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We study bulk and interfacial properties of a model suspension of hard colloidal platelets with continuous
orientations and vanishing thickness using both density functional theory, based on either a second virial
approach or fundamental measure theory (FMT), and Monte Carlo (MC) simulations. We calculate the bulk
equation of state, bulk isotropiciematic (IN) coexistence, and properties of the (planar) free IN interface
and of adsorption at a planar hard wall, where we find complete wetting of the nematic phase at the isotropic
wall interface upon approaching bulk IN coexistence. We investigate in detail the asymptotic decay of
correlations at large distances. In all cases, the results from FMT and MC agree quantitatively. Our findings
are of direct relevance to understanding interfacial properties of dispersions of colloidal platelets.

I. Introduction bulk IN transition of hard platelets are the very small density

Di . f herical colloidal icl del jump at coexistence and the very low value of the nematic order
ispersions of nonspherical colloidal particles are mode parameterS ~ 0.5, in the coexisting nematic phase.

systems to study a variety of phenomena in condensed matter, . . . . .
During recent years, considerable experimental, simulation,

including fluid phase separation, liquid crystalline ordering, and i . ;
the influence of magnetic, electric, or gravitational fields on and theoretical work has been devoted to gaining understanding
f the behavior of platelet dispersions. A well-established

macroscopic properties. The bulk phase behavior of nonspherical0 X e : .
colloids is considerably more complex than that of spherical €XPerimental model system is gibbsite platelets dispersed in
particles due to the stability of partially ordered (liquid toluene, for which the existence of the IN transition in a colloidal

crystalline) phases with properties between those of liquids and plgtelet sys’gem was for the first time observgd with polarization
those of crystals. One particularly important example is the Microscopy’ In the same system the nematiolumnar phase

phase transition from an isotropic (1) fluid to an orientationally trans_ltlonf,‘ the hexagonatcolumnar liquid crystal phaseand
ordered nematic (N) fluid. The nematic phase is characterized 9€lation and nematic orderitfgvere investigated subsequently.
by macroscopic orientational order, such that the particles align Furthermore, the influence of external potentials was considered,
preferentially along a common nematic director; the spatial €8~ that of gravity-*2and of electri¢® and magnetic fields!
distribution of position coordinates remains homogeneous. TheAlso. platelike clay particle§1® and mixtures of colloidal

IN transition was first observed experimentally in suspensions Platelets and polymets'®have received considerable attention.
of (rodlike) tobacco mosaic virus particléd,and its first Theqretlcal investigations were devoted to the mfluence_ of
theoretical description was given by Onsa@éfhis famous  gravity on phase behavirand the phenomenon of nematic
derivation of macroscopic ordering from anisotropic particle density inversiorf? An interaction site model for lamellar
shapes constitutes a paradigm for understanding the competitiorfOlloids was investigatetf. The phase diagram of a mixture of
between position and orientation degrees of freedom that hard colloidal spheres and disks was calculated using a free
maximizes the overall entropy of the system. Onsager’s theory Volume approacf and the free IN interface in fluids of charged
can be viewed as a truncation of the Taylor expansion of the platelike colloids was investigated using the Zwanzig model
Helmholtz excess free energy functional at second order in With discrete orientation® Ref 24 is devoted to the effects
density and becomes exact, due to a scaling argument, in thecaused by polydispersity in a mixture of rods and platelets. A
limit of thin rods at high concentration. However, such a scaling model fluid of hard platelike particles has also been used to
does not hold in the case of (vanishingly) thin hard platelets; describe the structure factor of macromolecular solutions of
when applied to this system, the theory is known to predict the stilbenoid dendrimer$.

bulk isotropic-nematic (IN) transition correctly to be of first The presence of a substrate commonly leads to rich phenom-
order but to overestimate the transition densities and value of enology of surface phase behavior. The smooth hard planar wall
the nematic order parameter at coexistence quite severely ass a basic model for a substrate which despite its simplicity
compared to simulation resuft§. The peculiar features of the  induces intriguing phenomenand has accordingly attracted
interest for a variety of hard core models. As energy is irrelevant

: Corresponding author. in such systems, one refers to “entropic wettiftgind examples
Heinrich-Heine-UniversitaDisseldorf. ; ; iayi it
- N include ordering of rods near a hard w#lthe uniaxial-biaxial
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spheres in a planar hard siitAlso, the entropic torque acting

on a single hard rod in a solvent of hard spheres close to the
wall was investigate@ The isotropic phase of platelets in
contact with a wall has been considered in ref 40 using Onsager
theory, and results were compared to those for a hard rod fluid.
For the Zwanzig model of platelets,wetting and capillary
effects were investigated, as well as bulk and interfacial
properties of binary mixture®.

Here, we consider vanishingly thin circular hard platelets with
continuous orientations addressing the bulk equation of state,
the densities of the bulk isotropimematic (IN) coexistence,
density profiles, and the interface tension of the (planar) free
IN interface, as well as the wetting properties when the system
is exposed to a planar hard wall. We use Monte Carlo (MC)
computer simulations, Onsager theory, and a recently proposed
fundamental measure theory (FMT) density functigtialhe
latter includes contributions to the free energy that are of third
order in density and gives values of the coexistence densities
and order parameter at the IN transition in good agreement with
simulation results. We investigate in detail the results from the
respective approaches for the asymptotic decay of density
profiles at large distances from a wéii.*® A short account of
this work has been published as part of ref 50.

This paper is organized as follows. In section Il, we describe
the model interactions. Section Il gives an overview of density
functional theory (DFT) and introduces both the Onsager and
the FMT approximations. We present results in section IV for
the bulk properties, the IN transition, the free IN interface, and
wetting at a hard wall and conclude in section V.

Il. Model

Consider a fluid of infinitely thin hard circular platelets of
radiusR. The platelets interact with a hard core pair potential
o(r, o, ®') that depends on the center-to-center distance
between both platelets and on both orientations,@a@thd ',
taken to be unit vectors perpendicular to the plane of the patrticle.

The value of(r, @, o) is mflmt? provided that the two particles perpendicular to the wall, and the platelet orientai®is denoted by
overlap and vanishes otherwise. 6. For convenience, we also consider a second parallel wall at a distance
In addition, the system is confined by a planar smooth hard L. (b) Snapshot from MC simulations using 110 000 particles at a (bulk)

wall, which we take to be perpendicular to thelirection and density of pR® = 0.455. The system possesses periodic boundary

to be located az = 0, such that only the halfspaze> 0 is conditions in thex- andy-directions. Particles are colored according

accessible to the particles. Hence, the interaction between thet0 their orientation.

hard planar wall and a platelet is described by an external ). Density Functional Theory

Figure 1. (a) Model of hard platelets with radiuR and vanishing
thickness at a planar hard wall. The angle betweenzttigection,

potential, ) o
A. Overview. In DFT, the grand potential is expressed as a
_fw ifz<Rsing functional of the one-body density distributi®h,
Vext(zv 0) - 7 (1) ~
0 otherwise Q([p], 1) =

whereg is the angle between thredirection (normal to the wall)
and the particle orientatiom (normal to the platelet), which
we can choose to be in the range<06 < x/2 due to the
inflection symmetrym — —, of the particles. See Figure la
for an illustration of the model.

The one-body density distribution of the platelets is denoted
by p(r, ®), wherer is the position coordinate of the particle
center. As a bulk parameter, we use the scaled depRitythe
normalization is chosen such that= fdr de p(r, w)/(47V),
whereV is the system volume. As we do not expect biaxiality
to occur, we can assume invariance with respect to rotations
around thez-axis, as well as translational invariance in the

Fulel + Fodpl + [o [920r, 0)(Vorlt, 0) — 1) (2)

whereFexd p] is the excess (over ideal gas) contribution to the
total (Helmholtz) free energy functional that arises from
interparticle interactiond/ex(r, @) is an external potential acting

on the particlesy is the chemical potential, and the ideal gas
(Helmholtz) free energy functional for uniaxial rotators is given

by

Falel = ksTfdr 52 o(r, 0)(In(o(r, 0)A%) ~ 1) (3)

andy-directions. The remaining relevant anglés that between
the orientationm and thez-axis; see Figure la. It follows that
the (number) density distributiop(r, @) = p(z, 6).

wherekg is Boltzmann’s constant, is the absolute temperature,
and A is the (irrelavant) thermal wavelength for which we
chooseA = R; the dependence on volunvweand temperature
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has been suppressed in the notation. In the following, we usethird-order term is different from the exact third virial contribu-

the scaled chemical potentiat = Su with § = 1/kgT. tion (as given in eq 6). It is nonvanishing (and constant) for
For any given external potenti&x(r, ®), minimizing the cases with common triple intersection of the three particles

grand potential with respect to the one-body density distribution involved. Global prefactors are used to compensate for the “lost

o(r, o) gives the equilibrium density profile, cases®%51in order to yield reasonable values for the third virial
~ coefficients (of the ternary mixture). For a more detailed
0L p] -0 @) discussion, we refer the reader to ref 44.
op(r, o) The excess free energy functional is expressed as an integral

) ) _ over space and (in the present case of platelets) twice over
which can be rewritten, using eq 2, as an Etleagrange director space,

equation

_ d do 7
T IN(R(r, DAY ~ G Ta (] 1, 0) + Veslt ) =1 _ Frad) = [0 [ g 20D O
®) where the (reduced) free energy densiby,is a function of a
whereci([p], 1, @) = —(ksT) *0Fexdp)/0p(r, ) is the one-  set of weighted densitie§n’}, wherev andi label the type of
body direct correlation functional. One systematic way to write weighted density (detailed below); the argumente, and '
down the excess free energy functional is to expand it in a virial of the weighted densities have been omitted in the notation.

series, For pure platelets, the free energy density is
BFexdp] = o({n}) = n°(r, O)n(r, ) +
1 dw 1 dw’ T U ! U
—5fdr [52 [ [GZ o, 0)pr, )i ~ 1, 0, 0) ﬁng(r, O)E°(r: @; )(r, @) (8)
1 dw , rdo . rdo” ) i . .
6 dr an fdr A fdr A where the first term on the right-hand side (rhs) when combined

with eq 7 recovers the exact second virial contributioffr¢@-

pr, o)(r', @)olr, o) x [o] (see section I1I.C of ref 44 for an explicit derivation). The

fr —r', o, d)f(r — 1", o, "' — 1", &, ") + O(p") weighted densities are related to the bare one-body density,
(6) o(r, m), via
wheref(r, o, @) = expp¢(r, o, @')) — 1 is the Mayer n?(r, o) =w§(r, 0)*p(r, o) (9)

function that for hard bodies is1 if the two particles overlap

and vanishes otherwise. In practice, one has to resort to

approximations toFex{p] and Onsager’'s theory relies on

truncating eq 6 after theecond ordein density. This is known .

to be a good _approximation for thin rods; we will investigate n?DD(r; o, 0)= diwgDD(r' 0" 0, @) p(r, ")

in detail how it fares for platelets below. 4dr (11)
Several approximations &f.xd p] for nonspherical (convex)

hard bodies have been proposed: ref 52 gives an FMT for where * denotes the three-dimensional convolution and the

parallel hard cubes; refs 53 and 54 investigate the properties ofweight functions are given by

the Zwanzig model; ref 55 is devoted to the role of three-body

o, o) = %wf?(r, o’ o) p(r, @) (10)

correlations in a system of hard rectangles. In ref 56, an Wo(r, @) = 6(R— [r)o(r-w)/8 (12)
interpolation between the Rosenfeld functidh&dr hard spheres

and the Onsager functional for elongated rods was proposed. Wa(r, ) = 20(R — |r|)d(r ) (13)
Our present investigation relies on the theory of ref 44 for a

ternary mixture of hard spheres, needles, and platelets with vv?D(r, o, o) =%|w (0 x r)|w?(r, o) (14)

continuous orientations. For completeness, but also to disen-
tangle the pure platelet case from the full ternary mixture, we 8
summarize the main features of the FMT hard platelet functional WoPP(r, ; 0 ") = |0+ (0 x &")|Wy(r, ®) (15)
briefly in the following. &

B. Fundamental Measure Theory.The fundamental mea-  where®(-) is the unit step (Heaviside) function an¢) is the
sure theory (FMT) was built originally for additive hard sphere Dirac distribution. We have kept the notation of ref 44 where
mixtures®” The extension to arbitrarily shaped hard convex the upper index D refers to the species (disks) and its number
bodies, proposed in refs 58 and 59, yields the correct secondof appearances indicates the number of particle orientations that
virial coefficients in the isotropic phase but only an approxima- appear in the weight function, eqs-125. The lower index
tion for the Mayer bond(s), such that even the lowest (second) indicates whether the weight function is characteristic of the
order term in the virial expansion (6) of the excess free energy rim (i = 1) or of the surfacei(= 2) of the particles.
functional is not correct. This is not sufficient to describe, e.g.,  C. Numerical Procedure. To obtain the weight functions
nematic ordering (see, e.g., ref 56 for a discussion). The theoryand hence the weighted densities in planar geometry, we
of ref 44 remedies this deficiency for the case of hard platelets integrate over the in-plane coordinatesindy in eqs 9-11,
of vanishing thickness. Hence, it possesses the correct contribu-assuming azimuthal symmetry such that the density distribution
tion of second order in density and also features a term of third only depends oz and9; See section VII of ref 44 for explicit
order in density. Higher order terms are absent, which is results. Our numerical implementation of eq 5 uses free
intimately connected to the scaled-particle roots of the approachminimization, i.e., nca priori form of p(z, ) is assumed. For
and can in particular be traced back to the vanishing volume of practical reasons, we add a second hard wall, such that the walls
the particles, which leads to a vanishing packing fraction. The are located at = 0 andz = L, with typically L/R = 51, which
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we find to be large enough to prevent significant capillary 1 y , , '
effects. An equidistant grid in thedirection with 20 grid points 09+ a)
per particle radiuRR is used. The anglé is discretized on a 08 |
nonequidistant grid with 20 grid points in the interval [02]. 07 L
This adds up to a total 062 x 10 grid points. The numerical 06 -
minimization is performed using molecular dynamics-type i
simulated annealing?~64 Our convergence criterion relies on w05y
the norme defined as the maximum of the standard Euclidean 04 1 Ong\gr 3
vector norm for the difference of the numerical “vectp(z, 6 03 MC =
= const) between two minimization steps, and we take 02
1076 as the threshold. For low values of the chemical potential 0.1
w*, and hence far away from the coexistence regieh(? steps 0 . NV . o s
were sufficient to obtain convergence. At higher valueg®of 0 0.2 04 0.6 0.8 1
close to its value at IN coexistence, up td.(® steps were pR’
necessary to obtain convergence.
350 )

IV. Results 3l FMT ——

Onsager -

A. Bulk Properties of Hard Platelets. For the bulk IN 25+ Eppeg‘fg 2

transition we obtain from FMT the value of the chemical Sediment, - -

potential at coexistence, density of the isotropic and the nematic
phase, and order parameter in the isotropic and the nematic
phase, as¢,., = 5.004,pR® = 0.419,p\R® = 0.469,S =
0.531,5 = 0.045, respectively. These values differ slightly from
those reported in ref 44, where malependence was resolved
and hence higher angular resolution with 100 grid points could ) , , ,
be used, resulting fi p;R® = 0.418,0nR% = 0.460,Sy = 0.492, 0 02 0.4 0.6 0.8 1
and § = 0. Both data sets are in good agreement with the pR?

simulation resultS,which arep|.F§3 - 0'460”0’.\'R3 = 0.498, and Figure 2. (a) Nematic order paramet& and bulk densitypR® at

Sv = 0.45— 0.55. Second virial theory givesR® = 0.666, coexistence as obtained from FMT (big stars), MC simulations
pnRE = 0.849, andSy = 0.79; hence, it correctly predicts a  (squares), and Onsager theory (closed circles). Also sho@asa
first-order transition but overestimates both the density jump function of pR® in the nematic phase from FMT (full line) and MC
and the order parameter at coexistence. Figure 2a shows thegimulation (small squares). (b) Scaled press/ksT as a function
order paramete® as a function of the scaled bulk densjti® of the bulk densitypR® as obtained from FMT (full line), MC

- . . simulations (black squares), and Onsager theory (dashed line). Also
across the IN transition to illustrate these results. In Figure 2b, shown are the MC simulation results of ref 4 (open circles) and those

we plot the equation of state, i.e., the pressRis a function  gained from sedimentation profiles (dotted line); see ref 66. The small
of pR%. In the isotropic phase within DFT, we us¥p) = open and closed circles indicate the theoretical results for the isotropic
—0loV(Fig[p = const]+ Fexdp = const]), and from FMT, we and nematic coexisting phases, respectively.

obtainsP(p) = p + 72R8p?/2 + 22Rep?3 with SFig[p = const]/

V = p(In(pR®) — 1) and fFexdp = constlV = 7?Rep%/2 + To assess the degree of local nematic order, we use the nematic
m°Rbp%3. In Onsager theory, the pressure and the excess freeorder parameter profile, defined as

energy are given by the same expressions without the contribu-

tion of third order in density. In the nematic phase, we insert _ —1 2 :

the equilibrium density distribution into the grand potential 2 = [p(2)] ﬁ) d6 sin@©)p(z, 0)Py(cos6) - (17)
functional (2) and us® = —Q([p], x)/V. For comparison, we

have determined the equation of state from isobaric MC WherePy(x) = (3x2 — 1)/2 is the second Legendre polynomial.
simulations using very |0ng runs of up toej@/des for a system (The normalization is such th&= 0 indicates iSOtrOpiC states,

of 500 particles. Figure 2b shows that these simulation results While S= 1 indicates parallel alignment of particles.)

are consistent with those of earlier simulation stutfié&and We first investigate properties of the free IN interface as
are very well reproduced by the FMT. Onsager theory under- obtained from FMT. Figure 3a shows the density profile across
estimates the pressure in the isotropic phase and overestimatetfie interface for perpendicular alignment of the nematic director
the pressure in the nematic phase. This is due to the too largeWwith the surface, i.e., such that the platelets tend to lie flat against
coexistence densities leading to a too large density of the the free IN interface. The preference for homeotropic anchoring

PRk, T

coexisting nematic phase. Note also that the sldpelis too was consistently found by experimental investigati®asd for
small in the Onsager treatment. the Zwanzig modet? The interface is smooth and crosses over
B. Free Isotropic—Nematic Interface. At bulk IN coexist- monotonically between the densities of the coexisting phases,

ence, a planar interface that separates the isotropic and nemati®vithout any signs of oscillations. We have analyzed the
phases will be stable. The behavior of such an inhomogenous@Symptotic decay of the density profile into the bulk phases in
system is conveniently analyzed using an orientation-averageddetail. For monotonic behavior, we expect that for> —oo,
density profile, which gives the density of platelet midpoints at |- On the nematic side of the interface(z) — on| U
distancez (measured from the position of the Gibbs dividing €XP(-|Z&R), while for z — «, i.e., on the isotropic side,
interface) and is obtained from the full density profile as lp(2 — pil O exp(|Z&]), where& and&f, are the correlation
lengths in the coexisting | and N phases, respectively (the upper
a2 . index is a reminder of their relationship p¢z)). We hence plot
p@) = fo do sin()p(z, 0) (16) in the insets of Figure 3a |p(z) — pi| on the isotropic side and
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Figure 4. Variation of p(z, 0)R® with z across the free IN interface for
o) 3 3 seven different angle$, = 0, 0.2, 0.36, 0.47, 0.58, 0.78, and 157

I ] 7i/2 (from top to bottom) as obtained from FMT. The inset sho{zs
0)R® as a function of for z= —10, 0, and 10 (solid line, dashed line,
-9 — | and dotted line, respectively).

In|sz)-s)|
&

S()
In|S(z)-Sy)
&

10 To illustrate the properties of the free IN interface further,
we plot in Figure 4 results from FMT fags(z, ) as a function

of zZIR for seven different values @f. We find that for@ — n/2

1A the density in the nematic phase is lower than in the isotropic
1 phase, which is due to the ordering in the nematic phase around
A the nematic director & = 0; this causes lower densities around

6 = z/2. Furthermore, the inset of Figure 4 show(g, ) as a
function of @ for three different fixed values &R, wherez/R

= —10 is on the nematic side,= 0 is at the Gibbs dividing

Figure 3. Density profilep(R® (parts a and b) and order parameter surface, and/R = 10 is on the isotropic side of the interface.
profile S(2) (parts ¢ and d) across the free IN interface as obtained The crossover from an isotropic orientation distribution to one

from FMT (a and c) and Onsager theory (b and d). The insets show characteristic for the nematic phase is clearly visible.

In|(0(dR® — oinR3 and IN(S(2) — Sl revealing an asymptotic In the following, we explore the repercussions of the
monotonic exponential decay into the bulk phases in all cases exceptinterfacial properties of the free IN interface on the adsorption
for the oscillatory decay into the isotropic phase as predicted by the pehavior of platelets at a hard wall.

Onsager theory in b and d. C. Adsorption of Platelets at a Hard Wall. The hard wall
constitutes a basic yet realistic model for a substrate, e.g., a
container wall, that a colloidal dispersion is exposed to.

, 'Although only represented by a hard core constraint, the hard
and from the slopes we obtaiff/R = 1.32 and&y/R = 1.35. wall induces coupling of orientation and translation degrees of
Corresponding results fqi(z) from Onsager theory are shown  greedom, because the restriction of available orientations depends

in Figure 3b and will be discussed below. Figure 3c shows the g the distance of the particle center to the wall (see eq 1 for
order parameter profile across the IN interface as obtained from,o  qefinition of the external potential). Figure 5a shows

FMT. Again, we have analyzed the asymptotic decay of the grientation-averaged density profilesz)R® (as defined in eq
profile and find that th% order parameter decayszfor —o as 16), obtained from FMT for a range of chemical potentials
IS(2) — Sl U exp(=|Z&]1), where&g/R = 1.33, and foz — co approaching bulk IN coexistence. For low valuesusf and
as|S(2) — S| O exp(-|Z&]]) where&;/R = 1.28; see the inset  correspondingly low values of the scaled bulk densif®, a
of Figure 3c. (Note tha§ is nonvanishing only for numerical  pronounced “correlation hole” is apparent close to the #fall.
reasons.) We expect thgt = Els and&y = Eﬁ and indeed find This originates from the reduction in available configurations
this to good accuracy to be fulfilled, demonstrating the internal due to overlap of the platelet with the wall. At= R, there is
consistency of our calculations. a sharp cusp, followed by weak oscillations for larger distances
Results from Onsager theory for the density profile and order z Quite unexpectedly, but consistent with the monotonic decay
parameter profile at the free IN interface are plotted in Figure at the free IN interface, these oscillations disappear upon

S)

z/R

In|p(2) — pn| On the nematic side of the interface as a function
of z. The observed linear dependence confirms the expectation

3b and d, respectively. Indeed weak oscillations aigh&opic increasing¢*. A further shoulder appears very close to the wall,
side of the free IN interface can be observed. See the insetsz ~ 0.5R, which develops into an independent peak that grows
(left) on the nematic side of Figure 3b and d, whe(g and in size and becomes eventually larger than the cugp=aR.

S(z) are shown, respectively, on a logarithmic scale. At the A pronounced wetting film grows upon approaching bulk IN
nematic side of the interface, Onsager theory predicts a coexistence. The film decays from a plateau with a value that
monotonic exponential decay, both for the density and the orderis very similar to the density of the coexisting nematic phase
paramer, with a decay length given B§/R = &f,/R = (0.67+ smoothly to the value of the isotropic bulk. To demonstrate the
0.01). This shorter decay length, compared to that from the FMT similarity between the wetting film at the hard wall and the
calculations, is also reflected by the sharper interface and thefree IN interface, we superimpose the density profile of the free
steeper slopes in the Onsager profiles. We will discuss the IN interface onto the profile exhibiting the thickest wetting film
relationship of the asymptotic decay at the free IN interface in Figure 5a. We show results from Onsager theory for density
with that at a hard wall in more detail in section IV C. profiles at the hard wall for a range of different bulk densities
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Figure 5. (a) Density profiles from FMT as a function of the distance from the wdH)R®, for values of the scaled (bulk) densjtR® = 0.186,
0.343, 0.393, 0.416, 0.4182, and 0.4184 (from bottom to top). The dotted line is the profile across the free IN interface. Bulk isotropic and nematic
coexistence densities are indicated by the open and closed circles. (b) Density profiles from Onsager theory as a function of the distance from the
wall, p(2)R®, for values of the scaled (bulk) densip®® = 0.187, 0.411, 0.579, 0.657, 0.663, and 0.665 (from bottom to top). Bulk isotropic and
nematic coexistence densities are indicated by the open and closed circles. (c) Density profiles as a function of the distance frop(Z}#&,wall,
from MC simulations, for bulk densitieeR® = 0.125, 0.25, 0.38, 0.45, 0.46, and 0.475 (from bottom to top). Bulk isotropic and nematic coexistence
densities are indicated by the open and closed circles.

in Figure 5b. The profiles for small bulk densities are very

similar to those obtained from FMT. With increasing density, 100 E 5 : i

a nematic wetting layer develops. The behavior close to the = g N ]

wall is very similar to that found in FMT. Also a wetting film 10 ] % 1.

develops, but this is much more pronounced compared to the < 0

FMT results, consistent with the trend of the differences in g k=4 2

coexistence densities obtained from both approaches. N 1 g E
In order to test the theoretical results we have carried out <

NVT MC simulations using very large system sizes with up to

N = 7 x 10* hard platelets confined between two planar hard 014

walls. As the interfacial tension between the isotropic and

nematic phase is very low, we needed large (lateral) wall areas 0.01

in order to stabilize the nematic film against thermal fluctuations. 0

Moreover, large wall separations were needed to prevent z/R

capillary nematization. The density profiles obtained from MC Figure 6. Variation of p(z, 6) with z for seven different angleg, =
simulations are shown in Figure 5c. Note that the bulk densities 0, 0.2, 0.36, 0.47, 0.58, 0.78, and 1.571/2 (from top to bottom) as
chosen are different from those considered in DFT to account oPtained from FMT on a logarithmic vertical axis. The inset shows
for differences in the bulk coexistence densities. The density the contact valug(R sin 6, 6) sin 6 as a function of.
profiles from MC simulations confirm the existence of a . ) . . '
correlation hole close to the wall and the cusp at R for low density profilep(z, 0) as a.funct|on ok for seven different fixed
densities. With increasing density, this peak is overshadowed Values of the anglé. We find that the first (contact) peak moves
by a growing peak at ~ 0.5R, in agreement with the results away_from _the wall for increasing values _ef This is due to
from DFT. The growing wetting film is very similar but the orlentatlpn-dependeqt hard core repulsion tha}t the wall exerts
somewhat more diffuse than that found by FMT. We attribute On the particles; in particular, only platelets with= 0 are
this to the presence of additional (capillary wave) fluctuations allowed to lie with their centers directly at the wall= 0. The
in the simulations that are not captured in DFT. inset in Figure 6 shows the wall contact value of the density
We next investigate the origin of the maximumzat 0.5R distributionp(R sin 8, 0) sin 6 as a function ob; the spherical
that occurs for high bulk densities; see Figure 5 for results from volume element is accounted for by the factor 8inVe find
both DFTs and from simulations. In Figure 6, we have chosen that—due to the sirf term—the maximum liesot at the wall.
pR® = 0.4184 as an example value and have plotted the wall Together with the fact that the averaged density profigR®
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Figure 7. (a) Nematic order parameter profile from FM¥2), as a function of the distance from the hard wall for the same valupBods in

Figure 5a. The dotted line shov&z) across the free IN interface. (b) Order parameter profiles from Onsager theory, as a function of the distance
from the wall. Plotted are results for the same bulk densities as in Figure 5b. (c) Nematic order parameteS@ofiletn MC simulations as a
function of the distance from the hard wall, for the same valuesRfas in Figure 5c.

is defined as an integral ovér(see eq 16), this helps to explain  minima stem from oscillations of the density profile that extend
the maximum atz ~ 0.5R. into the bulk. Hence, the monotonic decay of the upper profiles
In Figure 7a, we show the order parameter prdi{® at the obtained from FMT in Figure 8a indicates that the oscillations
hard wall from FMT for the same statepoints as considered in disappear upon increasing density. This finding is supported
Figure 5a. Upon approaching the wall, the order parameter by the MC simulations, although in Figure 8c @R > 3.5 the
approaches unity, as platelets with small separation distancesstatistical errors are considerable. In contrast to this scenario,
from the wall must be well aligned with the wall to avoid Onsager theory predicts oscillations over the full range of
overlap. For low bulk densities, there is a minimun(#) near  densitites in the isotropic phase; see Figure 8b. The oscillations
z ~ 2R. Strikingly, upon increasing the chemical potential, a move away from the wall with increasing density, but do not
growing zone of nematic order is found. This confirms that disappear. In Figure 9a and b, we show the results for the order
indeed the film of high density possesses nematic order. FigureparameterS(z) obtained from FMT (corresponding to Figure
7b shows order parameter prOfileS at the hard wall as ObtainedSa) and Onsager theory (Corresponding to Figure 8b)’ respec-
from Onsager theory for the same bulk densities as consideredjyely. Again, the FMT results indicate a crossover from
in Figure Sb. Again, results from FMT and Onsager are very oscillatory to monotonic decay upon increasing density, while
similar for small densities. A strongly pronounced nematic onsager theory predicts oscillatory decay over the full range
wetting layer is also found for bulk densities close to IN  of gensities in the isotropic phase. Crossover from monotonic
coexistence. Corresponding results from MC simulations are o oscillatory decay of density profiles at the free interface
shown in Figure 7c. Although the MC data contain Some penyeen demixed nematic phases was found in mixtures of large
statistical noise and the minimum B(2) is not found in the  5nq small zwanzig plateletéand the authors conclude that a
simulations, the overall agreement to the results from FMT is gigher-widom line separating these different regimes must exist

strik_ing. . . in this system. Here, however, we find such structural crossover
Figure 8 shows the asymptotic behavior @) for large in the isotropic phase.

distances from the wall for three different (bulk) densities as . . .
The nature of the wetting scenario can be analyzed in more

obtained from FMT (a), Onsager (b), and MC (c) simulations. . o . ! -
To scrutinize the béhzavior V\?e p€02|b(z)R3 — oR¥, which detail by considering the adsorption, either obtained frdm
' ' or from §(2), via

allows the observation of oscillations with small amplitude more
easily than a linear plot does. Note that zerosp() — p
correspond to (negative) poles of |[dg)R® — pR®|. For

numerical reasons, the curves in Figure 8 display only a finite r,= L‘”dz [p(2) — p(e)] (18)
negative minimum value; these (relatively) deep local minima

correspond to the zeros pfz). While the first minimum is due o _

to the initial increase of the density from the wall, the subsequent I's= .fo dz[S(2) — S()] (19)
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Figure 8. (a) Variation of Ip(2)R® — pR?| with z/R for the same values of (bulk) density as in Figure 5a, as obtained from FMT. (b) Same as part
a but from Onsager theory for the (bulk) densities of Figure 5b. (c) Same as a and b but as obtained from MC simulafiSrs 806, 0.444,
and 0.459 (from bottom to top).

In Figure 10a, we have plottdd, as obtained from FMT as a In addition, we consider Young's equation for the contact
function of the scaled densipRe in the isotropic and nematic ~ angle® at which the free IN interface hits the wall,
phase. The adsorption is negative for low densities and has a
minimum atpR® ~ 0.2. ForpR® > 0.3, we find positive values ~ Ywi T YwN

_ : cosy = ————— (22)
of I',, and eventually, a sharp increasepagproaches its value YIn
in the coexistent isotropic phase. This hints at complete wetting
of the wall by the nematic phase. In the nematic phase, the whereywn, ywi, andyy are the interfacial tensions between
adsorption decreases monotonically as a functiopRSf This the wall and the nematic phase, between the wall and the
can be explained with increasing nematic ordering in the bulk isotropic phase, and between the isotropic and the nematic phase,
and hence a loss of structure close to the wall. The film respectively. Results for the tensions are obtained from the

thickness, defined vid, = T',/(on — p1) @andds=T'd(Sy — S), general definition of the interfacial tension,
is shown in the inset of Figure 10a as a function-of(Au*),
with Au* = ug.e — u*. From the fact that we find a linear 7y = (Qinn + PVI/A (23)

dependence in this representation, we can conclude that the _ _ _
nematic phase wets the wall completely, i.e., that the film WhereQin is the grand potential of the inhomogenous system

thickness diverges as bulk coexistence is approact&d as exhibiting the interfacep is the bulk pressurey is the system
volume, andA is the interface area. Within DFR;,, is obtained

from inserting the equilibrium result fqi(z, 0) into eq 2, i.e.,

d, = & In(Au*) + const (20) Qi = Qlp(z 6)]. Within FMT, we find ywnRe/keT = 0.3327,
S ywiRYkgT = 0.3391, andyyR¥ksT = 0.006656 (see section
ds = &y In(Au*) + const (21) IV B) from eq 23, which yields co$ ~ 0.96. Becausey is

obtained from two numerically similar quantities via (23), the
t resulting value has a relatively large numerical uncertainty.
Keeping this in mind when usingy in (22), the result co®
~ 0.96 is consistent withh = 0 as appropriate for complete

which is indeed appropriate for complete wetting in the presen
case of short-ranged interparticle forces. Complete wetting of

a hard wall by the nematic phase has also been found for the : .

Zwanzig model for platelets with restricted orientatidh¥Ve wetting. The corresponding values from Onsager theory are
) oo Sy ) i given byywiR/kgT = 0.4387,ywnR%/ksT = 0.3878,nR?/ks T

find £/R = 1.32 and&y/R = 1.22. While the agreement with  — 5508 such that cos = 1.003, again within the numerical
the data from the decay of the free IN interface &ris very accuracy consistent wittt = 0 and hence complete wetting.
good, the above given value f&f, is slightly smaller than that In the simulations we use thermodynamic integration to
found at the free IN interface, which we attribute to the larger determine the free energy difference of a bulk system and a
sensitivity of the order paramet&to numerical uncertainties.  system with a wall. We approximate the hard wall by a finite
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Figure 10. (a) AdsorptionI',R? as a function of the densityR®, as

obtained from FMT. The vertical lines indicate the isotropic and nematic

coexistence density. The divergencelgfis a signature of complete
|kwetting of the wall. The inset shows FMT results for the thickn#ss
(upper line) andis (lower line) of the nematic wetting film, as defined
in the main text, as a function ofIn(Au*). (b) Interface tensiory at

barrier, such that a zero barrier height corresponds to a bu
system and an infinite barrier height to a system with a hard

wall.%%%9 This yields the wall tensiongw and ywn and wWe g hard wall as a function of the scaled bulk dengif}, as obtained
obtainyy via (22)assumingcomplete wettingy = 0. We find from FMT (long dashed line), Onsager theory (short dashed line), scaled
yinNR¥/ksT = 0.015 from MC simulations. particle theory (dotted line), and MC simulations (full line). The open

In Figure 10b, we have plotted the wall interfacial tension and filled circles represent the \_/alues at bulk' isotropic and ne_matic
yReksT as a function of the (bulk) density far away from the c_oemster&ceostateponrw]ts, respectively, as obtained from FMT, simula-
wall p = p(c). At low densities pR® < 0.3, we find very good tions, and Onsager theory.
agreement between results from both DFTs and the simulations,tpe system displays a density-driven, weak first-order IN
as well as with the tension obtained from scaled-particle theory ansition with a small density jump at coexistence8®b) and
(SPT)/° given by an unusually low-order parameter in the coexisiting nematic
phase § ~ 0.5). Results for the equation of state in both the
isotropic and in the nematic phase and the location of the bulk
IN transition obtained from the FMT version of DFT agree well
with those from MC simulations. For low densities, the FMT
version reduces to the Onsager (second virial) version of DFT,
and we can verify corresponding agreement of results from both
approaches for low densities. For higher densities, the Onsager
theory gives only a qualitatively correct picture: It predicts the
IN transition correctly to be of first order, but already at densities

X > pR® ~ 0.2, well below the phase transition, deviations of the
decreases as a function @’ which we can trace back to the pressure to that obtained from simulations become apparent,

increasing nematic order in the bulk. The decay predicted by jgicating that higher than second-order virial coefficients
FhMT IS strong?r thgn thlat found In the smk]]ulanoEs. _AIth_ougE become important. As the Onsager theory misses such contribu-
the Qnsager unctional overestimates the t,’e avior in t € tions, considerably too high densities are needed to induce
coexistence region significantly, it gives a qualitatively correct sufficiently strong contributions to the free energy that drive

picture. the system into a nematic state. In turn, the nematic phase at
coexistence has a profoundly too high density and too high
nematic order parameter, according to Onsager theory.

In conclusion, we have used two different versions of density = When adsorbed against a hard wall, we find in both versions
functional theory as well as MC computer simulations to of DFT as well as in the simulations complete wetting of the
investigate bulk and interfacial properties of a model colloidal wall by the nematic phase upon increasing the bulk density
dispersion of hard circular platelets with vanishing thickness. toward the density of the istropic phase at coexistence. Within

ylksT = mpRI4 + 7p°RI2 (24)

The SPT result fails, however, to reproduce the maximum of
that occurs below bulk coexistence. There is very good
agreement between the location of this maximuwiRé(= 0.4)

in FMT and MC, whereas Onsager theory locates it far off at
pR® = 0.6. The nonmonotonic behavior pfis accompanied
by the growth of the nematic wetting layer, leading to a
reduction of the interfacial tension. In the nematic phase,

V. Conclusions
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FMT, we conclude the occurrence of complete wetting both profile to that of the asymptotic decay of bulk pair correlation
from an analysis of the divergence of the adsorption due to the functions could shed further light on this togit.

formation of the nematic wetting film and from Young’s Possible future research could be aimed at capillary effects
equation, which yields a vanishing contact angle within the inside planar pore®,capillary waves at the free IN interfaée!?
numerical accuracy. The results for the density profiles at a hard or the influence of an external magnetic or gravitational field
wall obtained from FMT compare favorably to those from MC on the behavior of the dispersion. A further interesting point of
simulations. Both the detailed variation of the density with investigation is the effect of the softness of the wallatelet
distance within a few particle radii of distance from the wall as potential on the adsorption propertis.

well as the growth of a wetting film of high density upon

approaching the bulk isotropic coexistence density are repro- Acknowledgment. We thank D. van der Beek, P. van der
duced by the theory. The most prominent difference is that the Schoot, T. Schilling, R. L. C. Vink, and, in particular, H. N.
decay of the profiles to the bulk value is somewhat more diffuse W. Lekkerkerker for very fruitful discussions. This work is
in the simulations. We attribute this to the influence of capillary supported by the SFB-TR6 “Colloidal dispersions in external
fluctuations of the free interfacd;’2which are not accounted ~ fields” of the German Science Foundation (Deutsche Fors-
for in the DFT. Investigating the wall isotropic interfacial ~chungsgemeinschaft) under project section D3. This work is
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those from the other approaches.

Our investigation of the precise form of the asymptotic decay
of the density profile at large distancefom a planar interface (1) Zocher, H.Z. Anorg Chem.1925 147, 91.
remains somewhat inconclusive. In the nematic phase, we havelg?,((iZ)l%avlvgg?’ F. C.; Pirie, N. W.; Bernal, J. D.; FankucherNature
considered in detail the case where the nematic director at large” ™" 3)"onsager, LANN. N.Y. Acad. Scl949 51, 627.
distances from the interface is aligned with the interface normal  (4) Frenkel, D.; Eppenga, Phys. Re. Lett 1982 49, 1089.
(i.e., thezdirection). We have established, consistently within (5) Bates, M.; Frenkel, DPhys. Re. E 1998 57, 4824.

; ; i ; (6) Rosenfeldt, S.; Karpuk, E.; Lehmann, M.; Meier, H.; Lindner, P.;
both theories, that the decay is monotonic in this case. As the Harnau, L.: Ballauf, M ChemPhysCher2006 7, 2097.
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