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A convolution transformation is presented that maps the four fundamental measures
�Minkowski functionals� of a three-dimensional sphere to those of a sphere with a
different radius. It is shown that the set of all these transformations, parametrized
by the induced change in radius, forms an Abelian �commutative� group and hence
constitutes a flexible framework for the manipulation of spheres. The correspond-
ing one-dimensional case is laid out and the relationship to fundamental measure
density functional theory is discussed briefly. © 2007 American Institute of
Physics. �DOI: 10.1063/1.2816259�

I. INTRODUCTION

The geometry of spheres is at the heart of fundamental measure theory �FMT�, the density
functional theory1,2 that Rosenfeld established in his seminal 1989 paper3 and that has become of
widespread use in the study of inhomogeneous hard sphere fluids and related models. The theory
possesses roots in scaled-particle theory and Percus-Yevick theory, as well as in one-dimensional
exact solutions.4,5 Its relation to geometry arises through the use of Minkowski functionals6,7

�fundamental measures� and the Gauss-Bonnet theorem. The relevant geometrical objects are local
weight functions that are characteristic of the volume, surface, integral mean curvature, and Euler
characteristic of the sphere. In FMT they are used to build weighted densities via convolution with
the bare one-body density profiles of the system. Rosenfeld’s original theory relies on scalar and
vectorial weight functions; in Kierlik and Rosinberg’s equivalent reformulation solely scalar
weight functions appear.8,9 Much light was shed on the significance of the weight functions by
Lafuente and Cuesta’s lattice version of FMT that applies to discrete lattice gases: Deep connec-
tions to zero-dimensional cavities were established and exploited to construct DFTs for such
models. The continuum version of FMT has seen several extensions10,11 as well as generalizations
to further models, such as that by Tutschka and Kahl to adhesive hard spheres.12 The recent FMT
for non-additive hard spheres13 has introduced major alterations of the structure of the functional
as compared to the Rosenfeld functional for additive hard sphere mixtures:3 The way the weight
functions relate to the Mayer bond differs significantly from the additive case in that two convo-
lutions �rather than a single one� are used to express the Mayer bond of the cross interaction
between particles of unlike species. For hard core particles, the Mayer bond equals −1 if two
particles overlap and is zero otherwise. Hence for hard spheres it represents a sphere when the
distance vector between the two particle centers is taken as the spatial coordinate.

The present paper delves deeper into the spherical geometry involved. It is shown that the
weight functions of Ref. 13 form flexible tools to express and manipulate the geometry of three-
dimensional spheres via convolution, in particular, to decrease �peel� or increase �coat� the size of
a given sphere. These operations can be repeated �chained� and inverted, and hence possess an
�Abelian� group structure. This is established by considering the four measures of a sphere as an
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element of an abstract four-dimensional vector space on which the operations act as linear trans-
formations. Besides the intrinsic interest in the geometry involved, this formalized framework
might constitute a valuable resource for future developments in FMT.

This paper is organized as follows. In Sec. II a summary of the geometrical weight functions
as introduced in Refs. 3, 8, and 9 is given, and it is shown that the set of weight functions of a
sphere with a given radius can be viewed as an element of a vector space. In Sec. III linear
transformations that act on elements of this vector space are introduced, and shown to possess an
Abelian �commutative� group structure. The central result is that the matrices defined via Eqs. �27�
and �28� fulfill the remarkable set of properties �18�–�23�. Furthermore a third-rank tensor repre-
sentation is given and discussed in detail. Section 4 presents a similar analysis in one dimension,
as is relevant for the geometry of line segments in one dimension �which relates to a one-
dimensional hard core model14�, and we conclude in Sec. V.

II. VECTORS OF WEIGHT FUNCTIONS AND AN INNER PRODUCT

We consider “weight” functions w��r ,R� that express the geometry of a sphere of radius R,
where r= �r� and r is the three-dimensional space coordinate; the index � labels the type of weight
function and indicates that w��r ,R� possesses the dimension �length��−3. The weight functions in
the �fully scalar� Kierlik-Rosinberg form8,9 are given by

w3�r,R� = sgn�R����R� − r� , �1�

w2�r,R� = ���R� − r� , �2�

w1�r,R� = sgn�R�����R� − r�/�8�� , �3�

w0�r,R� = ����R� − r�/�2�r� − ����R� − r�/�8�� , �4�

where sgn�·� is the sign function, ��·� is the Heaviside �unit step� function, ��·� is the Dirac
distribution, and the prime denotes the derivative with respect to the argument. In Fourier space
the weight functions are obtained as w̃��q ,R�=4��0

�drw��r ,R�sin�qr�r /q and are given explicitly
as

w̃3�q,R� = 4��sin�qR� − qR cos�qR��/q3, �5�

w̃2�q,R� = 4�R sin�qR�/q , �6�

w̃1�q,R� = �qR cos�qR� + sin�qR��/�2q� , �7�

w̃0�q,R� = cos�qR� + �qR sin�qR�/2� . �8�

The fundamental measures �� are related to the weight functions through ��=�drw���r � ,R�
= w̃�q→0,R�, and correspond to the volume, surface, integral mean curvature, and Euler charac-
teristic of a sphere, given by �3=4�R3 /3, �2=4�R2, �1=R, and �0=1, respectively. Here and in the
following we allow R to be negative. While this seems unusual for a single sphere, as considered
here, it has a very natural interpretation of peeling a layer of thickness R from a sphere of a larger
radius; such situations will be considered below.

We treat a set of four weight functions as a vector, either in real space or in Fourier space,
defined as15
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wR =�
w0�r,R�
w1�r,R�
w2�r,R�
w3�r,R�

�, w̃R =�
w̃0�q,R�
w̃1�q,R�
w̃2�q,R�
w̃3�q,R�

� , �9�

respectively. The operations that define the vector space are trivial: Two vectors are added com-
ponentwise and a vector is multiplied by a �possibly complex� scalar by multiplying each com-
ponent of the vector with the scalar. In the tensor notation used below we refer to w̃R as w̃��q ,R�,
where �=0,1 ,2 ,3 enumerates the components.

We next seek to define an inner product. As the weight functions are dimensional quantities,
the Cartesian dot product, represented by the 4�4 identity matrix 1, is inappropriate as it attempts
to sum over terms of differing dimensionality when used as w̃R

t 1w̃R�; the superscript t indicates
transposition, i.e., w̃R�

t is a row vector. This dimensionality problem does not occur when defining
an inner product using

M =�
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0
� , �10�

which we refer to as M�� �componentwise equal to its inverse M��� in tensor notation; indices of
tensors are taken to run from 0 to 3, as do those of vectors. M�� possesses �		

� signature.
Recall that the signature is the set of signs of all eigenvalues; hence the present case is distinct
both from the Euclidean case �				� and from the Minkowski case �	


� of special
relativity.

The inner product of two vectors w̃R and w̃R� is obtained as the contraction

w̃R
t Mw̃R� = w̃��q,R�M��w��q,R�� = w̃3�q,R + R�� , �11�

where �here and throughout� we use the Einstein sum convention, such that summation is implied
over �Greek� indices that appear twice, as an upper and as a lower index, from 0 to 3. The second
equality in �11� can be obtained with straightforward algebra using trigonometric identities from
�5�–�8� and represents the celebrated “deconvolution of the hard sphere Mayer bond”3,8 when read
from right to left; this can be viewed as a special case of the Gauss-Bonnet theorem.16,17 Note that
the Mayer bond, which is crucial for the low-density expansion of the properties of a fluid, for
particles interacting with a hard sphere pair potential of range R+R� equals −��R+R�− �r��, where
r is the distance vector between the two particle centers; this in turn is equal �up to a minus sign�
to w3��r� ,R+R��, the measure characteristic of the sphere volume. Figure 1 displays an illustration
of the geometrical situation. The relationship of the four fundamental measures of the two initial

FIG. 1. Illustration of the length scales relevant for the convolution of two spheres. The sphere of radius R �dark gray� is
convolved with a sphere of radius R� �light gray� to form a sphere of radius R+R� �white, left� or of radius R−R� �white,
right�.
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spheres �with radius R and R�� to one of the measures �volume� of the resulting sphere �with radius
R+R�� provides the a posteriori motivation for the use of the metric �10�. Note that we carry out
products of weight functions only in Fourier space; the corresponding operation in real space is the
�three-dimensional� convolution. We use the Fourier representation for mere notational conve-
nience in order to address the underlying geometric �real space� problem.

The remainder of the paper seeks to remedy an apparent loss: Only one of the four measures
of a sphere of radius R+R�, namely, w3�r ,R+R��, is obtained via �11�. How the remaining three
measures, corresponding to the surface, integral mean curvature, and Euler characteristic, Eqs.
�6�–�8� respectively, can be restored will be addressed in the following section.

Before doing so, let us explicitly introduce a dual vector

w̃R
t M = �w̃3�q,R�,w̃2�q,R�,w̃1�q,R�,w̃0�q,R�� , �12�

that satisfies w̃��q ,R�=M��w̃��q ,R�. Note the descending order of subscripts which contrasts that
of vectors, Eq. �9�; those possess ascending order of indices. The difference is a necessary con-
sequence of the structure of �10� and for each component �=0,1 ,2 ,3 the identity w̃��q ,R�
= w̃3−��q ,R� holds.

III. THE SPHERICAL SHIFTING GROUP

In order to introduce �linear� transformations between vectors of weight functions, we con-
sider the following matrix:

KR =�
w0�r,R� w−1�r,R� w−2�r,R� w−3�r,R�
w1�r,R� w0

†�r,R� w−1
† �r,R� w−2�r,R�

w2�r,R� w1
†�r,R� w0

†�r,R� w−1�r,R�
w3�r,R� w2�r,R� w1�r,R� w0�r,R�

� , �13�

where † is used to discriminate an element from the corresponding element without this symbol.
The elements in the first column and those in the last row are defined through �1�–�4�; the
remaining ones18 are given by

w1
†�r,R� = sgn�R�����R� − r� ,

w0
†�r,R� = ����R� − r�/�8�� ,

w−1
† �r,R� = sgn�R���3���R� − r�/�64�2� ,

�14�

w−1�r,R� = sgn�R������R� − r�/�2�r� − ��3���R� − r�/�8��� ,

w−2�r,R� = ��3���R� − r�/�16�2r� − ��4���R� − r�/�64�2� ,

w−3�r,R� = sgn�R��− ��4���R� − r�/�8�2r� + ��5���R� − r�/�64�2�� ,

with the derivatives of the Dirac distribution �����x�=d���x� /dx� for �=3,4 ,5. In Fourier space
we have
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K̃R =�
w̃0�q,R� w̃−1�q,R� w̃−2�q,R� w̃−3�q,R�
w̃1�q,R� w̃0

†�q,R� w̃−1
† �q,R� w̃−2�q,R�

w̃2�q,R� w̃1
†�q,R� w̃0

†�q,R� w̃−1�q,R�
w̃3�q,R� w̃2�q,R� w̃1�q,R� w̃0�q,R�

� , �15�

which we refer to as K̃�
��q ,R� in tensor notation, where � selects a row and � selects a column.

Note that the index-raised K̃���q ,R�=M��K̃�
��q ,R� and index-lowered forms K̃���q ,R�

= K̃�
��q ,R�M�� are symmetric under exchange of indices: K̃���q ,R�= K̃���q ,R� and K̃���q ,R�

= K̃���q ,R�; the latter operation corresponds to matrix transposition, and the two equalities reflect
the mirror symmetry of �15� against the counterdiagonal.19

The Fourier representation of �14� reads

w̃1
†�q,R� = 4��qR cos�qR� + sin�qR��/q ,

w̃0
†�q,R� = cos�qR� − �qR sin�qR�/2� ,

w̃−1
† �q,R� = − �q2R cos�qR� + 3q sin�qR��/�16�� ,

�16�

w̃−1�q,R� = �q2R cos�qR� − q sin�qR��/2,

w̃−2�q,R� = − q3R sin�qR�/�16�� ,

w̃−3�q,R� = �q4R cos�qR� − 3q3 sin�qR��/�16�� ,

and summarizing, K̃R is given explicitly by

�
c + �qRs/2� �q2Rc − qs�/2 − q3Rs/�16�� �q4Rc − 3q3s�/�16��

�qRc + s�/�2q� c − �qRs/2� − �q2Rc + 3qs�/�16�� − q3Rs/�16��
4�Rs/q 4��qRc + s�/q c − �qRs/2� �q2Rc − qs�/2

4��s − qRc�/q3 4�Rs/q �qRc + s�/�2q� c + �qRs/2�
� , �17�

where s=sin�qR� and c=cos�qR�.
There is a variety of relationships that possess remarkable simplicity given the considerable

complexity of �17�. Among those relationships are the following:

K̃RK̃R� = K̃R�K̃R = K̃R+R�, �18�

K̃RK̃−R� = K̃−R�K̃R = K̃R−R�, �19�

�K̃R�−1 = K̃−R or �K̃RK̃−R = 1� , �20�

K̃0 = 1 , �21�

�K̃R�n = K̃nR, �22�
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det K̃R = 1, �23�

all of which can be obtained with straightforward algebra using trigonometric identities. These

relationships establish that 	K̃R ,R�R
 forms an Abelian group with respect to matrix multiplica-
tion. The group is isomorphic �via the radius R� to the real numbers under addition. As the first

column of K̃R equals the vector of weight functions w̃R, i.e., w̃��q ,R�= K̃�
1�q ,R�, the above

properties imply operations on vectors; the essence can be condensed into

K̃R�w̃R = w̃R+R� �and K̃−R�w̃R = w̃R−R�� , �24�

which corresponds to the real space form KR��wR=wR+R�, where � denotes the three-dimensional
convolution. This constitutes the operation that we had sought: Starting from a sphere of radius R
and represented by its four measures contained in wR, we transform to a sphere of radius R+R�
�coating by a layer with thickness R�� or R−R� �peeling by a shell with thickness R��. The new
sphere is again represented by its four measures. This represents a shift �rather than a stretch� of

the radius and hence one could term the set of the transformations K̃R the spherical shifting group.
When viewed componentwise as four independent equalities, �24� augments the deconvolution
equation �11� to the full set of four geometric measures; the first one being identical to the
deconvolution equation. Note, however, that the more general case is constituted by �18�. Taking
the risk of obfuscating terminology, one could refer to �18� as the deconvolution of the fundamen-
tal measures. The remarkable qualitative feature that discriminates this relationship from the
deconvolution of the volume weight �11� is that the complete matrix of weight functions is
recovered without any loss. Note that this structure has not been obvious at all from the outset.
Further deconvolving the left hand side of �11� into shorter ranged weight functions could have
potentially led to an increased level of complexity �as measured by an increase in tensor rank
and/or by the appearance of additional weight functions�. This is not the case. Given a set of radii
Ri that fulfill R=�i=1

n Ri, we can use �11� and repeatedly apply �18� in order to express the volume
weight as

w̃3�q,R� = w̃R1

t MK̃R2
, . . . ,K̃Rn−1

w̃Rn
. �25�

This can be viewed as the 30-element of the slightly more compact “onion” relationship

K̃R = K̃R1
K̃R2

, . . . ,K̃Rn
, �26�

which follows by inference from �18�. For completeness a discussion of the eigensystem of K̃R is
given in the Appendix.

We next seek an infinitesimal shifting operation, G̃, such that

K̃R = exp�RG̃� , �27�

where the argument of the exponential is the product of the scalar R and a matrix G̃ that acts as
a generator for the group; the exponential of a matrix A is defined via its power series, exp�A�
=�m=0

� Am /n! with A0=1. Via expanding �17� in R and isolating the linear contribution one finds
that

G̃ =�
0 0 0 − q4/�8��
1 0 − q2/�4�� 0

0 8� 0 0

0 0 1 0
� , �28�

which has an obvious real space interpretation via the correspondence of multiplication by −q2 in

Fourier space with applying the Laplace operator �2 in direct space. The matrix G̃ possesses a
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variety of interesting properties among which are det G̃=q4 and that it obeys the simple quartic
equation

�G̃ + q21�2 = 0. �29�

The latter can be used to obtain by inference a recurrence relation G̃2n= �1−n�1+G̃2 /q2���iq�2n

that helps to verify the relationship of G̃ to K̃R, Eq. �27�, explicitly.
There is yet more structure to be revealed by introducing a third-rank tensor

T̃ = �M,MG̃,MG̃2/�8��,M�2q2G̃ + G̃3�/�8���

=��0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0
�, �

0 0 1 0

0 8� 0 0

1 0 −q2

4�
0

0 0 0 −q4

8�

�, �
0 1 0 0

1 0 −q2

4�
0

0 −q2

4�
0 −q4

64�2

0 0 −q4

64�2 0
�, �

1 0 0 0

0 0 0 −q4

8�

0 0 −q4

64�2 0

0 −q4

8�
0 −q6

32�2

�� ,

�30�

where the components of T̃ are T̃���q� with indexing such that the first index ��� selects a 4
�4-matrix from the 4-tuple of matrices in �30�, the second index ��� selects a row, and the third
index �� selects a column from this 4�4-matrix; again all indices run from 0 to 3. Having made

this explicit, note though that T̃ is fully symmetric under permutations of all its three indices in the

form with all indices raised: T̃���q�= T̃���q�= T̃���q�= T̃���q�, as well as with all indices low-

ered: T̃���q�= T̃���q�= T̃���q�= T̃���q�, where T̃���q�=M���M���M�T̃
������q�. More gener-

ally, the symmetry applies to exchange between pairs of either lower or upper indices. Alterna-

tively to �30� all nonvanishing elements can be defined via T̃003= T̃012=1, T̃111=8�, T̃122

=−q2 / �4��, T̃133=−q4 / �8��, T̃223=−q4 / �64�2�, and T̃333=−q6 / �32�2� and using the symmetry

under pairwise exchange of indices. Figure 2 illustrates the symmetry properties of T̃ graphically.

Note furthermore that T̃ is free of the length scale R. It hence cannot be associated with a given

sphere and thus constitutes, in this sense, a more general object than K̃R.

Several important properties follow. One can use T̃ to express K̃R via contraction with a
vector of weight functions

K̃R = MT̃w̃R, �31�

which is in tensor notation K̃�
��q ,R�= T̃�

��q�w̃�q ,R�. Remarkably only the four “original”
Kierlik-Rosinberg weight functions �1�–�4� appear on the right hand side of this identity, but not

the additional ones �14� that define K̃R in �15�; these are “generated” in �31� by the action of T̃. It
follows that we can rewrite �24� as20

w̃R+R� = �MT̃w̃R�w̃R�, �32�

corresponding to the real space form wR+R�= �MTwR��wR�, where T is obtained from T̃ via
replacing q2n with �−1�n�2n for n=1,2 ,3. In tensor notation �32� reads as

w̃��q,R + R�� = T̃�
��q�w̃��q,R��w̃�q,R� , �33�

where T̃�
��q�=M��T̃���q�. Yet more explicitly, componentwise,

w̃3�q,R + R�� = w̃R
t Mw̃R� = w̃0�R�w̃3�R�� + w̃1�R�w̃2�R�� + w̃2�R�w̃1�R�� + w̃3�R�w̃0�R�� �34�
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w̃2�q,R + R�� = w̃R
t MG̃w̃R� = w̃0�R�w̃2�R�� + 8�w̃1�R�w̃1�R�� + w̃2�R�w̃0�R��

−
q2

4�
w̃2�R�w̃2�R�� −

q4

8�
w̃3�R�w̃3�R�� �35�

w̃1�q,R + R�� = w̃R
t MG̃2w̃R�/�8�� = w̃0�R�w̃1�R�� + w̃1�R�w̃0�R�� −

q2

4�
�w̃1�R�w̃2�R��

+ w̃2�R�w̃1�R��� −
q4

64�2 �w̃2�R�w̃3�R�� + w̃3�R�w̃2�R���

�36�

w̃0�q,R + R�� = w̃R
t M�G̃3 + 2q2G̃�w̃R�/�8��

= w̃0�R�w̃0�R�� −
q4

8�
�w̃1�R�w̃3�R�� +

1

8�
w̃2�R�w̃2�R�� + w̃3�R�w̃1�R��

−
q6

32�2 w̃3�R�w̃3�R�� , �37�

where the argument q was omitted in w̃��q ,R� on the right hand sides to unclutter the notation.
This presents the generalization of the deconvolution of the volume measure �11� to all four
fundamental measures, �=0,1 ,2 ,3 �the case �=3 being recovered in �34��, where in contrast to
�24� two vectors of weight functions �of radii R and R�� are mapped onto one vector of weight
functions �of radius R+R��. An important distinction between �34� on the one hand and �35�–�37�

FIG. 2. �Color online� Illustration of T̃. The three spatial dimensions correspond to the three indices; the origin �black dot�
corresponds to 000. The triangles mark entries with common dimensionalities �8� lies in the plane spanned by the 1
entries�. Note the symmetry under exchange of any two axes and under rotations by 120° around the space diagonal.
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on the other hand is that the tensor T̃ contributes �even� powers of q on the right hand sides of
�35�–�37�, whereas this is not the case for the volume deconvolution �34�. The remarkable fact is

that T̃ is free of the possible length scales R and R� and hence expressions including these radii are

algebraically separated in the general tensor product �33�. Given the requirement that T̃ is free of
both R and R� its form is uniquely determined.

From the above we conclude that a group structure is imposed on 	w̃R ,R�R
, with �MT̃ · �· as
the multiplication operation. The inverse of w̃R is w̃−R, the neutral element is w̃0= �1,0 ,0 ,0�t, and
again the group is commutative.

Furthermore, an operation akin to a triple vector product is

w̃3�q,R + R� + R�� = ��T̃w̃R�w̃R��w̃R� = T̃���q�w̃��q,R�w̃��q,R��w̃�q,R�� , �38�

and again chaining is possible, similar to �26�,

w̃R = �MT̃w̃R1
��MT̃w̃R2

�, . . . ,�MT̃w̃Rn−1
�w̃Rn

, �39�

w̃�n
�q,R� = w̃�1�q,Rn��

i=1

n−1

T̃�i

�i+1iw̃i
�q,Ri� , �40�

where R=�i=1
n Ri.

IV. THE ONE-DIMENSIONAL CASE

In the following we investigate the geometry of line segments of length 2R �intervals� on a
one-dimensional line. This shares many features with the three-dimensional considerations above,
but offers the advantage of reduced complexity of the analytical expressions involved. We keep
the discussion to a minimum, as the structure is very similar to that in three dimensions. The
relevant weight functions are

w1�x,R� = sgn�R����R� − �x�� , �41�

w0�x,R� = ���R� − �x��/2, �42�

w−1�x,R� = sgn�R�����R� − �x��/4, �43�

which in Fourier space, where w̃��q ,R�=�−�
� dx exp�iqx�w��x ,R�, corresponds to

w̃1�q,R� = 2 sin�qR�/q , �44�

w̃0�q,R� = cos�qR� , �45�

w̃−1�q,R� = − q sin�qR�/2. �46�

We define vectors of weight functions as

wR = �w0�r,R�,w1�r,R�� = ���R − �x��/2,��R − �x��� , �47�

w̃R = �w̃0�q,R�,w̃1�q,R�� = �cos�qR�,2 sin�qR�/q� . �48�

Using the matrix
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M = �0 1

1 0
 �49�

one can express the inner product of two vectors of weight functions

w̃R
t Mw̃R� = w̃��q,R�M��w̃��q,R�� �50�

=w̃0�q,R�w̃1�q,R�� + w̃0�q,R��w̃1�q,R� �51�

=w1�q,R + R�� , �52�

where sums run over 0 and 1, and, similar to the three-dimensional case, the last equality repre-
sents the deconvolution of the “volume” weight �of dimension length�. The �linear� shifting trans-
formation is represented by

KR = �w0�x,R� w−1�x,R�
w1�x,R� w0�x,R�

 �53�

=����x� − R�/2 ����x� − R�/4
���x� − R� ���x� − R�/2  , �54�

and in Fourier space by

K̃R = �w̃0�q,R� w̃−1�q,R�
w̃1�q,R� w̃0�q,R�

 �55�

=� cos�qR� − q sin�qR�/2
2 sin�qR�/q cos�qR�

 . �56�

This can be rewritten using a generator G̃ such that

K̃R = exp�2RG̃� , �57�

G̃ = �0 − q2/4
1 0

 , �58�

with det G̃=q2. The third-rank tensor is given by

T̃ = �M,MG̃� �59�

=��0 1

1 0
, �1 0

0 − q2/4  . �60�

Most of the properties of K̃R and T̃ as discussed above in the three-dimensional case apply here,
as can be �more easily than in three dimensions� derived by explicit algebra.

Note that the present one-dimensional case is also of significance for the geometry of
d-dimensional parallel �hyper�cubes �or cuboids when considering different sizes� via building
direct products of the one-dimensional quantities characteristic for each of the d Cartesian dimen-
sions �see, e.g., Refs. 21 and 22�.
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V. CONCLUSIONS

We have shown that the weight functions used in Ref. 13 form a complete and closed frame-
work for the manipulation of the size of spheres via convolution in that the geometry of a sphere
can be represented by an arbitrary number of convolutions of spheres. The transformations that
perform such a shift of length scales can be chained and reversed and hence form an Abelian
group. We have investigated in detail the linear algebra of the convolution transformation involved
including second- and third-rank representations. Our findings might prove useful in the further
development of geometry-based density functional theories.

Some of the more recent developments in FMT are based on the requirement to regularize the
free energy density functional for delta-function density distributions.11,23,24 This is achieved using
tensorial weight functions �which can be viewed as an extension of Rosenfeld’s vectorial weight
functions�. Elucidating the precise relationship of these objects to the framework presented here
deserves further study.
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APPENDIX: EIGENSYSTEMS IN THE THREE-DIMENSIONAL CASE

For completeness we investigate the two eigensystems of K̃R. The right eigensystem consists
of a pair of doubly degenerate eigenvectors v and v* that are complex conjugate to each other
�indicated by the superscript asterisk� and correspond to doubly degenerate eigenvalues � and �*

given by

v = �1,− i/q,8�/q2,8�i/q3�, � = e−iqR. �A1�

The left eigensystem possesses similar features. The two eigenvectors are each doubly degenerate
and form a pair of complex conjugates u and u* with the same eigenvalues � and �* as given
above for the right eigensystem and

u = �1,− iq,− q2/�8��,− iq3/�8��� . �A2�

Again the simplicity of these expressions might seem striking given the complexity of K̃R. Note,
in particular, that v and u are scale-free objects in that they do not contain the length scale R; the
latter appears solely in the corresponding eigenvalue, where it plays the role of tuning the phase in
a complex exponential. It is worth noting that all possible inner products vanish:

vtMv = vtMv* = vt*Mv* = 0, �A3�

utMu = utMu* = ut*Mu* = 0, �A4�

u · v = u · v* = u* · v = u* · v* = 0. �A5�

In particular, the first line is striking: When viewed as a vector of weight functions, v �and its
complex conjugate v*� serves to deconvolve naught. Note that all corresponding fundamental
measures �obtained in the limit q→0� diverge, except for the Euler characteristic, which is well
behaved and equals unity. Furthermore Eqs. �A3� and �A4� also hold when M is replaced by either

of the following matrices: MG̃, MG̃2, or M�G̃3+2q2G̃�, which together form the third-rank tensor

T̃. Hence, in summary, rewriting the first equality of �A3� as
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T̃�
�v�v = 0, � = 0,1,2,3 �A6�

holds accordingly for the other cases involving v*, u, and u*.
The above eigenvectors can be augmented to form a matrix

S̃ =�
1 − iq − q2/�8�� − iq3/�8��

− i/q − 1 iq/�8�� − q2/�8��
8�/q2 − 8�i/q − 1 − iq

8�i/q3 8�/q2 − i/q 1
� , �A7�

with det S̃=0 and the properties S̃S̃= S̃S̃*= S̃*S̃= S̃*S̃*=0, K̃RS̃= S̃K̃R=e−iqRS̃, and K̃RS̃*= S̃*K̃R

=eiqRS̃*.
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