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Abstract
We study interfacial properties of the phase-separated two-dimensional Ising model. The
interface between coexisting phases is stabilized by two parallel walls with opposing surface
fields. A driving field parallel to the walls is applied which (i) either acts locally at the walls or
(ii) varies linearly with distance across the strip. Using computer simulations with Kawasaki
dynamics, we found (Smith et al 2008 Phys. Rev. Lett. 101 067203) that the system reaches a
steady state with a sharper magnetization profile, reduced interfacial width, and faster decay of
correlations along the interface, as compared to the equilibrium case. Here we present new
results for the bond energy profile, providing further evidence for the picture wherein shear acts
as effective confinement in this system. As a prerequisite for understanding the driven system,
we investigate the pronounced differences between Kawasaki (spin-exchange) and Glauber
(spin-flip) dynamics in the confined equilibrium system.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

As much as studying the Ising model in equilibrium has helped
to gain insights into critical phenomena and the structure and
thermodynamics of interfaces, kinetic Ising (or lattice gas)
models have contributed greatly to the emerging understanding
of dynamic phenomena in condensed matter. Examples include
dynamic critical phenomena [1], kinetics of phase separation,
i.e., nucleation and domain growth [2], dynamics of fluid
spreading and wetting [3], and the glass transition [4].

In these simple models the time evolution proceeds
according to given stochastic rules. One assumes that the
(Ising) spins are in contact with a heat bath at temperature
T which induces random transitions of spin states. The heat
bath is accounted for indirectly via transition probabilities for
elementary moves; these completely specify the dynamics.
Often the transition probabilities are taken to not depend on

the history of the system, so that the stochastic process is
Markovian. Also, they are suitably constructed to reproduce
the equilibrium state, i.e., such that the condition of detailed
balance for the Gibbs probability distribution is satisfied.
Underlying the entire scheme is the idea of coarse graining [5].
A record of the dynamical state is only kept at discrete time
and space points. The lattice gas ‘particles’ can be thought of
as fluid elements; the positions and momenta of the constituent
atoms are not followed.

Typically two different types of the elementary spin
transitions are considered. In the so-called spin-flip dynamics
originally proposed by Glauber [6], the simplest move is a
random flip of only one spin at a given time, so that both
the total magnetization and the total energy of the system
may have changed after the transition. These single spin-
flip dynamics cannot describe transport phenomena such as
diffusion or heat conduction, where the quantities of interest
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are conserved. In these situations Kawasaki dynamics [7] are
more appropriate, in which the simplest transition induced by
the heat bath is an exchange of two nearest-neighbour spins,
so that the total magnetization of the system is conserved
locally (and hence globally). In the equivalent lattice gas
formulation one considers particles located on a lattice on
which they move and interact. The single-spin flip corresponds
to the spontaneous appearance/disappearance of a particle,
which is somewhat artificial in this context. The spin-exchange
transition corresponds to the physically more plausible jump of
the particle to a neighbouring (empty) site.

An important generalization of the kinetic Ising lattice gas
model is that to systems driven out of equilibrium by external
force fields. Such models are referred to as driven lattice gas
models or driven diffusive systems [8, 9]. Driving induces
preferential hopping of the particles in the local direction
of the external driving force field—jump rates are biased
in that direction and suppressed in the opposite direction,
breaking the spatial symmetry; these rates usually obey a ‘local
detailed balance’. The resulting steady states are no longer
equilibrium states for any Hamiltonian and are characterized
by a steady particle current. A well studied example is the
nearest-neighbour interacting lattice gas driven by a spatially
uniform and temporally constant external force field, known
as the Katz–Lebowitz–Spohn (KLS) model [10]. Stationary
properties, in particular the out-of-equilibrium phase diagram
and critical behaviour of this model, have been investigated
in great detail [8, 11] using several approaches, ranging from
Monte Carlo simulations to field-theoretical methods.

Studying Ising models has greatly increased our under-
standing of interfacial phenomena [12, 13]. Through the equiv-
alence to the lattice gas model the obtained results are perti-
nent to fluid interfaces—spin variables, which take values ±1,
map on to particle occupation numbers 1 and 0 for a site. The
magnetization profile, for example, is then equivalent to a lat-
tice gas density profile. In the case of sub-critical Ising ferro-
magnets, phase coexistence is between two phases of opposite
magnetizations; for a simple fluid below its critical point be-
tween liquid and gas, while for a binary liquids mixture below
its consolute point it is between liquids of differing composi-
tion. Rigorous exact results for Ising interfaces have supported
the evidence from phenomenological and approximate theories
that interfacial properties depend crucially both on dimension-
ality and on geometry of the system, and that in equilibrium the
interface between suitably organized coexisting phases exhibits
large spatial fluctuations. These interfacial fluctuations occur
on a scale determined by a macroscopic length rather than the
bulk correlation length, as classical (mean-field) theories, such
as van der Waals theory, would suggest [14, 15], and diverge in
the thermodynamic limit (unless a suitable external field such
as gravity is applied).

For instance, if an interface in the two-dimensional (2d)
Ising lattice gas model is pinned at two points separated by a
geodesic distance L, then its rms width, as revealed by the local
magnetization [16], diverges as

√
L for 0 < T < Tc, where T

is the temperature, Tc is its critical value and TR = 0 is the
roughening temperature in this case. This result agrees with
the phenomenological capillary wave theory [17, 18], which

indicates that the location (height) of the interface h(x) with
mean orientation (1, 0) as a function of position (x, 0) satisfies

C(x) ≡ 〈h(0)h(x)〉 = kBT

�

∫
eiqx

ξ−2
‖ + q2

dq, (1)

where kB is the Boltzmann constant, � is the interfacial
stiffness, and ξ‖ is the lateral correlation length (along the
interface). In the absence of a gravitational field the decay of
height–height correlations is determined by a low wavenumber
(‘infrared’) cutoff q0 ∝ L−1 in the integral (1). A measure
of the interfacial width is the mean-square displacement of the
interface,

w2 = 〈h(0)2〉 ∼ kBT

�

(d − 1)

(3 − d)

[(
L

a

)3−d

− 1

]
(2)

where a is a microscopic length scale. Thus in d = 2,
w2 ≈ LkBT/�, in agreement with exact results.

Much can be learnt from the problem of the interface
confined between two walls with finite separation L y . For the
2d Ising lattice gas model the magnetization profile meq(y)

has been obtained for any given finite strip width L y as a
determinant, which is then evaluated numerically [19] (further
analytic progress would be valuable). The numerical results
indicate that the interface sweeps out essentially the entire
width of the strip, such that its width w ∼ L y , although it
will experience entropic repulsion at its extremities. Here, w

is the characteristic length of the one-point function setting up
the length scale in the y direction. As a result the soft-mode
part of the magnetization profile obeys the scaling relation

meq(y, T, L y)

mb(T )
= M̃eq(y/w) = Meq(y/L y), (3)

where mb(T ) is the spontaneous bulk magnetization and
M̃eq,Meq are scaling functions. The scaling form with w

(first equality in (3)) is often used in the context of fluid
interfaces. The interface itself acts as a trap for mobile lattice
gas ‘particles’, but there exists a transport mode with relatively
low activation energy along the interface itself [20].

Although no rigorous proof is available, the three-
dimensional (3d) Ising model is assumed to also have a rough
phase for TR < T < T 3d

c (in 3d, TR > 0), but the mechanism
by which it could be established is completely different. The
interface configurations which result in interference with the
boundary are needle-like, with high acicularity [21]; this
restricts transport much less than meandering. Finally we note
that for the case of the interface confined between two walls
the standard capillary wave model does not apply; it has to be
extended to take into account entropic repulsion from the walls.

As mentioned above, the critical and bulk properties
of the driven lattice gas (KLS [10]) have been studied in
detail. The interface between coexisting phases has also been
studied, mostly by simulation [22–24], but also by theoretical
approaches [25]. Leung et al [23] studied the interface of
the two-dimensional KLS model in the sub-critical regime via
Monte Carlo simulations. The total magnetization was fixed at
zero, corresponding to half-filling in lattice gas language. The
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lattice dimension L y normal to the interface (and the walls) was
chosen to be large enough for repulsion between the interface
(oriented along x) and the walls to be unimportant. Simulations
were done using a generalization of the local spin-exchange
Kawasaki dynamics [7] mentioned above; see section 2 for a
definition of the transition rates in the driven case. Leung et al
noted that owing to the local particle number conservation, the
evolution of a system with an interface under these dynamics
is extremely slow, since particles must be transported ‘step-
by-step’ in order to change the configuration of the interface.
We investigate the differences between Kawasaki and spin-flip
(Glauber) dynamics later in this paper.

In [23] the magnetization profile m(y) was found to
become much sharper upon increasing the applied drive:
|m(y)| stayed close to unity much further away from the walls
as compared to the equilibrium profile, and thus changed sign
much more sharply. This indicates that the interface is less
rough when drive is applied; capillary-wave-like fluctuations
are suppressed. Leung et al also investigated the spatial
and temporal correlations of the interfacial height (where
the height was defined by a coarse-graining method), and
the finite-size scaling of the interfacial width (expected to
scale as w ∼ √

Lx in this case, see equation (2)). From
the behaviour of the latter quantity, they speculated that the
interface would in fact be smooth in the thermodynamic limit—
i.e., the width would tend to a finite value as the system size is
increased. This is a striking example of the differences between
equilibrium and non-equilibrium systems—recall from the
above discussion that, in equilibrium, the width diverges
in the thermodynamic limit. A subsequent study [24]
of the Fourier transform of the height correlation function,
C(q), showed C(q) ∼ 1/q0.67, markedly different from the
1/q2 equilibrium (capillary wave—see equation (1)) behaviour
above the roughening transition. The behaviour in the driven
case is consistent with a smooth interface, since the squared
interfacial width is proportional to

∫
C(q) dq with suitable

wavenumber cutoffs limiting the range of integration. In the
same study the previously predicted 1/q decay of C(q) [25]
(via a coarse-grained, Langevin equation approach) for the
randomly driven KLS model was observed.

Further motivation for studying driven interfaces comes
from experiment. Colloidal dispersions form convenient
systems in the study of interfaces, both in and out of
equilibrium. A recent example of a non-equilibrium study may
be found in [26], where the sheared interface of a demixed
colloid–polymer system was investigated using real-space
(confocal microscopy) techniques. Real-space visualization
of interfacial fluctuations is possible due to the low interfacial
tension in such a system, leading to large interfacial roughness
and slow spatial and temporal decay of fluctuations [27].
Colloid–polymer mixtures can be subject to shear in well-
controlled ways [28, 29]. In [26], the authors found a reduced
interfacial roughness when shear was applied, both visually
and in results for the width and correlation function of the
height of the interface. The results were analysed in the context
of (equilibrium) capillary wave theory [18, 30]; using this
approach, Derks et al concluded that the correlation length
along the interface was increased, and that an effective surface
tension was higher than in the equilibrium system.

Motivated by a need to understand fluid interfaces in
relevant out-of-equilibrium situations, such as under the
influence of shear flow, we have studied fluctuating interfaces
in driven Ising lattice gas models. To this end, we have
studied a sheared 2d Ising lattice gas in strip geometry, with
two variants of the driving field, which form analogues of
shearing in a real liquid. The geometry considered, with
the lattice dimension Lx along the interface much greater
than the size L y normal to it, is very different from that
of Leung et al—for example, in equilibrium w ∼ L y in
strip geometry. An advantage of this choice of geometry
is the availability of exact results and known scaling forms
in equilibrium (see above). Results for several quantities of
interest, namely the particle current, magnetization profile,
and two-body correlation functions of the interface have been
reported in [31], where by rescaling the driven results, we
could interpret the effect of shear as an effective increase of
confinement of an equilibrium system. Here, we present new
results which further support the effective confinement picture.

We believe that studying lattice models complements
previous work on continuum models, such as using molecular
dynamics techniques applied to liquid–liquid [32, 33] and
nematic–isotropic [34] interfaces. Note that there are important
differences between lattice models with stochastic dynamics
and continuum fluid dynamics, in particular due to that fact that
the former lack a description of inertia. For static interfacial
properties in equilibrium however, the results for the Ising
model should be representative of its universality class. As
such, leaving the issue of dimensionality aside, the results are
expected to describe real liquid interfaces.

Driven Ising models have proved valuable in studying
dynamical transitions of the driven interface [35], the kinetics
of domain growth [36], and nucleation under shear [37].
In [36, 37], non-conserving (spin-flip) dynamics were used,
and the shear introduced as a separate step in the simulation
algorithm. Shearing a fluid is an important example of a
system driven away from equilibrium. It affects the liquid
structure [38] and can cause new phase transitions [39]. Shear
was also studied in hard core lattice models [40].

We also explore the differences in the results for one-and
two-body functions obtained by Monte Carlo simulations with
spin-flip (Glauber) and spin-exchange (Kawasaki) dynamics.
As we demonstrate, for a finite system in equilibrium, these
can be quite striking. The different types of dynamics sample
different statistical ensembles. Glauber dynamics generates
microstates of an ensemble where the total magnetization can
fluctuate (at vanishing bulk magnetic field in our case). In
lattice gas language, this corresponds to a grand ensemble
where the chemical potential is fixed, such that on average
the system is half-filled. Kawasaki dynamics sample an
ensemble with fixed total magnetization, corresponding to
a canonical ensemble with fixed total number of particles.
As we investigate in detail below, this difference has a
profound influence on the interfacial properties of confined
finite systems, as the total (vanishing) magnetization in the
Kawasaki case restricts the mean interfacial position at the
centre of the system more strongly than is the case for Glauber
dynamics. Unfreezing this ‘zero mode’ in Glauber dynamics
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leads to pronounced finite-size difference both in one- and two-
body correlation functions.

It is well known that different dynamics yield different
paths and rates of approach to equilibrium [41]; indeed
cluster algorithms take advantage of this fact to speed up
Monte Carlo simulation of many models significantly. The
differences between dynamics (both non-conservative) whose
transition rates factorize into a spin interaction part and an
external field part, and those which do not (‘soft’ and ‘hard’
dynamics, respectively), have been studied in the context of
field-driven solid-on-solid (SOS) and Ising interfaces [42, 43].
Rikvold and Kolesik found the intrinsic SOS interface width
to be independent of applied (Hamiltonian) field for soft
dynamics, in contrast with the hard case, where this quantity
grows with increasing field. Good agreement between their
analytic results and simulation was found. Our comparison
is between conservative and non-conservative dynamics, both
in the absence of a Hamiltonian external field. This is an
interesting problem, because spin-flip dynamics are typically
used in static studies, but as explained above, for our purposes
Kawasaki dynamics are a more natural choice—thus it is
worthwhile to compare the two dynamics in the (simpler)
equilibrium context.

The remainder of this paper is organized as follows. In
section 2 we define the sheared Ising lattice gas model. We
describe new results for the energy bond profile in section 3.1.
In section 3.2 we present a comparison of Glauber and
Kawasaki dynamics for confined systems in equilibrium. We
conclude and mention some future avenues of research in
section 4.

2. Sheared Ising model and simulation methods

The 2d sheared Ising lattice gas amounts to a generalization
of a confined KLS [10] model to spatially non-uniform drive.
In spin language, the Hamiltonian H is of the ferromagnetic
Ising nearest-neighbour type: H = −J

∑
〈i, j〉 σiσ j , where

〈i, j〉 indicates a sum over nearest-neighbour sites i and j ;
J > 0 is the spin–spin coupling constant, and the spins take on
values σi = ±1, corresponding to particle occupation numbers
τi = (σi + 1)/2 = 0, 1.

We consider a 2d square lattice of dimensions Lx × L y ,
with Lx 
 L y , so that in equilibrium scaling of the type (3)
is expected to hold, and the interfacial width w ∼ L y . The
interface is induced by means of two walls of fixed spins:
σi = +1 at the top (y = L y + 1) and σi = −1 at the
bottom (y = 0) edges of the lattice. These boundary conditions
strongly energetically favour up and down (respectively) spin
regions in their vicinity; this causes the interface to be oriented
along the x direction. Periodic boundary conditions are applied
at the x edges of the lattice. See figure 1(a) for an illustration
of the system.

In order to introduce drive, the equilibrium Kawasaki
dynamics are supplemented by a force field J F(y) oriented
parallel to the x direction. We consider two forms for F(y).
In model I, only particles in the layer adjacent to each wall are

Figure 1. (a) Illustration of a 2d Ising strip confined between +/−
walls and under the influence of a driving field F(y) along the
x-direction. Models I and II discussed in the text are shown: in model
I, the drive acts only at the walls, while in model II F(y) varies
linearly with y through the system. (b) Snapshot from simulation
with T/Tc = 0.75, Lx = 200, and L y = 20 at equilibrium; black
(white) regions indicate σi = +1(−1). (c) Same as (b) but under
strong shear-like drive according to model II with ω = 2.

driven, in opposite directions at the top and bottom walls:

F(y) =

⎧⎪⎨
⎪⎩

F0 y = L y ,

−F0 y = 1,

0 otherwise.

(model I) (4)

In the limit F0 → ∞ these driven layers form totally
asymmetric exclusion processes [8], coupled to an Ising
strip (which of course contains both bulk-like and interfacial
thermal fluctuations; the solution requires advanced transfer-
matrix approaches [19]). In model II, the field varies linearly
with y across the strip, and is zero at the mean interface
position in the centre (see figure 1)—due to the finite lattice
spacing this point lies between two rows if L y is even, as it
always is taken to be. The functional form is thus

F(y) = ω
[
y − (L y + 1)/2

]
, (model II) (5)

where ω is the dimensionless change in field between two
rows; in the continuum limit we would have ω = ∂ F/∂y. One
can also define a scaled and shifted variable ỹ = (2y − L y −
1)/L y , which is zero in the centre of the strip and whose range
is independent of L y ; then F(y) = ω ỹ L y/2 for model II. This
model can be thought of as mimicking the effects caused by
the flow of a background solvent [26].

In both models, the field acts to modify the Kawasaki
exchange rates (which are of Metropolis type), so that the
non-equilibrium rates are min{1, exp(−(�H +�F)/(kBT ))}.
Here, �H is the usual change in internal energy incurred
by the proposed exchange, calculated from the Hamiltonian,
and kB is the Boltzmann constant. �F is the work done by
or against the force field—it takes values −J F(y),+J F(y),
and 0, for the cases where the exchange would cause the spin
species corresponding to a particle to move with, against, and
perpendicular to the field, respectively. Thus moves in the
y direction are unaffected and occur with normal equilibrium
rates, but moves along x are enhanced or suppressed. Detailed
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Figure 2. Energy bond profiles Ex (y) and Ey(y) as a function of scaled coordinate y/L y , for a T = 0.75Tc, Lx = 200, L y = 20 system.
(a) Model I: results for Ex(y) (only) with a variety of boundary drive strengths F0, as well as the equilibrium result with Kawasaki dynamics.
(b) Results for Ex (y) and Ey(y) in equilibrium, and for Ey(y) with small and large field gradient ω in model II.

balance is violated, and the system is out of equilibrium. These
dynamics capture the local conservation of particle number and
the competition of forced transport with diffusive motion.

We have carried out extensive Monte Carlo (MC)
simulations of the above models, as well as of the equilibrium
case (ω = 0, F0 = 0) using single-spin and multi-spin [41, 44]
coding techniques. The multi-spin technique allows simulation
of 64 independent systems at once on a 64-bit computer
system, by taking advantage of bitwise operations that can
be carried out efficiently on a set of bits. Briefly, each
site in the lattice is represented by a 64-bit variable, each
of whose each bits corresponds to a different system. In
each MC step, one constructs variables which specify how
many anti-aligned neighbours each exchangee has, and creates
random bit patterns so that the exchange is carried out with
the appropriate probability. These variables are then combined
with the appropriate bitwise operations to determine whether or
not to carry out the exchange. We have extended the multispin
algorithm for Kawasaki dynamics [44] to include drive; in this
way we obtain much improved statistics over the single-spin
case for a given amount of computer time. Multi-spin and
single-spin results are consistent to within the error bars of
the single-spin data. Figures 1(b) and (c) show snapshots of
simulation configurations, in equilibrium and under drive in
model II.

As discussed above in the context of the uniformly driven
lattice gas, the relaxation of a system with an interface under
Kawasaki dynamics is very slow, leading to both a long initial
transient time to reach a steady state, and long correlation
times once in that steady state. Thus run lengths of the order
of NMC = 108 MC sweeps (Lx × L y trial moves form one
MC sweep) are required. We find that applying drive in fact
improves the situation, due to the increased rate of transport in
the system.

3. Results

3.1. Bond energy profiles under shear

Here we present new results to complement those in [31]. The
between-row bond energy profile J Ey(y) is defined as the

average bond energy between a spin in row y and its neighbour
in row y + 1 via:

Ey(y) = −
〈

1

Lx

Lx∑
x=1

σ(x, y)σ (x, y + 1)

〉
. (6)

The in-row energy profile J Ex(y) is similar, but measures
interactions between spins in the same row:

Ex(y) = −
〈

1

Lx

Lx∑
x=1

σ(x, y)σ (x + 1, y)

〉
. (7)

Thus negative values of Ex(y) and Ey(y) close to the
minimum of −1 imply that almost all bonds are between like
spins, so that the system is locally strongly ordered. We
first discuss the common features of Ex(y) and Ey(y)—in
the following, E(y) represents both functions. We expect
E(y) ≈ −1 near the (fixed spin) walls; this is indeed confirmed
in figure 2, which displays results both for models I and II.
For both equilibrium and driven cases, near the centre of the
system, |E(y)| is smaller than at the boundaries, reflecting
the presence of the interface in this region. When boundary
drive (model I) is applied, |E(y)| is increased near the walls,
as compared to the equilibrium case. This indicates an
increase in order near the walls, consistent with results for the
magnetization profile [31]. The strength of the effect increases
with larger values of F0, up to the saturation value of F0 ≈ 5,
beyond which further changes are very small (the saturation is
due to the field appearing in the exponential in the transition
rates—see section 2). We believe this effect is due to the
boundary drive breaking up clusters of the ‘wrong’ spin species
near a wall, which otherwise, in the absence of drive, would
be relatively long-lived. Once such clusters are broken up,
individual spins may diffuse freely in the bulk until they find
the interface, and thus ‘their own’ phase again. This process
leads to increased magnetization near the walls, and therefore
an increase in |E(y)|. In model II, the same trend is observed
when drive is applied; for (weak) ω = 0.025 the size of the
effect is similar to strong boundary drive. Upon increasing ω

the effect becomes much larger; the profile is almost flat from
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Figure 3. Magnetization profiles obtained from simulations with Kawasaki and with Glauber dynamics for T/Tc = 0.75, Lx = 200,
compared with the static ones obtained by using the exact diagonalization of the transfer matrix for infinite strips Lx = ∞ and for two
different widths (a) L y = 40 and (b) L y = 10.

the walls up to near the centre of the system, where the peak
is now strong—see figure 2(b). In both models, the increased
order near the walls and the taller, narrower peak in E(y) under
drive indicate that the interface is more strongly localized at
the centre of the system. It is thus plausible that, as we propose
and develop quantitatively in [31], that drive acts as an effective
increase in confinement (i.e. a decrease in L y) in these models.
Finally we note that there are also differences between Ex(y)

and Ey(y) in equilibrium—Ex(y) is more negative than Ey(y),
the difference being most pronounced at the centre of the
system, reflecting the fact that the interface is oriented along
x .

3.2. Differences between Glauber and Kawasaki dynamics in
equilibrium

We next turn to the differences between Kawasaki and
Glauber dynamics for equilibrium systems. As noted above,
in the driven case one requires particle motion rather than
creation and annihilation, rendering spin-flip dynamics, such
as Glauber, inappropriate. However, in an equilibrium system,
any dynamics satisfying detailed balance and ergodicity must
give the same averages over the time evolution in the
thermodynamic limit. In a finite system, however, the two
types of dynamics are not equivalent due to the constraint
of conserved magnetization in the Kawasaki case. This is
especially striking in a confined geometry such as the one we
have studied in the driven case [31]—that is, in strips. Here
the interface as a whole may ‘wander’ between the two walls
under the non-conserving dynamics, since a majority of either
spin species is permitted. Under conservative dynamics, such
overall movement of the interface cannot occur.

For both types of dynamics we have performed a
systematic study of the finite-size effects on the magnetization
profile and on the two-point correlation functions. A selection
of results for the magnetization profile is shown in figure 3
where Lx = 200 is fixed and L y is varied, and in figure 4
where L y = 20 is fixed and Lx is varied. As a benchmark
we compare to results from the exact diagonalization of the
transfer matrix for an infinite strip, L y = const and Lx = ∞.

Figure 4. Magnetization profiles obtained with Kawasaki dynamics
for T/Tc = 0.75, L y = 20 and several different values of Lx (as
indicated). The simulation results become indistinguishable from the
static ones for an infinite strip within error bars at Lx = 800.

For such a system the different types of dynamics yield (time)
averages for static quantities that are identical to the ensemble
average. In the finite systems, we find that the non-equivalence
of the two types of dynamics manifests itself more strongly for
low temperatures, where the shape of the magnetization profile
for non-conserved (Glauber) dynamics is affected by the local
position of the interface exploring the full region of the strip.
This wandering gives rise to a profile which varies linearly with
position across almost the entire strip. The constraint imposed
on the total magnetization in the Kawasaki dynamics prohibits
this free wandering. In addition, long-wavelength fluctuations,
which also smear out the interface, are cut off because Lx is
finite. Short-wavelength fluctuations of large amplitude come
at a large energy cost due to surface tension. As a result the
profiles from Kawasaki dynamics have much larger flat regions
near the walls and a far sharper interfacial region with the
linear part of the profile considerably reduced as compared
to the profiles obtained by Glauber dynamics. We find that
with decreasing the scaling variable L y/ξ ∼ L ytν at fixed Lx ,
where t = (T − Tc)/Tc, and ν = 1 is the critical exponent for
the bulk correlation length ξ , the shape of the profiles becomes
more similar to the profiles from Glauber dynamics. For
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Figure 5. Comparison of the spin–spin correlation function G‖(x) as a function of scaled coordinate x/Lx , obtained by using Kawasaki and
Glauber dynamics, with various lattice sizes and temperatures. Sample error bars are shown on the solid black lines. (a) Fixed L y = 20 and
T/Tc = 0.75, with varying Lx . Inset: log-linear plot for small x , showing the region of exponential-like decay for both dynamics. (b) Fixed
Lx = 200, L y = 20, with two different temperatures. (c) Fixed Lx = 200 and T/Tc = 0.75 with different values of L y .

example, at T/Tc = 0.75 the Kawasaki dynamics for L y = 10
give a magnetization profile which almost coincides with the
one from Glauber dynamics; the latter being identical to the
static result for the infinite strip (see figure 3(b)), whereas for
L y = 40 the differences in the shape of magnetization profiles
are very pronounced (see figure 3(a)). It is also interesting
to note that effects on the magnetization profiles due to Lx

being finite are rather strong (see figure 4). For L y = 20 at
T/Tc = 0.75 one has to consider strips as long as Lx = 800 to
find an agreement with the static results for infinite strips! On
the one hand this might not seem surprising because of the very
large lateral correlation length; for infinite strips ξ‖ ∼ L2

y in
two dimensions [45]. On the other hand, for Glauber dynamics
the limit of the infinite strip at the same temperature and the
same width of the strip is already achieved for Lx = 200 (not
shown).

As we demonstrate in the following, the differences
between results from Glauber and from Kawasaki dynamics
are even more pronounced on the level of two-body functions.
Due to the lack of exact results for infinite strips we are not
able to judge the importance of finite-size effects associated
with the finite size in the x-direction in the simulated systems.
We have investigated the spin–spin pair correlation function
G(x, y, y ′) = 〈σiσ j 〉, where i = (0, y) and j = (x, y ′), in
particular focusing on the behaviour at the centre of the system,
G‖(x) ≡ G(x, L y/2, L y/2); this should reveal most clearly
interface-mediated correlations between pairs of spins. We

have studied three different temperatures T/Tc = 0.75, 0.85
and 0.95, and several values of Lx and L y , ranging from
100 to 800 and from 10 to 40, respectively. Representative
results are shown in figures 5. The striking feature of these
correlation functions is that they cross zero at some x = x0

and saturate at a negative value Gsat
‖ for larger values of x .

Both x0 and Gsat
‖ depend on the temperature and on the size

of the strip. At fixed Lx and T , a wider (larger value of L y)
strip gives a larger value of x0 and a more negative saturation
value. At fixed L y and T , a longer (greater Lx ) strip gives a
smaller x0 and a less negative saturation value. At fixed Lx

and L y , the higher the temperature, the smaller x0 and the less
negative Gsat

‖ . We associate these negative correlations with
the finite-size effects causing the long contour (i.e., the path
that separates two regions that are oppositely magnetized) to
cross the line y = L y/2 on average near x = x0. Finite-size
effects strongly influence the functional form of G‖(x). The
exponential decay with characteristic length ξ‖ expected for
large x in the limit Lx → ∞ and large L y can be identified
only for a rather narrow interval of intermediate values of x
(see the inset of figure 5(a)).

As can be seen in figure 5(a), for short strips with
Lx = 100 and width L y = 20, the differences in correlation
functions G‖(x) obtained from the different dynamics are
quite pronounced. The amplitude of G‖(x) obtained by using
Glauber dynamics is suppressed with respect to the one from
Kawasaki dynamics, but the decay length seems to be the same
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Figure 6. Comparison of the difference height–height correlation function �C(x) as a function of scaled coordinate x/Lx , obtained by using
Kawasaki and Glauber dynamics, with various lattice sizes and temperatures. (a) Fixed L y = 20 and T/Tc = 0.75, with varying Lx . Inset:
log-linear plot for intermediate x , showing exponential-like behaviour for both dynamics. (b) Fixed Lx = 200, L y = 20, with two different
temperatures. (c) Fixed Lx = 200 and T/Tc = 0.75 with different values of L y .

(see the inset of figure 5(a)). However, Kawasaki dynamics
give rise to much more negative values of Gsat

‖ . Consistently
with the behaviour of the magnetization profiles, G‖(x) from
the two types of dynamics becomes identical only for very long
strips (Lx = 800). Moreover, we observe that the differences
in G‖(x) at fixed Lx and L y vanish sufficiently close to Tc,
where the interface becomes more diffusive and interfacial
fluctuations become less important relative to bulk fluctuations.
Indeed for both dynamics G‖(x) decays faster at higher
temperatures, and gives the same results for a system with
Lx = 200, L y = 20—see figure 5(b). Finally, in figure 5(c) we
compare the results obtained for Lx = 200, T/Tc = 0.75 and
two different widths, L y = 10 and 40. For narrow strips both
dynamics lead to practically identical behaviour of the spin–
spin correlation functions at the interface. For wider strips,
which allow more wandering of the interface, the shapes of G‖
differ substantially, but in a way similar to the case of fixed L y

but small Lx (compare figure 5(a)). This is because ξ‖ ∼ L2
y

for sufficiently large systems, so that increasing L y at fixed
Lx leads to similar finite-size effects on ξ‖ as decreasing Lx at
finite L y .

We have also performed a coarse-graining procedure to
study interfacial properties in terms of the (difference) height–
height correlation function �C(x) = C(0) − C(x) =
1
2 〈[h(x) − h(0)]2〉 of the local position of the interface h(x)

with C(x) = 〈h(0)h(x)〉. To define h(x) we adopt the method

of [46] and for each column evaluate the sum

v(h) =
L y∑

y=1

[
σ(x, y) − 
(y − h)

]2
,


(ζ ) = ±1 for ζ ≷ 0.

(8)

The value of h which minimizes the above sum defines the
position of the interface in this column x .

Results obtained by using Glauber and Kawasaki
dynamics are compared in figure 6 for selected values of
parameters. These were obtained using single-spin code,
which yields larger statistical uncertainties than the multi-spin
code used in the calculation of G‖(x) above. The qualitative
behaviour of the height–height correlation functions is the
same for both dynamics; �C(x) increases sharply for short
distances x and then saturates at some value �Csat which,
similarly to Gsat

‖ , depends on the temperature and on the size
of the lattice. For intermediate distances the behaviour of
the difference height–height correlation function seems to be
exponential in x (see inset in figure 6(a)). The main trends in
differences in �C(x) obtained by using the two dynamics are
similar to those described above for the spin–spin correlation
function. They are more pronounced for small-Lx lattices—
see figure 6(a), for lower temperatures—see figure 6(b), and
for larger L y lattices—see figure 6(c).

In summary, as one might expect, the significant
differences between one- and two-body correlation functions

8
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obtained by using Glauber and Kawasaki dynamics occur for
values of the relevant length scales in the system Lx and L y

for which the finite-size effects for interfaces are particularly
strong. At fixed temperature this takes place for the large ratio
L2

y/Lx . On the other hand increasing temperature at fixed
lattice size leads to the decrease of differences.

4. Conclusions and outlook

We have presented results for the energy bond profile of a
phase-separated 2d Ising model under shear-like drive. These
indicate an increased localization of the interface and stronger
order near the walls, providing further evidence that shear acts
as effective confinement [31] in this system. The effect of
boundary drive (model I) on the energy profile is quite large
compared to the effect on the magnetization profile reported
in [31]. This may be due to the two-body (nearest-neighbour)
nature of the energy profile, whereas the magnetization is of
one-body type; changes induced on the average value of a
particular spin produce an amplified change in the interaction
with its (also changed) neighbour.

We have also investigated the effect of using different
types of dynamics in simulations of finite equilibrium systems,
by measuring magnetization profiles and two-body correlation
functions using both Kawasaki dynamics, which conserve
magnetization, and non-conserving (Glauber) dynamics. For
the magnetization profile, a longer distance L y between the
walls produces greater differences, owing to larger finite-
size effects resulting from an increased lateral (interfacial)
correlation length ξ‖ ∼ L2

y . This effect is also apparent for
fixed L y and varying Lx ; long systems are required to make
Lx large enough compared to ξ‖ to obtain good agreement
with results from Glauber dynamics, and exact transfer-matrix
results. The two-body correlation functions show the same
trends with varying system dimensions; for the spin–spin
correlation function G‖(x), two important characteristics are
the location x0 at which the function crosses the x axis, and
the negative saturation value Gsat

‖ at large x . For parameters
where Kawasaki and Glauber results differ, the saturation value
is more negative for Kawasaki dynamics, again indicating
stronger finite-size effects. This is also reflected in the
difference height–height correlation function �C(x), which
exhibits larger saturation values with Kawasaki dynamics
(greater than C(0)); these correspond to a more negative C(x).
In conclusion, magnetization-conserving Kawasaki dynamics
can give quite different results for static (not only dynamic)
quantities as compared to non-conserving spin-flip dynamics,
due to strong finite-size effects. The differences depend
strongly on system aspect ratio as well as on temperature, since
these parameters control the size of the relevant length scale,
the lateral correlation length ξ‖, relative to the system size.

The sheared Ising lattice gas provides intriguing future
possibilities for investigation of steady state interfacial
phenomena. On the static side, we have found evidence
for scaling behaviour of the driven interfacial width and
magnetization profile, condensing dependence on temperature,
system size, and field gradient ω into a scaling variable.
Varying the form of the driving field, e.g. considering a

spatially constant field (KLS model) in confined geometry,
would also be useful, in order to determine which features of
the drive are important in various phenomena. We are also
studying the three-dimensional generalization of our models,
where the physics may be rather different. Finally, we hope that
studying dynamics will reveal interesting new phenomena and
provide insight into how a driving field fundamentally affects
the interface.
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