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Abstract. We develop a density functional theory for a system of penetrable spheres that interact
with a constant pair potential energy if their separation distance is smaller than their diameter. As
sufficient input, just the geometrical properties of the particles and the exactly known statistical
behaviour of the system under strong confinement are needed. The theory predicts the bulk fluid
properties in good agreement with computer simulations and better than liquid integral theories, as
well as the freezing transition to a multiply occupied face-centred-cubic lattice. It becomes exact in
the limits of strong confinement and high temperature, and coincides with a successful hard-sphere
theory for zero temperature.

Classical density functional theory (DFT) is one important theoretical tool for the study of the
microscopic structure of liquids [1] and solids [2, 3]. Its power lies in its ability to deal with
inhomogeneous situations on a microscopic length scale. There are a large variety of physical
situations where a liquid exhibits a spatial structure, ranging over the behaviours near confining
walls, in gravitational fields, at interfaces and in capillaries [4]. But DFT can go beyond the
description of fluids in contact with their surroundings. It also accounts for self-sustained
inhomogeneities that are not being caused by external potentials. This phenomenon can occur
if a system ‘decides’ to freeze and to build up a crystal with an intrinsic broken translational
symmetry. As DFT is able to treat solid and fluid phases on an equal footing, it is considered
as a major theoretical advance in statistical physics from a fundamental point of view. It is
also of great practical importance, as explicit calculations can be done for toy models as well
as for realistic systems.

The central quantity of DFT is the Helmholtz excess free energy expressed as a functional
of the single-particle density. There are few systems for which this functional is known
exactly; one example is a system of one-dimensional hard rods. Through the years, various
approximations, like the one given by Ramakrishnan and Yussouff, the weighted-density
approximation (WDA) and the modified WDA (see, e.g., reference [3]) have been developed.
One common feature of these approaches is the requirement of having information about
the homogeneous fluid phase in order to obtain results for inhomogeneous situations. The
information about homogeneous fluids, like the equation of state and the pair distribution
function, may be taken from the solution of liquid integral equations. The DFT then acts as a
container for the knowledge about the homogeneous bulk phase. So it is of great interest to
find approximations to the density functional of specific systems that ‘stand on their own feet’
and do not require input from other theoretical approaches involving further approximations.

There is one class of systems for which one has been able to derive powerful density
functionals, namely those exhibiting hard-core interactions such as hard spheres [5–7] and
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cubes [8,9]. One important property of these fundamental-measure functionals (FMF) is their
correct dimensional crossover: the three-dimensional (3D) functional yields a reasonable 2D
hard-disc functional, the exact 1D hard-rod functional and the exact statistical properties of the
0D limit represented by a cavity that can hold a single particle. Reversing this line of thought,
one has been able to derive the 3D functional by imposing the correct behaviour for 0D [10].
So far, these approaches have been restricted to hard-core interactions, where the temperature
scales out of the Boltzmann factor. In this article a systematic extension of the FMF to soft
cores is proposed.

Therefore we study a system of penetrable particles. We call particles ‘penetrable’ if
there is no divergence of the pair potential energy if two particles have zero separation. So
far, these bounded potentials have attracted less interest than potentials with a divergence at
the origin. One example of a penetrable potential is the Gaussian core model introduced by
Stillinger et al [11, 12]. Graf and L̈owen [13] have shown that Gaussian cores arise between
the centres of star polymers if the polymeric arms are treated in a harmonic approximation.
Although diverging at the origin, an ultra-soft pair potential between star polymers has been
proposed [14] and validated [15] with computer simulations.

As the, in a sense, simplest model for a penetrable interaction, we assume a step function:

V (r) =
{

0 if r > σ

ε if r 6 σ .

This was recently studied by Likoset al [16] using liquid integral equations for the fluid phase
and a cell model for the solid phase as well as computer simulation. Virial coefficients were
studied in reference [17]. The model has two thermodynamic parameters, namely the packing
fractionη = (π/6)N/V∞, whereN is the number of particles inside a (large) volumeV∞,
and the reduced temperaturekBT/ε, wherekB is Boltzmann’s constant.

In this work, we derive a functional for a thermal system of penetrable spheres on the
same solid footing as was previously only possible for hard-core interactions. We would like
to stress that the new functional is not built as a theory of perturbations around some reference
hard-sphere system, but has the penetrability of the particles genuinely built in. It incorporates
the geometrical shape of the particles and the statistical mechanics of clusters of two or more
overlapping particles.

Let us sketch the derivation of the new functional. We first discuss a generic free-energy
density functional. Then, the exact solution for the 0D limit for penetrable spheres is presented.
This is needed as a situation of extreme confinement for which we require the functional to
give the exact result. Then, the freedom in the generic functional is fixed by requiring that this
solution comes out from the functional. Explicit expressions for the DF are given.

We start with a generic density functional possessing the Rosenfeld form [5]: it is assumed
that the Helmholtz excess free energy in an inhomogeneous situation can be expressed as an
integral over all space:

F exc(T , [ρ(r)]) = kBT

∫
dx 8(T , {nα(T ,x)})

whereT is the temperature andkB is Boltzmann’s constant. The integrand is a reduced free-
energy density8 depending onT and on a set of weighted densities{nα} indexed byα. Each
weighted density is given by a convolution of its temperature-dependent weight functionwα
with the density profile:

nα(T ,x) =
∫

dr ρ(r)wα(T ,x− r).
This DF is generic in the sense that the dependence on the interaction potentialV between
the particles is hidden in the as-yet unspecified functions8 andwα. Although it is generic,
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it is of course not the most general form of a density functional. The severe approximation
is that8 is not a functional but only afunctionof the weighted densitiesnα. One convenient
property is that the weight functions do not depend implicitly on the density profile. However,
they may depend on the thermodynamic state point, given by the temperatureT . For hard-
core interactions the only temperature dependence of the free energy is a trivial linear scaling
with T . Hence, in the original work focusing on hard spheres [5],8 andwα are temperature
independent. In the current work we are interested in soft cores; so we have included the
temperature dependence in this way, which we believe is the most general one within the
current framework.

Let us now solve for the 0D limit of penetrable spheres. Consider a cavity with volume
V0D, small enough that any two particles that are inside overlap. The system will be coupled
to a heat bath and to a particle bath. If there areN particles present, the potential energy is
proportional to the number of pairs of particles and is given byεN(N − 1)/2. The grand
partition sum is

4(Nmax) =
Nmax∑
N=0

bN(N−1)/2zN/N !

with the Boltzmann factorb = exp(−ε/kBT ) and the scaled fugacityz = V0D exp(µ/kBT ),
whereµ is the chemical potential, andV0D is the volume accessible to one particle. In principle,
we have to perform the limitNmax→∞; it is, however convenient to keep this dependence,
as no closed form for the free energy for arbitraryNmax is obtainable. The grand potential
is � = −kBT ln4. The mean number of particles is̄N = z (∂/∂z)�. Inversion of this
relation yields the fugacity as a function of̄N . Technically, this inversion is not possible
analytically for arbitraryNmax, as one has to find the roots of a polynomial of degreeNmax.
From the fugacity we obtain the excess chemical potential as a function of the particle number
throughµ0D(N̄) = ln(z(N̄)/N̄). (The excess free energy can be obtained by integrating
φexc =

∫ N
0 dN̄ µ0D(N̄).) It is not possible to find a general solution in the limitNmax→∞.

This is not a serious drawback for our current investigation: one can find general solutions
for Nmax 6 4 that provide excellent approximations for cases of small particle numbers,
N . Nmax/2, or use numerical methods. For the case ofNmax= 1 we recover the hard-sphere
solutionµ0D(T → 0, N) = − ln(1−N); for Nmax= 2 we have

µ0D(T ,N) = ε − ln(2−N)− ln(N)

+ ln
(√
(1−N)2 + 2N(2−N) exp(−ε/kBT )− (1−N)

)
which contains the essential contributions for low temperatures.

The idea is to consider a multi-cavity limit [10]. There the confining potential is given by
a small set of cavities. Physically, the cavities are hollow and have the shape of one particle.
The particles are forced to be inside one of the cavities, so their density distribution vanishes
outside. For an integer numberC of cavities located at positionsci we have

ρ(r) =
C∑
i=1

Niδ(r − ci ).

If the distance between two cavities is larger than the particle diameter, they are decoupled. If
the distance is smaller than the diameter all particles overlap and the statistical behaviour is
the same as for a single cavity. By considering consecutively the one-, two- and three-cavity
cases,C = 1, 2, 3, one is able to fix the form of the generic functional. The geometrical
analysis follows the hard-sphere case [10], where the strategy leads to the Rosenfeld hard-
sphere functional [6,7].
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For penetrable spheres the FMT excess free-energy functional derived in this way is given
by8 = 81 +82 +83. The individual contributions are

81 = n0µ0D(T , n3)

82 = (n1n2 − nv1 · nv2)µ
′
0D(T , n3)

83 = n3
2(1− (nv2/n2)

2)3µ′′0D(T , n3)/(24π)

where the prime denotes differentiation with respect to the argumentn3 (in the 0D case,
with respect toN ) and the index v is a reminder thatnv1 andnv2 are vectors. The linearly
independent weight functions are given by

w3(T , r) = 2(R − r) w2(T , r) = δ(R − r) wv2(T , r) = δ(R − r)r/r
wherer = |r|, andR = σ/2 is the particle radius. Dependent on the above are the further
weights

w1 = w2/(4πR) w0 = w2/(4πR
2) wv1 = wv2/(4πR)

where the arguments have been omitted. We find that the free-energy density carries a temp-
erature dependence throughµ0D, but the weight functions remain independent of temperature.

Let us investigate the properties of the functional. For low densities one can expand the
free-energy density to findµ0D = (1− exp(−ε/kBT ))n3; hence the total free-energy density
becomes

8 = (1− exp(−ε/kBT ))(n0n3 + n1n2 − nv1nv2)

which is the deconvolution of the Mayer function for the penetrable-sphere interaction, and
hence the low-density expansion of the true density functional. The deconvolution is also
valid in the limit of high temperature, where we get the mean-field free-energy density
µ0D = εN(N − 1)/2. The low-temperature limitkBT/ε → ∞ yieldsµ0D = − ln(1− η),
which gives the well-known Rosenfeld hard-sphere functional including the Percus–Yevick
direct correlation function [5], the cell model as the high-density limit of the crystal near close
packing [18] and excellent values for the coexisting-liquid-and-solid packing fractions at the
freezing transition [6,7]. We repeat the fact that the functional is, by construction, exact in the
zero-dimensional limit.

Having demonstrated the correct behaviour in limiting cases, we are confident in
investigating the predictions of the current DFT for physically more interesting regions, namely
intermediate temperatures and densities. First, we investigate the liquid structure predicted by
the functional. To get the pair correlation functiong(r) we impose Percus’s test particle limit
by minimizing the functional in the presence of an external potential that coincides with the
pair potential. The results are shown for packing fractionη = 0.5 as solid lines in figure 1.
The agreement with Monte Carlo simulation data (symbols) is very good outside the core,
r > σ . For r < σ and intermediate temperatures, the rise near the origin is overestimated
by the DFT. Any thermodynamic integrals overg(r) are robust against this error, because of
multiplication with a volume element 4πr2 which vanishes forr → 0. Recently,g(0) has been
used successfully within the framework of liquid integral equations to fulfil a zero-separation
theorem [19]. The small wiggles in figure 1, e.g. forkBT/ε = 0.2 nearr/σ = 1.5, are artifacts
due to the numerical representation of the functions as cubic splines.

In general, our results are superior to those obtained from standard liquid integral
equations, as there is ‘an inadequacy of the traditional liquid-state integral theories to describe
in a satisfactory way the high-density fluid phase of the system’ [16] (see figure 3 therein for the
result of the Percus–Yevick closure). We have also used a simpler way to getg(r) via the second
functional derivative of the free energy with respect to density together with the Ornstein–
Zernicke relation. This result agrees fairly well at low density but the agreement becomes
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Figure 1. The pair correlation function for penetrable spheres with packing fractionη = 0.5 at
different temperatures such thatkBT/ε = 0, 0.2, 0.5, 1. Lines denote theoretical results; symbols
indicate simulation data. (For the sake of clarity, the curves are shifted upwards by one unit and
theT = 0 curve is not drawn near contact,r/σ < 1.14.)

worse upon increasing the density beyondη > 0.3. One encounters negative values inside the
core, which are of course unphysical. For the fluid free energy, we take a linear combination
of the compressibility and virial expressions with weights 1/3 and 2/3, respectively; this is
similar to the Carnahan–Starling procedure [3]. The details will be presented elsewhere [20].

To investigate the solid phase, the density distribution is parametrized with a Gaussian
ansatz:

ρ(r) = η0(α
3/π3/2)

∑
{Ri }

exp(−α2(r −Ri )
2)

where the summation runs over the lattice sites{Ri} of a face-centred-cubic (fcc) lattice. This
ansatzallows for multiply occupied lattice sites through the occupancy numberη0, which may
be larger than unity. Upon minimizing the functional with respect toα andη0, we find the
solid phase to be stable. The occupation number grows for increasing density and increasing
temperature.

By imposing thermal, mechanical and chemical equilibrium between the fluid and solid
phase, we calculate the phase diagram shown in figure 2. There appears a first-order freezing
transition into an fcc structure with multiply occupied lattice sites. As expected physically, the
solid phase becomes destabilized upon increasing the temperature. The solid–fluid coexistence
is shifted towards lower packing fractions compared to those given by the combined integral-
equation–cell-model approach of Likoset al [16] (e.g.,η = 0.8–1.0 at temperature 0.2). The
claimed clustering transitions [16] are not thermodynamic phase transitions, but merely sharp
increases in the occupation numbers [21]. In accordance with this result from the cell model,
the present DFT yields a single-crystalline phase.

To illustrate the physics of the penetrable-sphere model, we finally show snapshots taken
from computer simulation in figure 3. In the fluid phase (figure 3(a)), there are large clusters
of overlapping particles. In the solid phase (figure 3(b)), each lattice site can be occupied by
more than one particle. Both configurations have the space-filling packing fractionη = 1,
with temperatures such thatkBT/ε = 1, 0.1.
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Figure 2. The phase diagram for penetrable spheres depending on the packing fraction and
temperature. Coexistence is denoted by thin horizontal tie lines. The simulation results forT = 0
areη = 0.494–0.545 [3].

(a) (b)

Figure 3. Snapshots from computer simulation of the fluid phase (a) and the solid phase (b) at
packing fractionη = 1 . The particles are rendered as transparent bubbles with small white balls
indicating their centres.

In this work we have demonstrated that a very successful theory of hard-body fluids and
solids, the so-called fundamental-measure density functional theory, can be generalized to
penetrable particles, while retaining its simplicity and accuracy. The major advance is the
systematic introduction of an internal energy scale into a hitherto purely entropic theory. We
have considered a model of penetrable spheres, interacting with a step-function potential which
is ε inside the core and zero outside. The functional is derived by considering both the geo-
metric properties of the spherical particles and the so-called zero-dimensional limit, consisting
of a hard cavity of the size of a single particle. To our knowledge, it is the first non-perturbative
functional of the Rosenfeld type derived for a thermal system. We have considered the fluid
structure derived using the functional, finding good agreement with simulations. Describing
the solid as a superposition of Gaussian peaks, the theory predicts a freezing transition into a
multiply occupied fcc lattice. Finally, we note that it is highly desirable to apply the current
approach to more general pair potentials. Work along these lines is in progress.
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