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We consider colloidal platelets under the influence of gravity and an external aligning �magnetic�
field. The system is studied using a fundamental measures density functional theory for model
platelets of circular shape and vanishing thickness. In the gravity-free case, the bulk phase diagram
exhibits paranematic-nematic phase coexistence that vanishes at an upper critical point upon
increasing the strength of the aligning field. Equilibrium sedimentation profiles display a
paranematic-nematic interface, which moves to smaller �larger� height upon increasing the strength
of gravity �the aligning field�. The density near the bottom of the system decreases upon increasing
the strength of the aligning field at fixed strength of gravity. Using a simple model for the
birefringence properties of equilibrium states, we simulate the color variation with height, as can be
observed in samples between crossed polarizers. © 2010 American Institute of Physics.
�doi:10.1063/1.3378264�

I. INTRODUCTION

Dispersions of platelike colloidal particles display a
wide range of interesting physical phenomena, including the
thermodynamic stability of liquid crystalline phases,1–6 for-
mation of tactoids,7,8 nematic wetting of substrates,9,10 and
capillary effects.11 Examples of discotic colloids include
gibbsite5,6 and montmorillonite12–15 particles. Due to the dia-
magnetic anisotropy of the particles, such dispersions can be
susceptible to the influence of a magnetic field and pro-
nounced changes of the orientational distribution of the par-
ticles can be induced. As a result not only the location of,
e.g., the isotropic-nematic �IN� phase transition, may
change,16 but also effects in the isotropic phase appear, such
as field induced birefringence.17

The case of platelets is less well studied theoretically
when compared to thin hard rods where Onsager �second-
virial� theory18 predicts that at low values of the external
field the first-order IN phase transition persists, but that this
transition vanishes at a critical point above a certain �critical�
field strength. In an extension to thick rods,19 using the
Parsons–Lee density functional theory �DFT�,20–22 the de-
pendence of the critical field strength on the width-to-length
ratio of the rods was investigated. Ref. 23 addresses the
phase behavior of hard rods in an orienting external field. In
Ref. 24, the authors calculate the phase coexistence curves
for both rods and platelets for the case of negative aniso-
tropic polarizability on the basis of Onsager theory and find
a tricritical point. Quasi-two-dimensional Monte Carlo simu-
lations of a colloidal dispersion composed of magnetic plate-
like particles are reported in Ref. 25

Both integral equation theory26–28 and DFT9,29,30 are
powerful tools for the theoretical study of platelet systems. A
fundamental measures DFT for circular hard platelets with

vanishing thickness31 was shown to give results for the co-
existence densities and order parameter at coexistence of the
IN transition in bulk that are superior to results from Onsager
theory when compared to simulation data �see Ref. 32 for a
detailed discussion�. The peculiar nature of the bulk IN phase
transition of this model lies in its weakness �as measured by
the density jump at coexistence� and the low degree of order
in the coexisting nematic phase.

The simultaneous presence of both a magnetic field and
gravity has been investigated in Ref. 33, where the micro-
structure of magnetite colloids was studied experimentally,
and in Ref. 15, where the preparation and sedimentation be-
havior of magnetite-covered clay particles was addressed.
The effect of gravity alone on liquid crystal phase transitions
of colloidal platelets was investigated in Ref. 5 using Monte
Carlo simulations.

The current work is motivated by recent experiments
using gibbsite platelets,16 where sedimented samples were
exposed to the influence of a magnetic field. The particles
possess negative diamagnetic anisotropy �� and hence tend
to align their normals perpendicular to the magnetic field.
The field was directed horizontally and the sample was
placed on a rotating stage with vertical axis of rotation. In
this setup, the nematic director was found to align with the
vertical direction and sedimentation gradients were obtained
using polarization microscopy, which is a simple, yet power-
ful experimental technique for the investigation of liquid
crystalline ordering.17 Such experimental setups consist of a
light source that emits a parallel light beam say along the x
axis, a polarizer, the sample with the colloidal platelets, a
second polarizer �analyzer� that is at 90° to the first polarizer,
and a camera that records the thus obtained image. No light
can pass the two crossed polarizers when the sample is iso-

THE JOURNAL OF CHEMICAL PHYSICS 132, 144509 �2010�

0021-9606/2010/132�14�/144509/9/$30.00 © 2010 American Institute of Physics132, 144509-1

Downloaded 15 Apr 2010 to 132.180.92.158. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.3378264
http://dx.doi.org/10.1063/1.3378264
http://dx.doi.org/10.1063/1.3378264


tropic. From the spectrum �and hence the color� of the trans-
mitted light, information about the degree of nematic order-
ing in the sample can be obtained.

We use the theory of Ref. 31 to consider a corresponding
simple model platelet system using particles with circular
shape and vanishing thickness. These are exposed to the si-
multaneous influence of gravity and an effective field that
aligns the nematic director in the vertical direction. We cal-
culate equilibrium density profiles and nematic order param-
eter profiles as a function of height and investigate their de-
pendence on the strength of both external fields. Inspired by
the experimental setup, we calculate the birefringence color
variation with height using a simple model for the birefrin-
gent properties of the inhomogeneous dispersion. The result-
ing color charts can be, in principle, compared to images
from polarization microscopy.

This paper is organized as follows. In Sec. II, we define
the model interactions. Section III describes the DFT. Results
for phase behavior, density, and order parameter profiles are
presented in Sec. V. We conclude in Sec. VI.

II. MODEL PLATELETS IN GRAVITATIONAL AND
MAGNETIC FIELDS

We consider a system of circular hard platelets of radius
R and vanishing thickness. The pair interaction potential
��r ,u ,u�� between two particles with orientations u and u�
�normal to the platelet face� and center-center separation vec-
tor r is infinite if the two particles overlap and vanishes
otherwise. An external potential acts on the system, that
models the influence of an aligning field, gravity, and two
confining walls,

Vext�r,u� = V0 sin2 � + kBT
z

�g
+ Vw�z,�� , �1�

where z is the vertical coordinate, � is the angle between the
platelet orientation u and the z axis, V0 determines the
strength of the aligning field, kB is the Boltzmann constant, T
is absolute temperature, �g is the gravitational height, and
Vw�z ,�� models the presence of the top and the bottom wall.
The gravitational height is

�g =
kBT

mg
, �2�

where g is the gravitational acceleration and m is the particle
buoyancy mass. The two parallel walls are impenetrable to
the particle shapes and are modeled by

Vw�z,�� = �0, R sin � � z � L − R sin � ,

� , otherwise,
� �3�

where L is the distance between the walls; we restrict our-
selves to L=100R in the following.

The strength of the aligning field, as measured by V0,
can be related to the strength of the magnetic field that acts
on the dispersion and the value of the diamagnetic anisotropy
of the particles, see Appendix A for the derivation. For the
case where the diamagnetic anisotropy ���0, such that the
platelets tend to align their normals parallel to the field in
order to minimize the magnetic energy, the strength of the

aligning field is V0=B2�� /2, where B is the strength of the
magnetic field. For the case of diamagnetic anisotropy ��
�0, one can argue that a magnetic field that rotates suffi-
ciently fast around the z axis gives rise to an effective align-
ment effect that can be modeled by Eq. �1�, albeit with a
reduced strength of V0=−B2�� /4, see Appendix A.34 Con-
sidering typical values for temperature T=300 K, diamag-
netic anisotropy ��=−10−22J /T2, and magnetic field B=4T,
one finds the relevant range of interaction parameters
0	V0 /kBT
0.1, to which we will restrict ourselves in the
following. We expect platelet-platelet interactions due to in-
duced magnetic dipoles to be small �see Appendix B� and
will ignore such energetic contributions.

III. DFT FOR HARD PLATELETS

The grand potential in an ensemble of chemical potential
�, temperature T, and system volume V, as a functional of
the one-body density distribution ��r ,u�, where r is the po-
sition vector and the unit vector u indicates the particle ori-
entation is expressed as

̃����,T,V,�� =� drdu��r,u��ln���r,u��3� − 1� + Fexc���

+� drdu��r,u��Vext�r,u� − �� , �4�

where the first term on the right hand side is the Helmholtz
free energy functional of an ideal gas of uniaxial rotators, the
excess free energy functional Fexc��� describes the influence
of interparticle interactions, and the third term on the right
hand side of Eq. �4� is the external contribution to the grand
potential; Fexc��� depends parametrically on T and V �which
is suppressed in the notation�. For the equilibrium density
��r ,u� the variational principle29 states that

�̃����,T,V,��
���r,u�

= 0. �5�

Inserting the solution of Eq. �5� into Eq. �4� yields the true
value of the grand potential in equilibrium. Using this frame-
work for actual applications requires to have an approxima-
tion for Fexc���. Here we use the fundamental measure theory
�FMT� proposed in Ref. 31, see, e.g., Equations �7�–�15� in
Ref. 32 for the detailed definition of Fexc��� for a one-
component system of platelets.

We first consider the case of the bulk system under the
influence of the aligning field alone, i.e., �g→� and Vw=0.
The density is spatially constant and, due to uniaxial symme-
try of the nematic phase, depends only on the angle � be-
tween the particle orientation and the nematic director,
��r ,u�=����. In the isotropic phase ��r ,u�=�=const. Hence
we take into account only the aligning field in the external
potential �first term in Eq. �1�� and calculate, via Eqs. �4� and
�5�, the equation of state ���� and the variation of the nem-
atic order parameter, S���, in the nematic phase; the nematic
order parameter is defined as
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S =� d� sin��������3 cos2��� − 1�/2, �6�

where the orientational distribution function is ����
=���� /�, with the bulk density obtained by integration over
the unit sphere, �=�du����. Phase coexistence is calculated
by equating the chemical potential and the grand potential
�and hence the pressure� in the two coexisting phases; equal-
ity of temperature is trivially satisfied in hard core systems.

The above theory for bulk can be used as the basis for a
treatment of the system under the influence of gravity within
the local-density approximation �LDA�. On length scales that
are large as compared to the particle size, the influence of
gravity can be modeled by a spatially varying chemical
potential �̃�z�, which depends linearly on height, �̃�z�
=�−kBTz /�g. The constant � is then a free parameter that
we choose to ensure that the total number of particles
N=const for different values of the strength of the aligning
fields, V0. The number of particles N per lateral system area
A �perpendicular to the z direction� is obtained from the den-
sity profiles via

N

A
= �

0

L

dz��z� . �7�

The height-dependent density profile ��z� and order param-
eter profile S�z� are then obtained from the bulk equation of
state via ��z�=���̃�z�� and S�z�=S��̃�z��. The LDA treat-
ment is valid in the limit L /�g=const and R /L→0.

In order to investigate the effects caused by finite
�scaled� system height R /L, and hence the influence of inter-
particle correlations on the density distribution, we use the
fully nonlocal fundamental-measure theory of Ref. 31 and
solve the minimization condition �5� for ��z ,��. Again � is
adjusted in order to keep N /A=const upon variation of the
strength of the external influence via V0 and �g. The total
density at height z �irrespective of orientation� is then ��z�
=�d� sin�����z ,��. The nematic order parameter profile S�z�
is obtained from the full density field by setting ���� to
��z ,��=��z ,�� /��z� in the definition �6�. We restrict our-
selves to L=100R in the following. Confinement in more
narrowly spaced slits �without further fields� was investi-
gated in Ref. 35. The results for density profiles ��z� and
order parameter profiles S�z� can be utilized to compute the
color variation with height of samples between crossed po-
larizers, as is laid out in the following.

IV. SIMULATION OF BIREFRINGENCE COLORS OF
NEMATIC SAMPLES

The birefringent properties of dispersions of anisotropic
colloidal particles originate from the difference in refractive
indices parallel and vertical to the optical axis u of the
particles.36 In the situation that we consider, the optical axis
is parallel to the z axis since the platelets tend to align with
their normal parallel to this axis. The propagation direction
of the light is assumed to be along the x axis.

The angle between the polarization direction of the light
beam �after it has passed the polarizer� and the z axis is � /4.
When crossing the sample, the light beam is split into two

parts, one polarized perpendicular and one polarized parallel
to the z-axis. Because both parts of the light beam make an
angle of � /4 and −� /4, respectively, with the analyzer, only
a fraction of the initial intensity of the light beam reaches the
camera, see Fig. 1�a� for a schematic illustration. The differ-
ent refractive indices along these directions imply differing
speed of light, which generates a retardation �. The intensity
of the transmitted light that reaches the camera depends on
the wavelength � of the light and is given by

I��,�� = I0���sin2���/�� , �8�

where we model the intensity of the incident light I0��� as
black body radiation with Planck distribution

I0��� =
2hc2

�5 	exp
 hc

�kBTi
� − 1�−1

, �9�

where h is the Planck’s constant, c is the speed of light, and
Ti is the temperature of the black body. We assume that the
retardation � is related to the properties of the sample at
height z by

� = a��z�S�z�R3, �10�

where the parameter a �with dimension of length� depends
linearly on the thickness of the sample and on the difference
between the refractive indices in the two perpendicular
directions.16,17 We disregard such sample- and material-
specific dependence in the following and will treat a as an
adjustable parameter.

The full spectrum I��� �suppressing the dependence on �
in the notation� is then projected onto a three-dimensional
color space in two steps. First, the so-called XYZ tristimulus
values are calculated via

0 1000 2000 3000 4000

light source polarizer sample analyzer digital camera

FIG. 1. �a� Illustration of the experimental setup, consisting of a white light
source, polarizer, colloidal sample, analyzer, and digital camera aligned with
the x axis. The arrows indicate the direction of the polarizers. The z direction
is vertical. �b� Color variation with retardation � in range 0–4000nm; �c� the
corresponding intensity variation; �d� the result of the chromascope proce-
dure; and �e� the corresponding intensity variation.
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X =� I���x̄���d�, Y =� I���ȳ���d�, Z =� I���z̄���d� ,

�11�

where x̄���, ȳ���, and z̄��� are the standardized CIE color-
matching functions37 for red, green, and blue, respectively, as
determined by physiological experiments. Note that X, Y,
and Z depend on retardation �. Then the set of XYZ values is
converted to the RGB color space by multiplication with the
appropriate 3�3 conversion matrix A, hence �R ,G ,B�
= �X ,Y ,Z� ·A. Negative values of one of the components of
the RGB vector, which can potentially occur because of the
fact that the RGB color space is smaller than the XYZ color
space, are set to zero and hence cut off. Gamma correction is
applied in order to model the situation of bright illumination,
i.e., such that the intensity inside of dark regions is enhanced
relative to regions of high intensity. Gamma correction
amounts to the mapping R→R1/1.9, G→G1/1.9, and B
→B1/1.9. The resulting color chart, plotted as a function of
retardation � for Ti=6000 K, a value that is appropriate for
modeling white light, is shown in Fig. 1�b�. Note that the
total intensity that is transmitted varies with retardation �. In
order to illustrate this effect, we show in Fig. 1�c� the corre-
sponding intensity, obtained via one of the standard conver-
sion procedures to obtain grayscale values as the weighted
average 0.3R+0.59G+0.11B.

It is interesting to compare the color chart obtained by
the procedure above with an alternative one where the
brightness is adjusted in order to maximize the intensity for
each value of retardation separately. A useful procedure that
performs this task is Berry’s chromascope,38 defined by the
mapping R→R /M ,G→G /M ,B→B /M, where the normal-
ization is M =max�R ,G ,B�. This implies that at least one of
the three resulting color channel is at maximum intensity of
unity, see Fig. 1�d� for the result as a function of �. It is very
striking how different the resulting sequence of colors is to
that shown in Fig. 1�b�. Again the brightness is not uniform,
as can be seen in Fig. 1�e�, where we plot the corresponding
intensity 0.3R+0.59G+0.11B, using the RGB values ob-
tained by the cromascope procedure.39

The choice of color chart depends on the experimental
situation that is modeled. In the present case, we are inter-

ested in the case where the incident light is the same for all
height values, hence we will use the bare color chart, Fig.
1�b�, in order to visualize the theoretical height-dependent
profiles. We will use results for ��z� and S�z� together with
Eqs. �8� and �10� as an input to Eq. �11�, in order to illustrate
the theoretical profiles. Clearly all effects due to scattering
and adsorption from the sample are omitted in this treatment.

V. RESULTS

A. Influence of a magnetic field on the IN bulk phase
transition

The result for the phase diagram of hard platelets under
the influence of an aligning magnetic field are shown in Fig.
2�a� as a function of the coexistence densities �horizontal
axis� and the scaled field strength V0 /kBT �vertical axis�. In
the field-free case, V0=0, the theory gives reasonable agree-
ment with values for the transition densities as obtained from
computer simulations.40,41 Upon increasing V0 /kBT the
paranematic and nematic coexistence densities initially shift
to lower densities. The density difference decreases slightly
with increasing values of the scaled field strength V0 /kBT.
Above V0 /kBT=0.02, the paranematic coexistence density
starts to increase again, while the nematic coexistence den-
sity continues to decrease. Both branches of the binodal
merge at a critical point at �cR

3=0.423 and V0,c /kBT
=0.045; for V0�V0,c the phase transition ceases to exist. The
variation of the chemical potential at paranematic-nematic
coexistence, �coex

� , is plotted in the inset of Fig. 2�a�; we use
a scaled chemical potential ��=� / �kBT�. We find that �coex

�

decreases monotonically and almost linearly with increasing
V0 /kBT. The variation of the order parameter S at coexist-
ence is shown in Fig. 2�b� as a function of V0 /kBT. As might
be expected, the field has an aligning effect and leads to
non-vanishing nematic order, S�0 in the paranematic phase.
For small values of V0 /kBT the coexistence value of S in the
paranematic phase increases monotonically with increasing
field strength; the value of S in the nematic phase at coexist-
ence decreases accordingly. The latter behavior is consistent
with the shift of the coexistence density to lower densities
�Fig. 2�a��; this is associated with a lower order parameter in
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FIG. 2. �a� Variation of the paranematic �P� and nematic �N� coexistence densities �horizontal axis� with the strength of the external aligning field V0 /kBT
�vertical axis�. The critical point is located at �R3=0.423 and V0 /kBT=0.045 �filled circle�. The inset shows the variation of the chemical potential at PN
coexistence, �coex

� , with the field parameter V0 /kBT �vertical axis�. �b� Same as �a�, but as a function of the order parameter S in the paranematic and nematic
phase �horizontal axis�. Lines are guides to the eye.
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the field-free case. This effect overcompensates the ordering
effect caused by the external field.

B. Sedimentation equilibrium in the field-free case

We next consider the influence of gravity alone on the
system. The mean density, which is kept constant in the fol-
lowing, is chosen as N / �AL�=0.5 /R3. In Fig. 3�a�, density
profiles ��z� from LDA are shown as a function of the scaled
height, z /L, for a sequence of values of the ratio of system
height and gravitational length, L /�g=1, 2, 3, and 5. Upon
increasing the value of L /�g, the density near the bottom of
the system increases while the density in the upper region of
the system decreases; hence, the particles accumulate at the
bottom of the sample. Due to the constraint N /A=const both
effects are intimately coupled. The interface between the
lower �nematic� and upper �isotropic� phase appears as a
sharp kink because the LDA does not resolve nonlocal cor-
relations. In Fig. 3�b�, results for the local order parameter
S�z� are shown as a function of the scaled height z /L. In
agreement with the observed increase of the density, we find
an increase of S�z� in the lower part of the system upon
increasing L /�g. The product of order parameter and density,
��z�R3S�z�, as shown in Fig. 3�c� displays an almost linear
decrease upon increasing height in the nematic phase. Using
this quantity, in Fig. 3�d�, we display the sequence of bire-
fringence colors that would occur under crossed polarizers.
Results for two different values of a, modeling, e.g., different
sample thicknesses, are shown in Fig. 3�d� for a=3600 nm
�first row� and 1800 nm �second row� with temperature Ti

=6000 K of the incident white light. The compression of the
nematic phase upon increasing strength of gravity is apparent
from �i� the movement of the position of the IN interface
toward smaller heights and �ii� the fact that the birefringence
orders appear in more rapid succession �hence in narrower
bands� upon increasing the value of L /�g.

We next consider the effects of finite system size,
L=100R, and show results from FMT as a function of the
scaled height z /R for different values of the inverse gravita-
tional height R /�g=0.01, 0.02, and 0.03 again for constant
overall �area� density, N /A=const. The density �Fig. 4�a��
and order parameter �Fig. 4�b�� profiles and the product of
both �Fig. 4�c�� indicate smooth variation of the density
across the IN interface. The fact that S�z� decreases to
�small� plateau values, rather than to zero, in the upper re-
gion is entirely due to numerical reasons. Interesting struc-
turing is apparent at both walls, where S�z� reaches values
close to unity, indicative of parallel alignment of the particles
with the �hard� walls. For comparison, we also show the
density and order parameter profile for the free IN interface,
which is the appropriate limit encountered for R /�g→0. The
present mean-field-like treatment does not include effects
due to thermal capillary wave fluctuations.42 The calculated
birefringence color variation with height is shown in Fig.
4�d�. Comparing to the case of LDA �Fig. 3�d�� this clearly
illustrates the diffuse nature of the IN interface, as well as the
orientational order that appears close to the upper wall. Note,
however, that a translation to experiment is much less
straightforward than in the case of LDA, due to the strong
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FIG. 3. �a� Density profile ��z�R3 as a function of the scaled height z /L, where L is the system height, as obtained from LDA for different ratios of the system
size and the gravitational length L /�g=1, 2, 3, and 5 �as indicated�. Walls are located at z=0 and z=L. �b� Order parameter profile S�z� and �c� product
��z�R3S�z� for the same parameters as in �a�. �d� Simulated variation of the birefringence colors with height, as observable in sedimented samples between
crossed polarizers, for a=3600 nm �first row� and 1800 nm �second row� for the same values of L /�g �increasing from left to right�.
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confinement of the system, L=100R, and hence small overall
system size. Light propagation on such small scales will be
governed by further effects that are neglected in our treat-
ment. Nevertheless we find this graphical representation to
be a useful means to illustrate our theoretical results.

C. Sedimentation equilibrium of hard platelets in a
magnetic field

We next consider the system under the simultaneous in-
fluence of both gravity and an aligning field that orients the
particles preferentially along the vertical axis. We first dis-
cuss results obtained from LDA. In Fig. 5�a�, density profiles
��z� are shown as a function of the scaled height z /�g for the
case of L /�g=1, i.e., such that the system height equals the
gravitational length. We again keep N /A=const �by choosing
the value of the chemical potential appropriately� and con-
sider a range of values of the scaled strength of the aligning
field, V0 /kBT=0, 0.005, 0.02, and 0.1. Upon increasing the
field strength, the position of the interface moves upwards in
the system, consistent with the expectation that the nematic
phase would grow with increasing the field strength. For val-
ues of V0 /kBT larger than the critical value, rather than a
steplike interface a continuous decrease of density upon in-
creasing height z is found. Quite unexpectedly, the density at
the bottom of the system decreases upon increasing the value
of V0 /kBT. We attribute this to originate from ordering ef-
fects in the paranematic phase and subsequently increasing
density in the upper part of the system. Due to the constant
total number of particles, the density then decreases at the

bottom of the system. The variation of the order parameter,
shown in Fig. 5�b�, as a function of height, confirms this
scenario. The nematic order in the paranematic phase in-
creases with increasing field strength. The value of the order
parameter near the bottom of the system remains almost con-
stant upon increasing the field strength. This might be ex-
plained with the decreasing density found at the bottom �see
Fig. 5�a�� and hence decreasing nematic order. The product
��z�R3S�z�, as shown in Fig. 5�c�, indicates a decrease at the
bottom of the system for increasing field strength, as can be
expected from the individual behavior of ��z� and S�z�. The
strongest effects on the birefringence colors �Fig. 5�d�� occur
in the upper part of the sample, which even turns bright for
the largest value of the aligning field considered.

We display results from the nonlocal FMT in Fig. 6.
Here we use z /R as a scaled height coordinate. The gravita-
tional strength is controlled by R /�g, which we set to R /�g

=0.01. Again, two hard walls are located at z /R=0 and at
z /R=100. The chemical potential �� is chosen to ensure
N /A=const for all values of V0 /kBT considered. As above
we display scaled density profiles ��z�R3 �Fig. 6�a��, order
parameter profiles S�z� �Fig. 6�b�� the product ��z�R3S�z�
�Fig. 6�c��, and birefringence color variation with height
�Fig. 6�d��.

Comparing the results from LDA and FMT, one observes
remarkable differences. Within the z-dependent FMT, we
find ordering effects at both hard walls as well as density
oscillations at the upper wall, see Fig. 6�a�. In contrast to
this, the LDA profiles are monotonic, consistent with the fact
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that the LDA is a local theory which treats different heights z
of the system as independent from each other. Also the
nematic-paranematic interface shows much more gradual
variation with z in FMT. Nevertheless the LDA describes the
unexpected properties such as the decrease of density at the
bottom with increasing field strength correctly.

VI. CONCLUSIONS

In summary, we have investigated the properties of a
model dispersion of monodisperse platelets under gravity
and inside of a magnetic field. Due to their nonvanishing
diamagnetic anisotropy, ���0, the platelets tend to align
their normals with the vertical direction. We argued that this
can be achieved either with a magnetic field that is pointing
in the vertical direction and particles that possess ���0 or,
using a rotating setup, a horizontal field and particles with
���0 �as realized in recent experiments16,17�.

We have used both a nonlocal FMT version of DFT as
well as an LDA treatment. LDA captures the basic features
of the inhomogeneous density and order parameter profiles
correctly �such as accumulation of particles in the bottom
region�, but fails to reproduce the adsorption at the hard
walls and effects due to finite width of the interface between
nematic and paranematic phases. The FMT describes such
nonlocal effects and, based on earlier comparison to
simulations,10 we expect the density profiles to be semiquan-
titatively, if not quantitatively, accurate. It would be highly
desirable to carry out corresponding computer simulations
for the present model. An interesting topic for such studies
could be to calculate the paranematic-nematic phase diagram
in the presence of an aligning field. In particular obtaining
the precise location of the critical point would be a very
worthwhile issue. Recall that the nematic phase at coexist-
ence �in the field-free case� possesses an unusually small
nematic order parameter, S0.5. Here we find the critical
field strength, beyond which there is no phase coexistence, to
be also very small, V0,c /kBT=0.045. As this is obtained from
a mean-field treatment, the true value might differ and it
would be interesting to see how much so. The location of the
critical point is reflected in the shape of the sedimentation
gradients, i.e., whether or not those exhibit a clear
paranematic-nematic interface or, corresponding to paths in
the bulk phase diagram above the critical point, smooth
variation with height.

The LDA results form an appropriate description of the
macroscopic density gradients, and results can be compared,
in principle, to experimental findings from setups such as
those of Refs. 16 and 17. The FMT results describe more
strongly confined systems, i.e., particles with radii
R=500 nm inside of capillaries with spacing L=50 �m.
Using a simple theory for the birefringence properties, we
have calculated the macroscopic color variation for sedi-
mented samples between crossed polarizers. We have shown
in detail that a corresponding color chart consisting of trip-
lets of RGB color values for each value of retardation � can
be calculated in a simple way.
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APPENDIX A: ADIABIATIC ALIGNMENT OF
PLATELETS IN A ROTATING MAGNETIC FIELD

The orientation-dependent part of the external potential
�first term on the right hand side of Eq. �1�� can be derived
from an external magnetic field that acts on the dispersion.
We take the platelets to be diamagnetic and characterized by
a diamagnetic susceptibility tensor per particle, which
is diagonal in the platelet frame of reference,
�̂=diag��� ,�� ,���, where the first two components indicate
the directions in the platelet plane, and the third component
indicates the platelet normal. In general the diamagnetic an-
isotropy ����� −�� will be nonzero. Inclining the platelet
by an angle � with respect to the z axis, such that
u= �0,sin � , cos ��, we can use the rotation matrix

D̂= ��1,0 ,0� , �0,cos � , sin �� , �0,−sin � , cos ��� to express
the susceptibility tensor of the tilted platelet as �̂�

� D̂−1 · �̂ · D̂= ���� ,0 ,0� , �0,c2�� +s2�� ,sc��� , �0,sc�� ,s2��

+c2����, where s=sin � and c=cos �.
We first consider the case ���0, where the platelets

tend to align their normals parallel to the field. We choose
the field in the vertical direction, B= �0,0 ,B�, and obtain the
magnetic energy per particle as Vmagn���= 1

2B · �̂� ·Bt

= 1
2B2��+ 1

2B2�� sin2 �, where the superscript t indicates
transposition. The first term forms an irrelevant constant, and
from comparing the second term with Eq. �1�, we obtain
V0=B2�� /2.

For ���0, the platelet normals align perpendicular to
the direction of the field. This leaves the angle of rotation of
the platelet orientation around the direction of the field un-
determined. This rotational symmetry can be broken by con-
sidering a rotating magnetic field that lies in the xy plane and
rotates around the z axis, B= �B cos � ,B sin � ,0�, where �
=�t, with � being the angular frequency of rotation and t
being time. The magnetic energy is Vmagn�� ,��= 1

2Bt · �̂� ·B
= 1

2B2��� −�� sin2 � cos2 ��. Assuming that the rotation of
the field is much faster than the motion of the platelet, such
that the position of the particle can be considered as static

during the rotation, we average over one cycle, V̄magn���
= 1

2��0
2�d�Vmagn�� ,��= 1

2��B2− 1
4B2�� sin2 �. The first term

again contributes an irrelevant constant to the total potential
energy. Comparing the second term to the first term in Eq.
�1� yields V0=−B2�� /4. Note that V0�0, because ���0,
hence again a uniaxial situation is encountered. However the
effective strength of the aligning potential is only half of that
in the case of ���0, because of the averaging over “favor-
able” and “unfavorable” alignment of platelet and field dur-
ing each rotation cycle.
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APPENDIX B: ESTIMATE OF THE STRENGTH OF
DIPOLAR PAIR INTERACTION

For the case of parallel dipoles that are oriented perpen-
dicular to their relative distance vector, the energy of two
interacting magnetic dipoles is E=�0m2 /r3, where
m=�B /2 is the magnetic moment, r is the spatial separation
between the two dipoles and �0=4� ·10−7 N /A2. Assuming
the diamagnetic susceptibility of the material per volume to
possess a value of the order of �V=−10−5 yields the diamag-
netic susceptibility per particle �=�VV /�0=10−21J /T2,
where V=�DR2�106 nm3 is the volume of a platelet with
thickness, say, D=20 nm and radius R=100 nm. This yields
E=10−27J=2.4·10−7kBT for T=300 K, and having chosen a
typical particle separation distance r=200 nm. Comparing
this with the magnitude of the strength of interaction with the
external field, V0=0.1kBT, shows that the latter constitutes
the dominant effect.
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