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A density functional route to the pair structure of quenched-annealed fluid mixtures is presented. The bulk
two-body partial pair correlation functions of the mixture are identified with the one-body density distributions
in an external potential that models a fixed test particle. Quenched-annealed �replica� density functional theory
is used to calculate the inhomogeneous one-body density distributions. A closed theory is obtained by using an
exact sum rule that equates two different expressions for the cross pair correlation function between unlike
species. Results for binary quenched-annealed hard sphere mixtures are found to agree well with computer
simulation data, improving over results from the replica Ornstein-Zernike equations using the direct correlation
functions, obtained as second functional derivatives of the quenched-annealed excess free energy functional, as
input. The proposed framework allows for the independent determination of the blocked part of the fluid-fluid
partial pair correlation function.
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I. INTRODUCTION

The behavior of liquids in confinement can differ dramati-
cally from that in bulk �1,2�. One successful approach to
study liquids confined in random porous media is based on
quenched-annealed �QA� model fluid mixtures; see, e.g.,
�3–6�. The quenched components of such a mixture model a
disordered solid, sharing the randomness of the pore struc-
ture as one important property with real porous substances.
The annealed components of the QA mixture describe a fluid
absorbed inside the random solid, and understanding its be-
havior constitutes the objective of the research. Work on QA
models has been devoted to their structural correlations,
phase behavior, and adsorption and desorption phenomena.
Much of liquid state theory for equilibrium mixtures can be
carried over to QA models. A primary theoretical tool is con-
stituted by the replica trick, which enables one to obtain the
properties of the QA system under consideration in the limit
of vanishing number of replicated components of a suitably
extended equilibrium �i.e., fully annealed� mixture. In par-
ticular, many of the equilibrium liquid state integral equation
theories have been formulated for QA systems. The closure
relation complements the replica Ornstein-Zernike relations
�7–9� to form a closed theory. Such theories work inherently
on the level of two-body correlation functions.

Density functional theory �DFT� is a powerful approach
for the study of inhomogeneous equilibrium mixtures. In
DFT the grand potential is expressed as a functional of the
one-body density distributions �10,11�. In typical applica-
tions, one studies adsorption and phase behavior of liquids
confined in pores with idealized �nonrandom� geometries,
such as in planar slits. However, extending earlier ap-
proaches �12,13�, it was shown that DFT can be formulated
for QA mixtures �14�; a brief summary of this QA DFT �or
replica DFT� is given below. The variational principle �14�
for the disorder-averaged grand potential was derived using
the replica procedure �15�. Lafuente and Cuesta gave an al-
ternative derivation based on first principles �16�, which has
established the foundations of the QA DFT in a rigorous
fashion.

As is common in DFT, application of the framework re-
quires an approximation for the �in this case disorder-
averaged� free energy functional. There is evidence, how-
ever, that obtaining QA functionals of acceptable quality is
not more difficult than in the equilibrium case. Common ap-
proaches such as mean-field theory �17,18� and fundamental
measure theory �14� have been used successfully. Several
interesting problems were addressed in very simple model
systems �see Ref. �19� for an overview�. Comparison with
computer simulation data has shown that the QA DFT yields
semiquantitative to quantitative predictions for �disorder-
averaged� inhomogeneous density profiles, partition coeffi-
cients, and phase boundaries. More recently the QA DFT has
been applied to a range of interesting phenomena in complex
models, such as capillary condensation in pores with rough
walls �20�, adsorption in slitlike pores modified with chain
molecules as models for pillaredlike materials �21�, adsorp-
tion on amorphous and microporous silica materials �18�,
adsorption in pillared slitlike pores �22�, and adsorption on
surfaces modified with brushlike chain structures �23�. Note,
however, that while QA DFT yields properties averaged over
the quenched disorder, it was convincingly argued that im-
portant phenomena such as hysteresis in sorption loops occur
out of equilibrium �24–28�.

Using the QA DFT, the bulk structure on the two-body
level was investigated via the replica Ornstein-Zernike route.
Two-body direct correlation functions can be obtained as
second functional derivatives of the QA excess free energy
functional. Inversion of the replica Ornstein-Zernike equa-
tions then yields the partial pair correlation functions. This
route to the pair structure constitutes a demanding test for the
quality of the approximation for the excess free energy func-
tional, and comparison to simulation data showed satisfac-
tory agreement, indicating the validity of the theory in prin-
cipal �14�. It is to be noted that alternatives to the QA DFT
have been proposed �29,30�.

In this paper we show how to use the QA DFT to obtain
bulk pair correlation functions from a test particle procedure.
For equilibrium fluids this method is well established
�31,32�: The one-body distribution of a fluid in the presence
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of a �test� particle, which is fixed at the origin, is related to
the �partial� two-body pair correlation functions in bulk; see,
e.g., �33–35� for recent applications. Calculation of inhomo-
geneous density distributions constitutes a standard applica-
tion of equilibrium DFT. Here we propose and test a similar
procedure for QA mixtures. The generalization from equilib-
rium to QA mixtures is less straightforward than one might
believe at first glance. The symmetry between cross correla-
tion functions under exchange of species needs to be ex-
ploited �rather than to be used as a consistency check as is
possible in the equilibrium case� in order to obtain a closed
framework. Furthermore, we show that the blocked part of
the fluid-fluid pair correlation function can be obtained inde-
pendently.

The paper is organized as follows. In Sec. II the test par-
ticle theory is laid out, including a review of the binary case
in equilibrium �Sec. II A�, and the proposal for binary QA
mixtures �Sec. II B�, including the blocked part of the fluid-
fluid pair correlation function �Sec. II C�. The QA Widom-
Rowlinson model is used to illustrate the theory �Sec. II D�
and the generalization to multicomponent mixtures is pre-
sented �Sec. II E�. In Sec. III results for the partial pair cor-
relation functions of binary QA mixtures of hard spheres are
presented and compared against simulation data. In Sec. IV
conclusions are drawn.

II. DENSITY FUNCTIONAL THEORY

A. The binary case in equilibrium

We first review the test particle method in equilibrium.
Consider a binary mixture of species 0 and 1 interacting with
pair potentials �ij�r�, where i , j=0,1 label the species and r
is the center-center distance of the two particles considered.
The system is characterized by microscopic density profiles
�i�r� for species i=0,1, where r is the spatial coordinate.
The grand potential as a functional of the one-body density
distributions of the mixture is decomposed as

�̃��0,�1� = Fexc��0,�1� + �
i=0,1

Fid��i�

+ �
i=0,1

� dr�i�r��Vi
ext�r� − �i� , �1�

where the �exact� free energy functional of the ideal gas is
Fid��i�=kBT�dr�i�r��ln��i�r��i

3�−1	, with �i being the �ir-
relevant� thermal de Broglie wave length of species i=0,1;
kB is the Boltzmann constant and T is absolute temperature;
Vi

ext�r� is an external potential acting on species i=0,1, and
�i is the corresponding chemical potential; Fexc��0 ,�1� is the
excess �over ideal gas� contribution to the �Helmholtz� free

energy. The parametric dependence of �̃ on T, �i, and sys-
tem volume V is suppressed in the notation, as is the depen-
dence of Fexc and Fid on T and V.

The variational principle �10� states that �̃ is minimal at
the true �equilibrium� density profiles, and hence

��̃��0,�1�
��i�r�

= 0, i = 0,1. �2�

Introducing the one-body direct correlation functionals for
each species i=0,1 via a functional derivative of the excess
free energy functional,

ci�r,��0,�1�� = −
�	Fexc��0,�1�

��i�r�
, �3�

where 	=1 / �kBT�, allows us to write �2� as an implicit
Euler-Lagrange equation for the one-body density profile,

�i�r� = �i
−3 exp�ci�r,��0,�1�� − 	Vi

ext�r� + 	�i	 . �4�

Pursuing the test particle route requires identification of
the external potentials with the pair potentials, which models
fixing a “test particle” of species j=0,1 �arbitrarily� at the
origin. For fluid states spherical symmetry is imposed on the
density distributions, such that the spatial dependence is only
on r= 
r
. Setting Vi

ext�r�=�ij�r� in �4�, one obtains

�i
�j��r� = �i

−3 exp�ci�r,��0
�j�,�1

�j��� − 	�ij�r� + 	�i	 , �5�

where �i
�j��r� denotes the density profile of species i in the

presence of a test particle of species j. The partial pair cor-
relation functions are obtained by a normalization procedure,

gij�r� = �i
�j��r�/�i

�j��r → 
� , �6�

where �i
�j��r→
���i

bulk is the bulk density of species i.
In particular, both �1

�0��r� and �0
�1��r� can be obtained from

�5�. Normalization via �6� then yields two different ways to
obtain the cross pair correlation function. For the present
case of a binary mixture, the nontrivial case of the general
sum rule gij�r�=gji�r� is

g01�r� = g10�r� . �7�

In general, when an approximate form of Fexc is used, �7�
will be violated. The degree of violation constitutes a valu-
able measure for the quality of the approximation of Fexc. In
practical applications, using accurate approaches such as fun-
damental measures theory, the error can be numerically re-
markably small. See, e.g., the discussion in �36� of this issue
for the �closely related� case of depletion potentials.

B. Quenched-annealed binary mixtures

The case of quenched-annealed mixtures possesses very
different structure. Such systems are governed by two grand

potential functionals �̃0��0� and �̃1��0 ,�1�, where the
former determines the behavior of the quenched component
0, and the latter that of the annealed component 1 that is
adsorbed in the matrix of the quenched species. The standard
decomposition into ideal, excess, and external contributions
reads

�̃0��0� = Fid��0� + F0
exc��0� +� dr �0�r��V0

ext�r� − �0� ,

�8�
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�̃1��0,�1� = Fid��1� + F1
exc��0,�1� +� dr �1�r��V1

ext�r� − �1� ,

�9�

where F0
exc��0� is the �equilibrium� excess free energy func-

tional of the quenched component 0, and F1
exc��0 ,�1� is the

disorder-averaged excess free energy functional of the an-
nealed species 1, in the presence of species 0. The variational
principle �14–16� implies the conditions

��̃0��0�
��0�r�

= 0, �10�

� ��̃1��0,�1�
��1�r�

�
�0

= 0, �11�

where �0�r� is solely determined by �10�, and forms a fixed
input quantity in �11�. �Note that �8� and �10� constitute equi-
librium DFT for a pure system and are recovered as the
one-component limit of �1� and �2�, respectively.�

The one-body direct correlation functionals for the QA
system are obtained as first functional derivatives,

c0�r,��0�� = −
�	F0

exc��0�
��0�r�

, �12�

c1�r,��0,�1�� = −
�	F1

exc��0,�1�
��1�r�

. �13�

More explicitly, the Euler-Lagrange equations are obtained
from inserting the decomposition �8� and �9� of the grand
potential functionals into the minimization conditions �10�
and �11�; use of the definitions �12� and �13� then yields

�0�r� = �0
−3 exp�c0�r,��0�� − 	V0

ext�r� + 	�0	 , �14�

�1�r� = �1
−3 exp�c1�r,��0,�1�� − 	V1

ext�r� + 	�1	 . �15�

The framework outlined so far is general and applies to ar-
bitrary forms of the external potentials Vi

ext�r� acting on spe-
cies i=0,1.

For a test particle calculation, the external potential needs
to be identified with the pair interaction potentials �ij�r�. As
in the equilibrium case, one aims at modeling a fixed test
particle of species j at the origin. We first consider the matrix
particles only, j=0, and require that V0�r�=�00�r�. Hence,
from �14� one obtains

�0
�0��r� = �0

−3 exp�c0�r,��0
�0��� − 	�00�r� + 	�0	 , �16�

which is equivalent to the self-consistency equation for
�0

�0��r� in the equilibrium �fully annealed� case, e.g., as ob-
tained from �5� for the case of a pure system.

In the second step, we determine the fluid density profile
by choosing again a matrix particle as the test particle, j=0;
this amounts to setting V1

ext�r�=�01�r� in �15�. This yields

�1
�0��r� = �1

−3 exp�c1�r,��0
�0�,�1

�0��� − 	�01�r� + 	�1	 ,

�17�

which determines �1
�0��r� uniquely when using �0

�0��r�, as ob-
tained from �16�, as an input quantity.

In the third step, we fix a fluid particle at the origin, j
=1, and calculate the density profile of the surrounding fluid
of species 1. This requires setting V1

ext�r�=�11�r� in �15�. The
matrix density distribution is required as an input, here
around the test particle of species 1, i.e., �0

�1��r�. In the cur-
rent framework, this is not a directly accessible quantity. In
order to make progress, note that both the definition of the
partial pair correlation functions �6� and the symmetry rela-
tionship �7� still hold in the QA case. Combining these yields

�0
�1��r� =

�0
bulk

�1
bulk�1

�0��r� , �18�

where the right-hand side consists of known quantities only.
�Recall that �1

�0� is obtained from �17�.� This allows us to
rewrite �15� as

�1
�1��r� = �1

−3 exp�c1�r,��0
�1�,�1

�1��� − 	�11�r� + 	�1	 ,

�19�

which forms a closed equation for �1
�1��r�. Trivial normaliza-

tion of �0
�0��r�, �0

�1��r�, and �1
�1��r� via �6� yields g00�r�, g01�r�,

and g11�r�, respectively.

C. The blocked part of the fluid-fluid pair correlation function

The pair correlation function between particles of differ-
ent replicas is commonly referred to as the blocked �or
blocking� part of the �fluid-fluid partial� pair correlation
function, gb�r�. The authors of Ref. �16� have argued that the
corresponding blocked direct correlation function, cb�r�, can-
not be obtained as a second functional derivative in the QA
DFT framework, and that the situation is consistent with the
fact that the �bulk� thermodynamics of QA mixtures can be
obtained solely from the connected two-body correlation
functions �9�. As we demonstrate in the following, the test
particle procedure offers a natural route to gb�r�, via the
identification with the �normalized� fluid density profile
around a test particle of a replica different from that of the
fluid.

Although the definition of gb�r� within the replica frame-
work may seem somewhat formal at first glance, there is a
direct probabilistic interpretation, which allows its determi-
nation, say in a computer simulation or in an experiment
�37–39�. Up to a normalization constant, gb�r� is the joint
probability of finding a pair of particles at distance r, with
the members of the pair belonging to different fluid configu-
rations. Nontrivial correlations arise from the fact that the
two different fluid configurations are exposed to the same
matrix configuration. Loosely speaking, the presence of a
fluid particle �say at r1� is accompanied by the presence of a
large enough “hole” in the matrix to accommodate this par-
ticle. The hole in turn affects the density �at r2, with r= 
r1
−r2
� of the fluid particles in a different replica. This indirect
influence is present despite the absence of direct interactions
between particles of different replicas.
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The implementation in the test particle framework is
straightforward. We are seeking to obtain the density profile
of the annealed species 1. The test particle is taken to be of
species 1, but as it belongs to a different fluid configuration
�to a different replica in the replica picture� it does not inter-
act with the fluid of species 1 and the corresponding external
potential vanishes, V1

ext�r�=0. Nevertheless, having chosen
the position of the test particle as the origin leads to an in-
homogeneous density profile of matrix particles, �0

�1��r�. This
is known from �17� and �18�, and constitutes the sole
inhomogeneity-inducing influence on the fluid of species 1.
Hence the fluid density profile �1b

�1��r� in this situation is ob-
tained from specializing the general Euler-Lagrange equation
�15� as

�1b
�1��r� = �1

−3 exp�c1�r,��0
�1�,�1b

�1��� + 	�1	 . �20�

Application of the normalization procedure �6� yields

gb�r� = �1b
�1��r�/�1b

�1��r → 
� . �21�

D. Quenched-annealed Widom-Rowlinson model
as an illustration

A minimalistic model is the QA analog of the �equilib-
rium� Widom-Rowlinson �WR� model �40�, namely, an ideal
gas of quenched matrix particles in which an annealed ideal
gas is adsorbed; the only nonvanishing �pair� interaction is
that between particles of unlike species, taken as hard core
repulsion with range �01. While the equilibrium Widom-
Rowlinson model constitutes a nontrivial many-body prob-
lem and displays a demixing phase transition �see, e.g., �41�
for a recent study�, the QA version has only a single phase
and the replica Ornstein-Zernike equations can be solved ex-
actly �42�.

Following Ref. �16� we start from the excess free energy
functionals for the matrix F0

exc��0�=0 and for the fluid
F1

exc��0 ,�1�=−kBT �dr dr��0�r��1�r��f01�
r−r� 
 �, where the
Mayer function f01�r�=exp�−	�01�r��−1 equals −1 for
center-center separations r��01 and vanishes otherwise. The
form of F1

exc��0 ,�1� is identical to that obtained by the
fundamental-measure theory for quenched-annealed systems
�14� �but is different from the fundamental-measure DFT for
the equilibrium WR model �43��. The behavior of the matrix
alone is trivial: Its one-body direct correlation function, for-
mally obtained via �12�, is c0�r�=0. Fixing a test matrix par-
ticle does not exert an influence on the other matrix particles;
hence �00�r�=0 and �16� leads to �0

�0��r�=�0
−3 exp�	�0�.

Normalization via �6� gives g00�r�=1, as expected.
The one-body direct correlation function of the fluid, ob-

tained via functional differentiation �13�, is given by
c1�r� , ��0��=�dr �0�r�f01�
r−r� 
 �, where r�= 
r�
; this is in-
dependent of the functional form of �1�r�. In the case of the
test particle being of the matrix species c1�r� , ��0

�0���
=�0�dr f01�
r−r�
�=−4
�01

3 �0 /3. From the test particle
equation �17� one obtains �1

�0��r�=�1
−3 exp�	�1− �4
 /

3��01
3 �0��1+ f01�r��, where because of the hard core nature of

the matrix-fluid interaction exp�−	�01�r��=1+ f01�r�. Nor-
malization via �6� and use of the species exchange symmetry
�7� yields g10�r�=g01�r�=1+ f01�r�.

The one-body direct correlation function for the fluid
�13� is given by c1�r��=c1�r� , ��0(1+ f01�r�)��=�0�dr f01�
r
−r�
��1+ f01�
r
��= �4
 /3��0�01

3 +�0O�r��, where O�r�� is the
overlap �intersection volume� of two spheres of radius �01,
given by O�r��=�dr f01�
r
�f01�
r−r�
�, and more explicitly
as O�r��= �
 /12��r�−2�01�2�r�+4�01� for r��2�01 and zero
otherwise. The fact that �11�r�=0 renders Eqs. �19� and �20�
identical, from which g11�r�=gb�r� follows. Explicitly,
�1

�1��r�=�1
−3 exp�	�1− �4
 /3��0�01

3 �exp��0O�r��, which up-
on normalization �6� yields g11�r�=exp��0O�r��. This fully
specifies the exact pair structural correlation functions �42�.
For completeness, one can use the replica Ornstein-Zernike
equations �42� to obtain the two-body direct correlation func-
tion between fluid and matrix, c10�r�= f10�r�, and the con-
nected and blocked parts of the fluid-fluid direct correlation
function, cc�r�=0 and cb�r�=exp��0O�r��−1−�0O�r�, re-
spectively.

E. Generalization to the multicomponent case

The test particle procedure applies in a straightforward
way to QA mixtures with more than two components �albeit
at the expense of notational burdens�. We consider m0+m1
components, where species i=1, . . . ,m0 are quenched and
species i=m0+1 , . . . ,m0+m1 are annealed. The aim is to cal-
culate the �m0+m1�� �m0+m1� matrix of partial pair corre-
lation functions, written in block matrix form as


g00�r� g01�r�
g10�r� g11�r�

� , �22�

where g���r� indicates the sub-blocks with � ,�=0,1, refer-
ring to quenched �0� and annealed �1� species. g00�r� is the
m0�m0 matrix with elements gij�r�, 1� i, j�m0, and simi-
larly for the other blocks in �22�.

Obtaining g00�r� is straightforward in principle, as this
constitutes the multicomponent version of the equilibrium
problem described in Sec. II A. Normalization of the one-
body density distributions �i

�j��r� as obtained via the multi-
component version of �16� yields gij�r� via �6� for 1� i, j
�m0, i.e., for pairs of particles of quenched species.

In the second step, particles of the quenched species j
=1, . . . ,m0 are �again� successively used as test particles; this
allows the density distributions �i

�j��r� of the annealed com-
ponents i=m0+1 , . . . ,m0+m1 to be obtained via the multi-
component version of �17�. These density profiles, when nor-
malized �6�, constitute the block matrix g10�r� in �22�.
Transposition of this result �indicated by the superscript T�
immediately gives

g01�r� = g10
T �r� , �23�

which amounts to the componentwise identification of the
inhomogeneous one-body densities

� j
�i��r� =

� j
bulk

�i
bulk�i

�j��r� , �24�

where 1� j�m0 and m0+1� i�m0+m1.
Next the test particle j is successively taken to be of the

annealed species, i.e., j=m0+1 , . . . ,m0+m1, and �i
�j��r� is ob-
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tained for all annealed components i=m0+1 , . . . ,m0+m1,
again via the multicomponent version of the Euler-Lagrange
equation �19�. Normalizing via �6� yields g11�r�, which fully
specifies �22�. For the case of blocked correlation functions
the matrix g11�r� in �22� is replaced with the matrix of
blocked correlation functions, gb�r�, which can be obtained
componentwise via the multicomponent version of �20� and
�21�.

III. RESULTS: QUENCHED-ANNEALED HARD
SPHERE MIXTURES

As a test we apply the framework developed above to
QA mixtures of hard spheres with packing fractions �i
=
�i

bulk�i
3 /6, where �i is the hard core diameter of species

i=0,1. In the first case the interactions are additive such that
a pair of particles 0 and 1 exhibits hard core exclusion at a
distance ��0+�1� /2. For this system, the fundamental mea-
sure approach of �14� yields a QA excess free energy func-
tional F1

exc��0 ,�1�=Fhs
exc��0 ,�1�−Fhs

exc��0�, where Fhs
exc is

Rosenfeld’s equilibrium excess free energy functional for ad-
ditive hard sphere mixtures �44�. For the quenched species
simply F0

exc��0�=Fhs
exc��0�. The numerical solution of �16�,

�17�, �19�, and �20�, is performed with standard Picard itera-
tion.

Figure 1 displays results from the present theory along
with the Monte Carlo simulation data of Ref. �14� for the
case of equal sizes �0=�1 and packing fractions �0=�1
=0.15. Excellent agreement of theoretical and simulation
data is found. The core condition, gij�r��ij�=0, is satisfied
by construction, as can be inferred from �16�, �17�, and �19�,
by noting that �ij�r��ij�=
 and that c0 and c1 are finite.

In our second case, the matrix-matrix interaction is taken
to be ideal, such that matrix particles can freely overlap with
other matrix particles. This corresponds to a QA Asakura-

Oosawa model �see, e.g., Ref. �45�, and references therein�
where the polymers �species 0� are quenched and the colloids
�species 1� are annealed. The QA excess free energy func-
tional F1

exc for this case differs both from the hard sphere
case and from the �approximative� equilibrium Asakura-
Oosawa functional �46�. As a consequence, the matrix-matrix
correlations are those of an ideal gas, g00=1, and �0

�0��r�
=�0

bulk. Results for packing fractions �0=�1=0.2 and �0
=�1 are shown in Fig. 2. Again very good agreement with
the simulation data is found.

As can be gleaned from Figs. 1 and 2, the results from the
test particle method are more accurate at small separations
than those obtained from the replica Ornstein-Zernike equa-
tions and the two-body direct correlation functions from sec-
ond functional derivatives of the quenched-annealed free en-
ergy functional; Ref. �14� gives details of this approach. The
origin of the differences lies in the fact that second rather
than first derivatives �Eqs. �12� and �13�� of the excess free
energy functional enter into the framework. The Ornstein-
Zernike route constitutes a valuable test bed to assess the
quality of the approximation to the QA excess free energy
functional. In practical applications, the test particle method
presented here yields superior results—at the expense of
more numerical work.

Finally, we display results for the blocked part of the
fluid-fluid partial pair correlation function, gb�r�, for both
types of matrices considered in Fig. 3. We restrict ourselves
to slightly smaller overall packing fractions in order to alle-
viate problems of insufficent equilibration of the simulation
runs, to which we found gb�r� to be particularly susceptible.
For the cases shown, very good quantitative agreement of
simulation data and theoretical results can be observed. Note
the marked qualitative difference of the shape of g11�r�,
shown in Fig. 2, as compared to gb�r�. The former features a
hard core exclusion region due to the presence of fluid-fluid
interactions in �19�, while the latter indicates strong cluster-
ing of particles, due to the absence of direct fluid-fluid inter-
actions in �20�. Both pair correlation functions display oscil-
latory behavior at larger distances, but with much smaller
amplitude in the case of gb�r�. For comparison, we also dis-
play the result for the QA Widom-Rowlinson model �Sec.
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FIG. 1. Partial pair correlation functions g00�r�, g01�r�, and
g11�r� as functions of the scaled distance r /� for a QA binary hard
sphere mixture of quenched species 0 and annealed species 1 with
equal sizes, �0=�1��, and equal packing fractions, �0=�1=0.15.
Shown are results obtained by the test particle approach �solid
lines�, from Monte Carlo computer simulations �symbols� �14�, and
from the replica Ornstein-Zernike route �dashed lines� �14�. Results
for g01�r� and g11�r� are shifted upward by two and four units,
respectively, for clarity.
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FIG. 2. Same as Fig. 1 but for annealed hard spheres �species 1�
immersed in a quenched matrix of freely overlapping spheres �spe-
cies 0� with equal sizes �0=�1 and equal packing fractions �0

=�1=0.2.
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II D� in Fig. 3, gb�r�=exp��0O�r��; the sizes are chosen to be
the same as in the case of the hard sphere fluid, �01=�1. The
correlation function reaches a smaller maximum value at r
=0 and decays more slowly with distance for separation dis-
tances r�2�01. Beyond this limiting distance gb�r�2��=0,
whereas damped oscillatory decay is apparent in the case of
the hard sphere fluid.

IV. CONCLUSIONS

In conclusion, we have shown that a test particle proce-
dure can be used in order to calculate all partial pair corre-
lation functions of QA binary and multicomponent mixtures.
For test cases of binary mixtures with hard core interactions,
we found that numerical results from this approach compare
very well with Monte Carlo simulation data.

We have restricted ourselves to the simplest case of QA
mixtures of spherical particles. In principle the framework
can be generalized in a straightforward way to inhomoge-
neous liquids and to crystals, as well as to more complicated
models with orientation-dependent interactions. In future
work, it would be interesting to assess the quality of the
approach against results from integral equation theory based
on the replica Ornstein-Zernike equations, as well as to in-
vestigate the behavior of the QA hard sphere models at yet
higher packing fractions than those considered in the present
paper. In particular, addressing questions of the asymptotic
decay of correlation functions �47,48� constitutes an interest-
ing topic. Also of interest is the dynamical behavior of cor-
relation functions �49� and questions addressing fluid diffu-
sivity in random media �50�.
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