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Density-functional theory for soft interactions by dimensional crossover
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A density-functional theory for spherical particles interacting via an arbitrary soft pair potential is presented.
The derivation is solely based on limits, where the behavior is exactly known, namely, a zero-dimensional
cavity and the low-density virial expansion. The approach generalizes the fundamental-measure theory for hard
bodies and yields the structure and thermodynamics of the homogeneous fluid as an output. We apply the
theory to an ultrasoft logarithmic potential that mimics star polymers in a good solvent. The theory, when
supplemented by a rescaling procedure, reproduces the peculiar features of the pair correlations in this system
that we also find in computer simulatioj$1063-651X%99)50712-5

PACS numbes): 61.20.Gy, 64.10rh, 61.25.Hq, 05.20.Jj

Particles interacting via soft pair potentials build up ais used to cope with highly inhomogeneous situations, like
general class of statistical systems ranging from the Couthe density peaks representing the lattice sites in a crystal. In
lomb interaction of charged bodies, the screened Coulomb e WDA this smoothing is implemented by a convolution of
Yukawa potential present in suspensions of charged colloidahe one-particle density distribution with appropriate weight
particles to inverse-power potentidls]. Another important  functions yielding weighted densities. To construct a WDA
example is the Lennard-Jones potential that describes thghe has to define the weight functions. It is worth noting that
noble gases accurately. In the context of soft matter one ighe FMT uses a set of several weight functions. Another
faced with a zoo of potentials acting on a mesoscopic lengthy,nortant feature of the FMT opposed to other WDAs is the
scale. Two examples are the deplt_ation potential _that acts bex nge of the weight functions. While to our knowledge all
tween large spheres immersed In a suspension of gmaé her WDAs for hard spheres use weight functions with a
sphereq 2] and the ultrasoft repulsive Iogarlth_mlc potential range of the particle diameter, the FMT weight functions
between star polyme{$]. These examples clarify that a soft have a range of half the particle diameter, or particle radius

potential is a pairwise interaction that is finite everywhere_~" . i .
except for a possible singularity at the origin. The counter—R_U/Z' In this way the non-overlap criterion for hard

part of soft potentials are hard-body interactions, as in thépheres can be fulfilled e>§actly. The small range of the
famous hard sphere system. The interaction in these systefi€i9nts is not a drawback in cases where a range of non-
is infinite once two particles overlap. There are elaboratdocality of the sphere diameter is needed, e.g., for the pair
theories dealing with these purely entropic forces. correlation function. In this case the arising convolutions of
We propose a generalization of a successful densitytwo weights render the functional non-local with range
functional theory (DFT) for hard bodies, the so-called One essential ingredient of the FMT is a geometrical view
fundamental-measure theot(fMT), to soft potentials. The of hard particles. The basic statistical objects such as the
FMT approach has proven to describe accurately the strudMayer function are either zero or unity for hard particles. In
ture and thermodynamics of hard bodies, as hard spherdge geometrical picture a function value of unity means “in-
[4,5], or aligned hard cubd$,7]. It is able to yield the struc- side the geometrical shape,” while a function value of zero
ture of the homogeneous fluid, namely, the pair correlationrmeans “outside of the geometrical shape.” Using this corre-
function as an output rather than needing it as an input aspondence one can exploit powerful results from integral ge-
other DFTs dd8]. In the case of hard spheres the resultingometry like the Gauss-Bonnet theordd®]. In the case of
fluid structure is the same as the solution of the Percussoft cores the statistically relevant functions take on non-
Yevick closure relation. Also the freezing transition into atrivial values different from zero and unity.
face-centered cubic crystal is captured correpth]. The main modification of the FMT we present here is a
The FMT has also been used to deal with soft potentialsgeneralization of the weight functions to handle soft cores
In these approaches it is used to describe the hard spheresvakile keeping their short range. The emerging new weights
a reference system for a perturbation theory, e.g., via thare built to
assumption of universality of the bridge functiof@]. Con-
cerning non-FMT approaches for soft potentials there is a
large literature of successful applications; see the reviews by
Singh [10], Evans[8], and Loven [1]. Recently, Kol and
Laird studied the inverse-power potentigldl]. It turns out that the “thermodynamic ingredients,”
We attempt to find a generalization of the FMT to soft namely, the free energy density depending on the weighted
potentials. Let us therefore first outline the major features oflensities remain unaffected and keep their hard body form.
the FMT. The FMT is a weighted density approximation Let us start by introducing a generic form of a DF. The
(WDA). In this approach a smoothing of the density profileexcess free energy is expressed as

(i) deconvolve the Mayer function,
(i) yield the exact zero-dimensional single cavity limit.
(iii) give a reasonable, albeit not exact, multi-cavity limit.
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would cost infinite energy to insert a second particle. Hence,

FeXC(T.[P(f)]):kBTf dX®(T,{n(T,x)}), (1) the 0D limit for soft cores is the same as for hard bodies! It
was showr{13] that a functional that fulfills the 0D limit is

whereT is the temperature, arig is Boltzmann’s constant. given by

The integrand is a reduced free energy denditdepending

on T and on a set of weighted densitigs,} indexed bya. ®;=—noIn(1-ny), (6)

Each weighted density is given by a convolution of its

temperature-dependent weight functiar with the density

profile

if the weight functions have the property

Jd
Wo(r)=—(4wr2)*1§wg(r), @

na(T,x)=f dr p(r)w,(T,x—r). 2
with boundary conditionsv3(0)=1, andws(e°)=0. The in-
To Summarize, the DF has the fo”owing properties: deXa=0,3 is related to the dimension of the We|ghted den-
) ) . sities, which is (lengtfy~3. The emerging integral can be
1. There is asetof weighted densities. , solved and yields the exact Od free energ§°= 5+ (1
2. The free energy density is a function of the weighted_ »)In(1—7) [4,5], no matter what the functional depen-

densities. - _ _ dence ofn; onr is. The freedom can be used to tune the
3. The weighted densities are obtained by convolutions ofyeight functions to fit a prescribed interaction potential.

the density profile with appropriate weight functions. We assume that the set of weight functions is related to
4. The weight functions are explicitly known, i.e., do not o “generating” weight functionws through

implicitly depend on the density distribution.

The task is to give explicit expressions fdrand{n,} to Wo(r)=— IWs(T) = —w(r) @)
model the DF for a given pair potential. Let us discuss the 2 ar S

range of non-locality of the present functional by considering

the direct correlation function which can be obtained by W,o(r)=wy(r)r/r, 9
functional differentiation

W(r)=wo(r)/(4mr), (10
52Fexc
- _ -1
Callplrara) == (ke )" s L ) Wy (1) =w(r) r/r, (11)
—Fo
wherep is the equilibrium density. In the framework of the Wo(r)=wy(r)/r, (12

FMT, the differentiation of the generic functional results in wherew,, w;, andw, are scalar quantities and,; ,wi,

are vectors. What remains is to find an explicit expression for

cz([p],rl,r2)=2 PaNaxn,, (4) the generalized local packing fraction weigh(r). There-
@y fore, we consider the low-density limit of the true density
functional,

where z,/fay=(92CI>/((9naﬁny) are numerical coefficients not
depending on any spatial coordinate and the convolution of ke T
two weights is defined as Fexe_, — Tf drodry f(Jri—ry)p(ry)p(ry),

13

na*ny:j d3X N, (r1=x)N(r,—X). (5)
and impose that we recover the Mayer-boridr)=exp

The crucial point is that, has the double range compared to [=AV(r)]~1, by a sum of convolutions of weight functions

that of the weight functions/, . The direct correlation func- 1
tion is only known in the low-density limitc,—f — = T(r)=wWg* W+ W*Wo— W, 1% W, (14
=exp(pBV)—1, asp— 0, wheref is the Mayer function, and 2
B=1/kgT. The requirement to fulfill this limit will be used
to find the explicit form of the weight functions.

The second requirement is to reproduce the exact fre
energy in the zero-dimensionédD) limit. The OD limit is

defined through the density distributigng= 745(r). Physi-

where the convolution product, denoted by also implies
scalar products between vectors. Inserting the hierarchical
felations yields

cally, it describes a small cavity that can hold only one singlel—exp:—,BV(r)]z—( — vizr)* Ws(r) +w3(r) * wWg(r)
particle. The OD limit has proven to be a useful construct for 4m r r

hard sphere$4,5,13. In this case it can be realized by a , ,

spherical cavity with diameter with hard walls. It has only _W3(r) r* rw3(r) (15)
two states: Either it is empty, or it holds a single patrticle. r2 r ’

However, the idea is not restricted to hard bodies. We use it
to model a cavity for a soft particle. As we assume a diverwhich is an equation for the determination of the generating
gence to infinity of the soft potential under consideration, itweight ws, once a pair potentiaV(r) is specified. The de-
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pendence ofv; on temperature has been suppressed in the
notation, and the prime denotes differentiation with respect
to the argument.

For the free energy density we take over the hard sphere ~ ;
expression®=®,;+d,+d;, with the contributions®d, \:—0 ]
=-NngIn(l-nz), ®,=(nN;—Ny3-NR)/(1—-n3), D3 0
=n3[1—(ny/n,)?1%[247(1—n3)?]. As discussed above,

— 1.0

@, yields the exact single-cavity limit. The additional terms H — i:g
&, andd; correctly vanish in this limit. The two-cavity case ol ! ——= 10.0

is not reproduced exactly, but a numerical evaluation shows 0 ' 1 2 R 3 4
satisfactory agreement4].

We want to apply the theory to star polymer solutions that FIG. 1. Pair correlation functiong(r) as a function of the
are characterized by an ultra-soft repulsive interacfis. scaled distance/R obtained from density-functional theory for a
This system has two parameters, the functionality or arngolution of star polymerfEq. (16)]. The variation with density; is
number of the starband a length scale*, which are used Shown.
to build a dimensionless density* = (7/6)c* N/V, where
N is the particle number inside a volunve The pair poten-
tial [16] consists of a logarithmic potential for small dis- With a—c. In particular,nz is proportional top. The free
tances and an exponentially decaying Yukawa potential foenergy densityP, however, is only defined fang<1, thus
large distances. In order to keep the present analysis simpi@plying an unphysical upper limit of densities. To circum-
we use a modified form for large distances, vent this problem, we propose to reduce the upper limit of

integration in EqQ.(19) to the Wigner-SeitzWS) radius a
=Ry 13, so that only the density field within a WS cell

2
—=2qIn(r/R)+ In( q) 0=r<R contributes to the weighted density. As usually<1 holds,
q it can be seen that the cutoff ensumgs<1. When applied to
BV(r)= 2¢q (16) the hard sphere case no harm is done, as only unphysical
bq(r)+In q R=r<2R states are affected: Alh>1 are mapped ontg;=1. The

validity of the procedure will be checked by comparison with

simulations.

oo - . . o To test the theory, we calculate pair distribution functions

where (5) is the binomial coefficient. The crossover func- g(r) in the fluid phase. We choose the extremely soft case

0 2R=r,

tion between small and large distances is given by g=3, that corresponds to énoninteger arm number of
roughly 7.75. To perform a severe test, no use of the test-
bq(r)=—In[(1+£)29— g9 1B ,F,(1,1-q;2+0q; — &)1, particle limit is made, i.e., no minimizing of the functional

(170  with an external field given by the pair potential itself is
done. Instead, we use the direct correlation function given by
where ¢=(r/R)—1, By=2I(1+2q)T ) "}(2+0q) the second functional derivative of the excess free energy
and ,F, is the hypergeometric function. The parameters ardunctional, Eq.(3). The Ornstein-Zerike relation yields the
related to Ref[16] via q=(5/36)f%2 and R/o™* =exf(L pair correlation functiorg(r). In Fig. 1 we show results for
+\/f/2)71_(2q)71|n(2q)]. It is natural to define a dimen- & large range of densitie97=0.05—10, corresponding to
sionless densityr;=(4%/3)R3N/V=87;*(R/a*)3. The po- 7*=0.007 97-1.595. For comparison, Monte Carlo simula-

tential V(r) given by Eq.(16) is shorter ranged than the Eon data areh_shov(;/nbln Fig. 2._The| reazf:c_na?_le ag\;,\r/eementlls,
original one. It is slightly smoother as it tgtimes differen- owever, achieved by an empirical modincation. We rescale

tiable atr =R and one time differentiable at=2R. heuristically the direct correlation functionx c,, wherex is

The specific form of the crossover functigiy(r) allows roughly proportional toy~*. The particular values arex(

; i i thesga =1 (0.05), 0.7 (0.5, 0.2(1.0), 0.05
us to deconvolve the Mayer functi¢kq. (14)] and construct given in paren / ;
the weight functions analytically. The solution is (2.0), 0.04(4.0), and 0.02(10.0. The main effect is a res-

1-(r/R)? if 0=r=R

Ws(r)= 0 else. (18

In the limit g— < we recover hard spheres: The weight func-
tion approaches a step-functiowg(r)—®(R—r) and the
potential becomes hard core with rang®. 2

The weighted densities, E@2), when evaluated for the
homogeneous fluid are constant in space,

0 1 2 r/lR 3 4
na=4ﬂ'pfadr r2w (1), (19 FIG._ 2. nge as Fig. 1, but obtained from Monte Carlo com-
0 puter simulation.
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caling of the amplitude of the oscillations g(r). From a  a test case, we studied the ultrasoft logarithmic potential that
strict point of view, we have introduced one fit parameter pemimics the effective interaction between star polymers in
curve. We note, that this is only necessary for the extremelgolution. Prominent features such as the anomalous pair cor-
soft caseq=3. For q>12 and »=0.5 good agreement is relation function are captured qualitatively correct. An em-
found without rescalindi.e., A\=1). pirical modification leads to good quantitative agreement
The results are fairly good. Wavelength and phase of thgyith computer simulation results. Concerning future work, it
oscillations are correct. The peculiar shrinking of the firstjg highly desirable to apply the soft FMT to the recently
peak and growing of the second peak upon decreasing thgynd freezing transitions for star polymeis7] and to in-
density is reproduced. For small distances, the theory yieldgomogeneous liquid situations. Furthermore, the perfor-
unphysical negative values @f(r) (not shown in Fig. L mance for other soft repulsive interactions like the Yukawa
The worst case ig(0)=—1.11 for »=10. Apart from this, - jhyerse-power potentials should be investigated. It would
we find a remarkable agreement between theory and S'mUI%ﬂso be highly interesting to test the current approach for

tion. attractive interactions like the Lennard-Jones potential,

era{lri]z((:aort]ﬁclausffr?a;vn?ematgﬁmpgz%srgd dae?éist’;tle?ﬁtclft:i(\),\r/w?{ t&gg&here preliminary investigations have shown that the nu-
X " . nd . rical nvolution of the Mayer function i ible.
for hard bodies to soft interactions. This “soft FMT” is erical deconvolution of the Mayer function is possible

based on the exactly solvable dimensional crossover to a set Itis a pleasure to thank Hartmut tsen, Benito Groh, and
of zero-dimensional cavities and on the virial expansion. ALChristian von Ferber.
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