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Lateral transport of thermal capillary waves
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Abstract – We demonstrate that collective motion of interfacial fluctuations can occur at the
interface between two coexisting thermodynamic phases. Based on computer simulation results for
driven diffusive Ising and Blume-Capel models, we conjecture that the thermal capillary waves at
a planar interface travel along the interface, if the lateral order parameter current j(y) is an odd
function of the distance y from the interface and hence possesses opposite directions in the two
phases. Such motion does not occur if j(y) is an even function of y. A discrete Gaussian interface
model with effective dynamics exhibits similiar transport phenomena but with a simpler dispersion
relation. These findings open up avenues for controlled interfacial transport on the nanoscale.
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Understanding the motion of interfaces is important
in areas such as multiphase flow, dendritic and crystal
growth, microchip fabrication, combustion, blood flow,
and cell dynamics. Pronounced changes to the microscopic
interfacial structure can occur as a result of the motion,
e.g., the development of kinetically enhanced self-affine
roughness [1] of the driven interface between a growing
material and its environment. In striking contrast, driving
the interface along the plane of its average position can
lead to interfacial smoothening, as has been observed
experimentally for a colloidal gas-liquid interface under
shear flow [2], and in computer simulations of interfaces
in driven lattice gas models [3,4]. Coherent lateral trans-
port of large-scale interfacial structures is well known in
macroscopic systems that are far from equilibrium, such as
migrating sand dunes and ripples, or ocean waves. Find-
ing thermal analogues can be of relevance in micro- and
nanofluidic devices, e.g. due to the possibility of transport
of nanoparticles at a liquid-liquid interface by controlled
motion of thermal capillary waves.
Consider two distinct equilibrium phases at thermo-

dynamic phase coexistence, organised into two different
regions of space that are separated by a planar inter-
face. The local order parameter Φ varies along the axis y
perpendicular to the interface plane and for large enough

systems reaches its respective bulk value far from the
interface. The (scalar) order parameter profile Φ(y) can
represent the density near a gas-liquid interface, the rela-
tive concentration at the interface separating two coex-
isting liquid phases, or the magnetization near an Ising
domain wall. On a coarse-grained scale, the interface can
be characterized by its local departure (height) h(x, t)
from a reference plane y= h(x, t) = 0, where x indicates
the coordinate(s) parallel to the interface and t is time. At
temperatures T above the roughening transition, the inter-
face exhibits large spatial fluctuations. Phenomenological
capillary wave theory [5], as well as rigorous results [6],
indicate that in the absence of external fields that couple
to the order parameter, the length scale of such fluctua-
tions diverges with system size, i.e., the interface thickness
becomes infinite in the thermodynamic limit in spatial
dimensions d� 3.
In this letter we consider external driving that creates a

steady state with non-vanishing current of the order para-
meter, j(y), parallel to a planar interface. We investigate
the effects on the dynamics of the capillary waves via the
two-point correlation function C(x, t) = 〈h(0, 0)h(x, t)〉,
where the angles denote an average in the steady state.
Based on computer simulation results for C(x, t) for
various simple microscopic models, we conjecture that the
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lateral flux of the order parameter at a planar interface
induces lateral motion of the thermal capillary waves,
provided j(y) is an odd function of the distance y from
the interface. The spatial symmetry at equal times,
C(x, 0) =C(−x, 0), is broken for times t > 0, such that
C(x, t) �=C(−x, t). For general forms of j(y) it is the odd
component, [j(y)− j(−y)]/2, that induces the motion.
No motion occurs when j(y) is even. We shed light on
the transport mechanism by constructing a corresponding
(Gaussian) effective interface model that displays similar
transport phenomena.
As a microscopic approach we use kinetic lattice models

with dynamics that conserve the order parameter locally.
The Ising and the Blume-Capel [7] models of binary
mixtures possess the Hamiltonian H=−J∑〈i,l〉σiσl,
where 〈i, l〉 denotes nearest-neighbor pairs and the
spin-spin coupling constant J > 0. Contributions to
H from static external fields are omitted, as we will
work in an ensemble of fixed numbers of spins σi of
each type. For the Ising model σi =±1, while for the
Blume-Capel model σi =−1, 0,+1, which in lattice
fluid language corresponds to occupancy of site i by
particles of species “−1”, vacancy, or species “+1” of
the mixture, respectively. We initially consider two-
dimensional square lattices of dimensions Lx×Ly with
coordinates x (horizontal) and y (vertical). The interface
with mean orientation in the x-direction is established
and localized by assuming boundary conditions σi =+1
at the upper (y= (Ly +1)/2) and σi =−1 at the lower
(y=−(Ly +1)/2) edges of the lattice. Periodic boundary
conditions are applied in the x direction. As a conse-
quence, Φ(y) = 〈∑x σi〉/Lx, i= (x, y) crosses over from
Φ< 0 for y < 0 to Φ> 0 for y > 0. We use Kawasaki
spin exchange dynamics [8], where the elementary move
consists of swapping the values of the spin variables σi
and σl of two nearest-neighbor sites i and l. The system
is driven by a force field F (y) that acts in the x-direction
(parallel to the interface) and varies with distance y
from the interface. The acceptance rates for the trial
moves are assumed to be of modified Metropolis type,
min{1, exp(−(∆H +∆W )/(kBT ))}, where ∆H is the
change in internal energy, ∆W is the work due to the
driving field, and kB is the Boltzmann constant. Hence the
work performed by the field is dissipated into a heat bath,
which is kept at T = const. We have carried out extensive
Monte Carlo (MC) simulations using multispin [9] coding
techniques extended for Kawasaki dynamics to include
drive. Results are presented for Lx = 200 and Ly = 20
at fixed total magnetization

∑
iσi = 0 for T/Tc = 0.75

(where Tc = 2.2692J/kB) and run lengths of the order of
NMC = 10

8 MC steps (Lx×Ly trial moves).
We first discuss the Ising lattice gas where the drive

creates a work term for an exchange in the x-direction,
∆W =−JF (y)(σi−σl)/2, where i= (x, y) and l=
(x+1, y); exchanges in the y-direction occur with normal
equilibrium rates, ∆W = 0. In the case of odd symmetry
upon spatial reflection, F (y) =−F (−y), the field acts in

opposing directions in both halves of the system, e.g.
with linear variation across the slit, F (y)≡ γy, where γ is
the (scaled) field difference between rows. We define the
particle current profile jσ(y) as the average net number
of σ=±1 particles that move from x to x+1 at given
height y per unit time. jσ(y) is independent of x due
to translational symmetry in the x-direction. Simulation
results indicate that the order parameter current profile
j(y)≡ j+(y)− j−(y) possesses the same direction and the
same symmetry as the driving field. For odd driving fields,
we find j(y) =−j(−y). We define the instantaneous inter-
face position via a coarse-graining method based on the
(scaled) column magnetization, h(x, t) =−(2mb)−1

∑
yσi,

where site i= (x, y) possesses the value σi at time t, and
mb is the spontaneous equilibrium magnetization in bulk.
Note that while, e.g., in the solid-on-solid (SOS) model
bubbles and overhangs at the interface are forbidden,
here the underlying configurations are those of the Ising
model.
In fig. 1(a) we plot C(x, t) as a function of x for

several fixed values of time difference t for the case of
linear drive, γ = 1. At t= 0, a cusp is apparent at x= 0
and C(x, 0) exhibits long-ranged decay with distance x,
characterizing the (equal-time) spatial correlations of the
interfacial fluctuations. Upon increasing time, t > 0, the
position of the peak moves towards negative values of x,
its height decays and its width increases. This behaviour
clearly indicates the existence of damped propagating
modes that move in the negative x-direction. The position
of the maximum of C(x, t) varies linearly with time.
The inferred velocity is vpeak = 0.009 (in units of lattice
constant per MC step); for not too large values of γ the
velocity vpeak grows linearly with increasing γ. For step-
like drive of strength f , i.e., F (y)≡ f sgn(y), where sgn(·)
is the sign function, we observe very similar behaviour
of C(x, t) (data not shown), from which we conclude
that the occurrence of the interfacial motion is not
tied to the specific functional form of the (odd) driving
field. Qualitatively different behaviour occurs for even
symmetry of the drive, F (y) = F (−y), such that the drive
acts in the same direction throughout the system. We find,
for the cases considered, that the order parameter current
profile also attains even symmetry, j(y) = j(−y). For
a V-shaped spatial dependence, F (y)≡ γ|y|, simulation
data, shown in the inset of fig. 1(a), show that with
increasing time the peak of C(x, t) decreases in magnitude
but remains stationary at x= 0, which indicates the
absence of propagating modes. This observation holds
also for the case of uniform drive, F (y)≡ f = const. The
intercept of the equal-time correlation function, C(0, 0) =
〈h(0, 0)2〉, provides a measure of the (squared) interfacial
width [4]; we find for all cases considered that C(0, 0)
decreases under drive. Comparison of the results for linear
and V-shaped drive indicates that the suppression of
roughness [3] is less strong in cases where interfacial
motion occurs. The interfacial transport is intimately
related to a broken symmetry under space reflection,
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Fig. 1: (Color online) (a) Height-height correlation function
C(x, t) of the Ising model as a function of the distance x
at constant time t (as indicated, in units of MC steps) for
temperature T/Tc = 0.75, and system size Lx = 200, and Ly =
20. The system is subject to linearly varying drive with strength
γ = 1. Inset: C(x, t) for the case of V-shaped drive for the same
parameters. (b) Same as (a), but for the discrete Gaussian
interface model subject to linear h-dependent drive. Inset:
Illustration of the motion of the fluctuating interface. The
height function h(x, t) is depicted at times t′ (dashed line) and
t > t′ (solid line). The arrows indicate the direction of the order
parameter current j(y).

y→−y and x→−x, and species inversion, σi→−σi,
that occurs for cases of odd driving. As a consequence,
on average −1 spins in the region with y > 0 move
in the same (negative) x direction as +1 spins do in
the region with y < 0. Hence “intruders” of the other
phase move in the same direction throughout the system.
(Intruders are +1 spins in a region with negative average
magnetization and −1 spins in a region with positive
average magnetization.) This direction is opposite to that
of the “velocity profile” of the order parameter, vΦ(y) =
j(y)/Φ(y), which is 0� vΦ(y)� 0.022 for all y. See the
inset of fig. 1(b) for an illustration of the transport
phenomenon.

The discrete Gaussian model [10] provides a reduced
description with interfacial degrees of freedom only.
Nevertheless these are known to exhibit long-wavelength
equilibrium fluctuations that are characteristic of real fluid
interfaces. In a one-dimensional system the interface is
represented by integer height variables h(x) with
x= 1, . . . , Lx and periodic boundary conditions. The
Hamiltonian is HDG = (J/2)

∑Lx
x=1(h(x+1)−h(x))2. In

our (conserved) dynamics a site x and one of its neigh-
bours x′ = x± 1 are chosen at random, and the heights are
changed as h(x)→ h(x)+ 1 and h(x′)→ h(x′)− 1, with
probability given by the modified Metropolis rate. We
have performed MC simulations for the same parameters
as for the Ising model. First, the work varies linearly with
height, ∆W =−(x′−x)(h(x)+h(x′))Jγ/2. Results for
C(x, t), shown in fig. 1(b), exhibit characteristics very
similar to those found in the Ising model with capillary
wave motion. The velocity of the position of the maximum
is vpeak = 0.08 (in units of lattice constants per MC step,
where one MC step consists of Lx exchange moves),
significantly larger than that of the Ising model. Biasing
the moves to the (say) left irrespective of the height
variable, ∆W =−(x′−x)Jf , corresponds to uniform
drive in the Ising model. As in that model, no transport is
observed. In cases where transport occurs, the combined
symmetry h→−h, x→−x, and exchange of x and x′, is
broken.
The short-time dynamics of the capillary waves can be

characterized by a dispersion relation of frequency ω as a
function of the wave number q= 2πk/Lx, obtained from
the (average) phase shift of mode k= 1, 2, . . . , Lx in unit
time as ω(q) = arg〈h̃∗(q, t)h̃(q, t+dt)〉/dt, where h̃(q, t)
is the spatial Fourier transform of h(x, t), and dt is a
small time interval (Lx/10 spin exchanges). Surprisingly,
for small wave numbers q the driven Ising lattice gas
possesses, besides a leading linear term, strong quadratic
and cubic contributions to the dispersion relation, see
fig. 2(a) where results are shown for the case of linear
drive with γ = 1. In contrast, ω(q) for the discrete
Gaussian model remains nearly linear over a much larger
range of values of q, see fig. 2(b). Modelling the dynamics
by a simple linear transport operator1 ∂t− v∂x, with
the continuous partial time derivative ∂t, discrete spatial
derivative ∂xh(x, t) = [h(x+1, t)−h(x− 1, t)]/2, and
plane wave modes exp(i(ωt+ qx)) yields ω(q) = v sin(q).
This describes the simulation data very well, see fig. 2(b).
For small q, the behaviour ω(q) = vq, with v= 0.0760(1),
is in good agreement with the value of vpeak obtained
from analysis of C(x, t).

1From the evolution equation for the mean change in height
per unit time, ∂th(x, t) = [w(x− 1→ x)−w(x→ x+1)+w(x+1→
x)−w(x→ x− 1)]/2, where w(x′→ x) is the (Metropolis) probabil-
ity for the simultaneous update h(x′)→ h(x′)− 1 and h(x)→ h(x)+
1, one obtains for strong drive, |∆W | � |∆H|, and e.g. away from the
midline h= 0 the result ∂th= α exp(−α|h| −α sgn(h)∂2xh/4)∂xh/2,
where α= γJ/(kBT ). Linearization yields ∂th= (α/2)∂xh.
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Fig. 2: (Color online) Dispersion relation ω(q) for the lateral
propagation of capillary waves in the two-dimensional Ising
model driven by a linear field for γ = 1 (a), and in the
one-dimensional kinetic discrete Gaussian model with height-
dependent driving (b). The spectral variable is q= 2πk/Lx,
where k is the wave number. Parameters are the same as in
fig. 1. Data for different system sizes Lx = 100, 200, 400 collapse
onto each other. Also shown is the analytical formula (line)
described in the text.

The much richer behaviour of the Ising model can
be fitted to ω(q) = (v+2u)sin(q)−u sin(2q)+ s sin2(q)
with small-q expansion ω(q) = vq+ sq2+(u− v/6)q3,
and v= 0.0172(7), u= 0.0402(2), s= 0.0263(13). Assum-
ing ∂t− v∂x+u∂3x (5-point stencil for ∂3x) yields the first
and second terms of the fit function, but the third term
cannot be obtained from a linear transport equation with
real coefficients2. We have checked that these results do
not depend significantly on the method of coarse-graining
to obtain h(x, t) from the microscopic spin configurations.
Using the procedure of ref. [11] yields results for ω(q)
that can be fitted with s= 0 and a differing value for v.
The qualitative features of C(x, t), cf. fig. 1(a), remain

2Including an imaginary operator is(∂2x+ ∂
4
x/4) with 3- and 5-

point stencils, respectively, yields the third term, albeit at the
expense of taking h(x, t) as a complex field.
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Fig. 3: (Color online) (a) Density profiles ρσ(y) of species
−1, +1, and vacancies (0) for the Blume-Capel model under
homogeneous drive of strength f = 0.25 and T = 0.75J/kB
as a function of the distance y from the mean interface
position. Also shown is the order parameter profile Φ(y) =
ρ+(y)− ρ−(y). Inset: C(x, t) as a function of x for various
values of t (as indicated). (b) Particle current profiles jσ(y)
for species σ=−1,+1, 0 and order parameter current profile,
j(y) = j+(y)− j−(y), as a function of y.

unchanged. Moreover, the bare spin-spin correlation func-
tion 〈σiσj〉, calculated along the midline of the system,
displays similar transport features as C(x, t) does.
In the kinetic Blume-Capel model the presence of

vacancies (sites i with σi = 0) creates richer microscopic
dynamics. In contrast to the Ising model, where driving
+1 particles is intimately related to counter-driving −1
particles in the opposite direction, the Blume-Capel model
offers the possibility to co-drive the ±1 species in the same
direction. The corresponding driving fields Fσ(y) acting
on species σ=±1 then obey F+(y) = F−(y)≡ F (y). The
work term for an exchange of spins i and l with coordinates
x and x′ = x+1, respectively, is ∆W =−JF (y)(σ2i −σ2l ).
Simulation results for a vacancy concentration of 20%,
where we find the confined interface to be stable, indicate
that the symmetries of the driving field F (y) and of
j(y) are no longer the same, e.g., that an even field can
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give rise to an odd order parameter current profile, see
fig. 3 for results of the density profile, ρσ(y), and current
profile, jσ(y), of each species σ=−1, 0,+1 for the case of
uniform drive, F (y) = const. Indeed motion of capillary
waves is observed, see the inset of fig. 3(a) for results
for C(x, t). We do not find wave motion when counter-
driving, i.e. for F+(y) =−F−(y), where j(y) turns out to
be even. All these findings are fully consistent with the
proposed scenario that the interfacial motion is caused
by the symmetry of j(y) and not by that of the driving
fields.
For general cases where the driving field and hence the

order parameter current profile do not possess unique
but rather mixed spatial symmetry, we find, for the Ising
model, that it is the presence of an odd component that
leads to interfacial motion. We have also checked that the
transport phenomenon is not specific to two-dimensional
systems, but also occurs in the three-dimensional Ising
model, where simulation results indicate that the direc-
tion of motion is parallel to that of the drive and that the
second coordinate parallel to the interface plays a mere
spectator role. It is well known that the microstructure
and mobility of driven interfaces depends significantly on
the detailed form of the stochastic transition rates [1]. We
have used (exchange) dynamics with rates that factor-
ize into internal and external contributions, i.e. “soft
Glauber” [1+ exp(β∆H)]−1[1+ exp(β∆W )]−1 and “soft
Metropolis” min{1, exp(−β∆H)}min{1, exp(−β∆W )}.
Preliminary results for sheared driving suggest that
C(x, t) remains qualitatively unchanged, i.e. possesses
features characteristic of interfacial motion, albeit with
a reduced value of vpeak. In view of possible microfluidic
applications, it would be very interesting to test the valid-
ity of the proposed scenario in experiments (e.g., using
colloids [2]) and in molecular-dynamics simulations [12].
It would also be very valuable to investigate motion of
thermal capillary waves using models based on the order
parameter [13].
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