corresponds to a bulk
system and an infinite barrier height to a system with a hard
wall.68,69 This yields the wall tensionsγWI and γWN and we
obtainγIN via (22)assumingcomplete wetting,ϑ ) 0. We find
γINR2/kBT ) 0.015 from MC simulations.

In Figure 10b, we have plotted the wall interfacial tension
γR2/kBT as a function of the (bulk) density far away from the
wall F ) F(∞). At low densities,FR3 j 0.3, we find very good
agreement between results from both DFTs and the simulations,
as well as with the tension obtained from scaled-particle theory
(SPT),70 given by

The SPT result fails, however, to reproduce the maximum ofγ
that occurs below bulk coexistence. There is very good
agreement between the location of this maximum (FR3 = 0.4)
in FMT and MC, whereas Onsager theory locates it far off at
FR3 = 0.6. The nonmonotonic behavior ofγ is accompanied
by the growth of the nematic wetting layer, leading to a
reduction of the interfacial tension. In the nematic phase,γ
decreases as a function ofFR3, which we can trace back to the
increasing nematic order in the bulk. The decay predicted by
FMT is stronger than that found in the simulations. Although
the Onsager functional overestimates the behavior in the
coexistence region significantly, it gives a qualitatively correct
picture.

V. Conclusions

In conclusion, we have used two different versions of density
functional theory as well as MC computer simulations to
investigate bulk and interfacial properties of a model colloidal
dispersion of hard circular platelets with vanishing thickness.

The system displays a density-driven, weak first-order IN
transition with a small density jump at coexistence (∼8%) and
an unusually low-order parameter in the coexisiting nematic
phase (S ∼ 0.5). Results for the equation of state in both the
isotropic and in the nematic phase and the location of the bulk
IN transition obtained from the FMT version of DFT agree well
with those from MC simulations. For low densities, the FMT
version reduces to the Onsager (second virial) version of DFT,
and we can verify corresponding agreement of results from both
approaches for low densities. For higher densities, the Onsager
theory gives only a qualitatively correct picture: It predicts the
IN transition correctly to be of first order, but already at densities
FR3 ∼ 0.2, well below the phase transition, deviations of the
pressure to that obtained from simulations become apparent,
indicating that higher than second-order virial coefficients
become important. As the Onsager theory misses such contribu-
tions, considerably too high densities are needed to induce
sufficiently strong contributions to the free energy that drive
the system into a nematic state. In turn, the nematic phase at
coexistence has a profoundly too high density and too high
nematic order parameter, according to Onsager theory.

When adsorbed against a hard wall, we find in both versions
of DFT as well as in the simulations complete wetting of the
wall by the nematic phase upon increasing the bulk density
toward the density of the istropic phase at coexistence. Within

Figure 9. (a) Variation of ln|S(z) - S| with z/R from FMT for the
same values ofFR3 as in Figure 8a. (b) Variation of ln|S(z) - S| with
z/R from Onsager theory for the same values ofFR3 as in Figure 8b.

γ/kBT ) πFR/4 + πF2R4/2 (24)

Figure 10. (a) AdsorptionΓFR2 as a function of the densityFR3, as
obtained from FMT. The vertical lines indicate the isotropic and nematic
coexistence density. The divergence ofΓF is a signature of complete
wetting of the wall. The inset shows FMT results for the thicknessdF
(upper line) anddS (lower line) of the nematic wetting film, as defined
in the main text, as a function of-ln(∆µ*). (b) Interface tensionγ at
a hard wall as a function of the scaled bulk densityFR3, as obtained
from FMT (long dashed line), Onsager theory (short dashed line), scaled
particle theory (dotted line), and MC simulations (full line). The open
and filled circles represent the values at bulk isotropic and nematic
coexistence statepoints, respectively, as obtained from FMT, simula-
tions, and Onsager theory.
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FMT, we conclude the occurrence of complete wetting both
from an analysis of the divergence of the adsorption due to the
formation of the nematic wetting film and from Young’s
equation, which yields a vanishing contact angle within the
numerical accuracy. The results for the density profiles at a hard
wall obtained from FMT compare favorably to those from MC
simulations. Both the detailed variation of the density with
distance within a few particle radii of distance from the wall as
well as the growth of a wetting film of high density upon
approaching the bulk isotropic coexistence density are repro-
duced by the theory. The most prominent difference is that the
decay of the profiles to the bulk value is somewhat more diffuse
in the simulations. We attribute this to the influence of capillary
fluctuations of the free interface,71,72 which are not accounted
for in the DFT. Investigating the wall isotropic interfacial
tension, we have found that the FMT results are in close
agreement with the simulation data. Onsager theory overesti-
mates the value of the wall interfacial tension at high densities;
again at low densitiesFR3 j 0.3, the results compare well to
those from the other approaches.

Our investigation of the precise form of the asymptotic decay
of the density profile at large distancesz from a planar interface
remains somewhat inconclusive. In the nematic phase, we have
considered in detail the case where the nematic director at large
distances from the interface is aligned with the interface normal
(i.e., thez-direction). We have established, consistently within
both theories, that the decay is monotonic in this case. As the
platelet diameterD is the only relevant length scale in the
system, we would expect possible oscillations to possess
wavelengths comparable toD and hence to originate from
packing effects of particles that lieperpendicular to the
z-direction. Clearly, such configurations are strongly suppressed
in the nematic phase, and indeed, no oscillatory behavior is
observed in this geometry. The most probable particle configu-
rations parallel to the director, however, are not expected to
lead to oscillations, as there is no apparent intrinsic length scale
for platelets with vanishing thickness that could lead to such
oscillations. Our results rule out the presence of oscillations with
smaller wavelength thanD. What remains to be investigated,
however, is the decay for different inclinations of the nematic
director (far away from the interface) and the surface normal,
in particular the case where both are parallel.

We have established that in the isotropic phase (where the
above dependence on relative orientations is absent) the
asymptotic decay far from the planar hard wall is indeed
oscillatory for low densities. Both DFTs predict that this type
of decay persists over most of the range of densities in the
isotropic phase. While the simulation results do not invalidate
this scenario, the considerable statistical uncertainties prohibit
obtaining supporting evidence as well. One prominent difference
between the Onsager and FMT results is that the latter clearly
show a crossover from damped oscillatory to monotonic
exponential decay upon increasing density, at a value close to
but definitely below the isotropic coexistence density. As we
expect the asymptotic decay to be universal, this is consistent
with the fact that we have found monotonic decay at the
isotropic side of thefree IN interface within FMT, whereas
Onsager theory gives rise to damped oscillatory decay. Whether
the observed crossover in the isotropic phase, and hence an
unusual disappearance of a signature of packing effects upon
increasing density, indeed reflects a crossover in the type of
structural correlations, or is rather an artifact of the DFT
approximation or its numerical discretization, remains to be seen.
Clearly, relating the asymptotic decay of the one-body density

profile to that of the asymptotic decay of bulk pair correlation
functions could shed further light on this topic.73

Possible future research could be aimed at capillary effects
inside planar pores,42 capillary waves at the free IN interface,71,72

or the influence of an external magnetic or gravitational field
on the behavior of the dispersion. A further interesting point of
investigation is the effect of the softness of the wall-platelet
potential on the adsorption properties.74
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