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Abstract
Using a fundamental measure density functional theory we investigate both bulk and
inhomogeneous systems of the binary non-additive hard sphere model. For sufficiently large
(positive) non-additivity the mixture phase separates into two fluid phases with different
compositions. We calculate bulk fluid–fluid coexistence curves for a range of size ratios and
non-additivity parameters and find that they compare well to simulation results from the
literature. Using the Ornstein–Zernike equation, we investigate the asymptotic, r → ∞, decay
of the partial pair correlation functions, gi j(r). At low densities a structural crossover occurs in
the asymptotic decay between two different damped oscillatory modes with different
wavelengths corresponding to the two intra-species hard-core diameters. On approaching the
fluid–fluid critical point there is a Fisher–Widom crossover from exponentially damped
oscillatory to monotonic asymptotic decay. Using the density functional we calculate the
density profiles for the planar free fluid–fluid interface between coexisting fluid phases. We
show that the type of asymptotic decay of gi j(r) not only determines the asymptotic decay of
the interface profiles, but is also relevant for intermediate and even short-ranged behaviour. We
also determine the surface tension of the free fluid interface, finding that it increases with
non-additivity, and that on approaching the critical point mean-field scaling holds.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Liquids can consist of a mixture of components which in
molecular systems may be different atomic or molecular
components. In colloidal systems mixtures may be formed
from particles with differing shapes or sizes, or mixtures of
colloids and non-adsorbing polymer. Besides gas–liquid phase
separation such mixtures may exhibit liquid–liquid separation,
where the system demixes into two (or more) phases with
differing compositions.

Inter-particle interaction potentials between the con-
stituent particles in a gas or a liquid may contain both short-
range repulsion, due to the overlap of outer electron shells, and
longer-ranged attractive or repulsive tails, due to dispersion
or Coulomb forces [1]. For intermediate densities both
features of the potential are important, and as van der Waals

discovered [2], it is the presence of an attractive tail that drives
liquid–gas phase separation. However, if the liquid is dense,
the long-range tail becomes less important and the structure of
the fluid is primarily determined by the short-range repulsion.

Following van der Waals [2] it is convenient to separate
the potential into its short-range sharply repulsive and
longer-range components and treat them within a theoretical
approach separately. The simplest model for the short-
ranged repulsive potentials is the hard sphere model which
disallows particle overlap. This model has been shown to give
a good approximation of the thermodynamic and structural
properties of fluids, particularly near crystallization. The
development of ever better approximate theoretical treatments
of the hard sphere model is a major element of liquid-state
theories. Furthermore, given a theoretical treatment of the
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hard sphere potential, attractive or repulsive tails may be
incorporated using relatively simple perturbation theories. It
is straightforward to generalize the hard sphere model to
multi-component mixtures. This simplest mixture has two
components where the second species can have the same or
a different diameter than the first species. This two-component
mixture is normally formulated such that the distance of closest
approach between particles of different species is a simple
mean of the diameters of the particles of each species. In
a real fluid this assumption may not be true and relaxing
this constraint allows novel features of real systems to be
investigated [3–5].

Specifically, we define a two-component mixture of
particles that interact through the hard sphere pair-potentials,

Vi j(r) =
{

∞ r < σi j

0 otherwise,
(1)

where i, j = 1, 2 label the species, and σii are the
particle diameters. The usual additive cross-species range of
interaction is σ12 = 1

2 (σ11 + σ22) but the non-additive hard
sphere (NAHS) model generalizes this so that σ12 can be
smaller or larger than the arithmetic mean of the like-species
diameters,

σ12 = 1
2 (1 + ")(σ11 + σ22), (2)

where " ! −1 measures the degree of non-additivity. We
characterize the model by the size ratio, q = σ11/σ22 " 1, and
by ". For " = 0 the model reverts to the binary additive hard
sphere model.

If both " and the density of the fluid are sufficiently
large, the fluid demixes into two phases, one rich in particles
of species 1, one rich in particles of species 2 [3, 6–9].
Experimental work on a number of systems, including alloys,
aqueous electrolyte solutions, and molten salts, suggests
that non-additivity may lead to both hetero-coordination
and homo-coordination [5, 10]. In recent work Kalcher
et al have used Monte Carlo simulations to calculate an
effective interaction between charged ions in an electrolyte
solution [11], integrating out the degrees of freedom of the
solvent molecules. Using a Barker–Henderson mapping they
identified hard-core diameters with values of non-additivity
as large as 0.36 for NaI. In contrast, for " < 0 mixing of
the two species is encouraged and the fluid can exhibit strong
short-range order [12]. For " being sufficiently negative,
clustering effects, mesoscopic ordering and the formation of
heterogeneous structures were reported [12–14].

Besides the additive model there are two further important
limiting cases of the binary NAHS model. The Asakura–
Oosawa–Vrij model [15–17] has long been used as a simple
description for the behaviour of a mixture of colloids and non-
adsorbing polymers. The colloids interact through hard sphere
interaction with diameter σcc, while the polymers are treated
as ideal, σpp = 0. The colloid–polymer interaction is also
hard sphere like but with a diameter σcp = σcc/2 + Rg, where
Rg > 0 is the polymer radius of gyration. In the formulation
of (2) this corresponds to " = 2Rg/σcc. The second important
case is the binary Widom–Rowlinson model [18] where both
same-species interactions are ideal, σ11 = σ22 = 0, but the

cross-species interaction is through a hard-core with diameter
σ12 > 0. This corresponds to taking the limit of (2)
where " → ∞ and σ11 = σ22 → 0 while keeping
σ12 constant. The Widom–Rowlinson model has become an
important model in statistical physics due to its entropy driven
demixing transition, yet simple structure of interactions. For a
more thorough review of the literature on NAHS mixtures we
refer the reader to the review article [5] and to the more recent
contributions [19–22].

In this paper we explore the binary NAHS using the
recently developed fundamental measure density functional
theory for this model [23]. Fundamental measure theories
(FMTs) are a class of density functional theories (DFTs)
that are based on the geometrical quantities (fundamental
measures) of the particles involved, e.g. volume, surface
area, radius, and Euler characteristic. These fundamental
measures enter the theory through weight functions which
are based on these measures. The weight functions are
convolved with the density profiles in order to give a set of
weighted densities which are then combined within a free
energy density. The original functional was formulated by
Rosenfeld for additive mixtures of hard spheres [24] using both
scalar and vectorial weight functions. Subsequently Kierlik
and Rosinberg constructed a functional for hard spheres using
only scalar weight functions [25]. Their theory was later
shown to be equivalent to Rosenfeld’s formulation [26]. These
functionals reproduce the Percus–Yevick approximation for
the two-body correlation functions in the bulk fluid. One
drawback of these original hard sphere FMTs was that they
were not suitable for studying crystallization phenomena due to
unphysical divergences within the functional when the density
profiles became strongly confined. This was later remedied
(for hard spheres), first using a simple modification [27], and
then later by introducing tensorial weight functions [28]. For
recent reviews on DFT and hard body DFTs in particular,
we refer the reader to [29, 30]. In studies that preceded the
NAHS functional, FMTs were proposed for both the Asakura–
Oosawa [31] and Widom–Rowlinson [32] models. There are
a number of publications dedicated to the study of interfacial
properties of the Asakura–Oosawa model [33–35]. Note that
the present DFT reduces to that used in [34, 35], when the
Asakura–Oosawa limit of the general non-additive hard sphere
mixture is taken.

The NAHS functional, which was first introduced in [23]
is based on the scalar Kierlik–Rosinberg deconvolution [25] of
the hard sphere weight functions, but introduces a further ten
scalar weight functions to take account of the non-additivity.
It was shown that the functional correctly predicts fluid–fluid
phase separation and that the theory provides a reasonable
prediction for the location of the critical point compared to
existing simulation results. Using the Ornstein–Zernike (OZ)
equation, i.e. by inverse Fourier transforming the analytic
(Fourier space) total correlation functions, it was shown that
the theory provides a good account of the radial distribution
functions, gi j(r), as compared to Monte Carlo simulation
results, though these are not the same as those obtained by
the Percus–Yevick (PY) approximation and they violate the
core condition gi j(r) = 0 for r < σi j , where gi j(r) is
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the partial pair correlation function between species i and
j . The non-additive functional has also been formulated
for the one-dimensional version of the model, binary non-
additive rods on a line [36], making accurate predictions for
the particle correlation functions, although failing to reproduce
the exact solution [37]. In further work [38], the spherical
and one-dimensional convolution transforms in the theory were
investigated and shown to form an Abelian group.

In more recent work, Ayadim and Amokrane [39] have
used the functional of [23] to calculate the radial distribution
functions via the Percus test particle route [40]. This
involves introducing an external potential that represents a
single particle fixed at the origin and numerically solving
for the density profiles around it. The core conditions are
automatically satisfied. These results for the radial distribution
functions can then be compared to those obtained from the
simpler OZ route, in order to assess the internal consistency of
the functional. The authors of [39] found that gi j(r) calculated
via the test particle route exhibit small but clearly noticeable
unphysical jumps that are not present in the results from the OZ
route. They argue that these are not numerical artefacts, but are
due to shortcomings in the construction of the functional, and
suggest that the functional requires changes at a fundamental
level to eliminate the occurrence of discontinuities. In the
present investigation in planar (rather than spherical) geometry,
we do not find unphysical kinks in density profiles. Both planar
fluid–fluid interfaces, as well as the density profiles near a
planar hard wall [41] are free of artefacts. Furthermore, the
current study is dedicated to the intermediate and long-ranged
behaviour of the bulk fluid pair correlation functions. We
expect this to be largely unaffected by the jumps, which were
found to occur at short separation distances [39].

For fluids where the pair-potentials are short-ranged, it
can be shown that hi j(r) = gi j(r) − 1 can be evaluated
by determining the positions and residues of the poles
(divergences) of the complex structure factors, Si j(k), where
k is a complex wavenumber [42]. These poles either occur
as a complex conjugate pair, which give rise to a damped
oscillatory contribution to rhi j (r), or as a single purely
imaginary pole, which gives rise to a purely exponentially
decaying contribution. In general, there is an infinite number
of poles. However, in order to find the intermediate and
asymptotic, r → ∞, decay of hi j(r), it is usually sufficient to
find the positions of a small number of poles—those that give
rise to the slowest decaying contributions. Furthermore, the
ultimate asymptotic decay is determined by the pole(s) with
the smallest imaginary component, referred to as the leading
order pole(s). As the model parameters (or statepoint) are
varied the identity of the pole with the smallest imaginary
component may change, leading to abrupt changes in the type
of asymptotic decay. Furthermore, there may also be crossover
in oscillatory asymptotic decay with different wavelengths. A
number of studies have shown that changes in the asymptotic
decay mode may be detected in simulation and experiments
and have verified its relevancy in studying the microscopic
properties of the fluid [43–47].

The raison d’être of DFT lies in its prowess to
investigate inhomogeneous situations in equilibrium. Given an

approximation for the density functional, taking the derivative
with respect to the density profiles yields a set of Euler–
Lagrange equations. By numerically solving these equations
one obtains the set of equilibrium density profiles, which
minimize the grand potential functional of the system.

In the present paper we consider the NAHS model with
" > 0 and calculate fluid–fluid demixing binodals and
spinodals for a range of size ratios, q , and non-additivity
parameters, ". For size ratio q = 0.1, we compare the
predictions for the coexistence curves to results of computer
simulations by Dijkstra [7]. We find that the theory reproduces
the location of the binodal reasonably well. By calculating
the partial pair direct correlation functions from functional
derivatives of the excess free energy functional and inverting
the OZ equation in Fourier space, we determine the positions
of the poles, as well as the asymptotic, r → ∞, decay
of the partial pair correlation functions. We find that
besides structural crossover between oscillatory decay with one
wavelength to oscillatory decay with a different wavelength
(that also occurs in the additive model [48]), there is also
Fisher–Widom (FW) crossover from exponentially damped
oscillatory decay to monotonic exponential decay. We use
the functional for investigating the planar fluid–fluid interface
between coexisting phases and demonstrate how the different
types of asymptotic decay of the bulk correlations in the two
coexisting phases determine the asymptotic and intermediate
decay of the density profiles on both sides of the fluid–fluid
interface, consistent with the general theory of asymptotic
decay of correlations [42]. The essential quantity in studying
fluid interfaces is the surface tension, γ , which is the excess
free energy per unit area required to maintain the surface. This
can be measured experimentally and therefore provides a direct
connection between theoretical approaches and real fluids. We
determine γ quantitatively and show that as the critical point is
approached, mean-field scaling is reproduced.

The paper is structured as follows: in section 2, which can
be safely skipped by expert readers, we outline the relevant
theory including a description of the excess free energy
functional used, the Ornstein–Zernike equation for binary
mixtures and the theory of asymptotic decay of correlations.
We also describe how to calculate inhomogeneous density
profiles. The main results of the work are described in
section 3, where we present bulk phase diagrams for a range
of size ratios and non-additivities. We investigate the pole
structure of the structure factors in the complex plane and
indicate the regions of the phase diagram with different types
of asymptotic decay. We calculate the density profiles for the
fluid–fluid interface and the surface tension. In section 4 we
present a discussion of the results. Finally, in the appendices
we present further details on the structure of the weight and
kernel functions, and explicitly write down the free energy
density contributions.

2. Theoretical background

2.1. Density functional theory

We first reintroduce the general density functional theory
framework [49, 50]. For a classical system composed of
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two different species of particles, one can construct a grand
potential functional $[ρ1,ρ2] of the set of one-body density
profiles ρi(r) for i = 1, 2,

$[ρ1,ρ2] = F[ρ1,ρ2] −
2∑

i=1

∫
dr ρi (r)(µi − V ext

i (r)), (3)

where F[ρ1,ρ2] is the intrinsic Helmholtz free energy
functional, µi is the chemical potential of species i , V ext

i (r)
is an external potential that acts on particles of species i and r
is the spatial coordinate. The intrinsic Helmholtz free energy
functional may be separated into two contributions:

F[ρ1,ρ2] = Fid[ρ1,ρ2] + Fex[ρ1,ρ2]. (4)

The first term in (4) is the Helmholtz free energy of an ideal
gas,

Fid[ρ1,ρ2] =
2∑

i=1

kBT
∫

dr ρi (r)(ln(&3
i ρi (r)) − 1), (5)

where kBT is the thermal energy and &i is the thermal
de Broglie wavelength of particles of species i . The second
term in (4), Fex[ρ1,ρ2], is the excess contribution to the free
energy which is due to inter-particle interactions. This part is
in general unknown and is specific to the form of the inter-
particle interactions. The FMT approximation for the binary
NAHS excess free energy functional will be defined below.

It can be shown that when $[ρ1,ρ2] is minimized w.r.t. the
density distributions, its value is equal to the thermodynamic
grand potential of the system, $̄, and that the set of density
profiles that minimize $[ρ1,ρ2] are the set of equilibrium
density profiles, ρ̄i(r). One can summarize these two
statements as

δ$[ρ1,ρ2]
δρi(r)

∣∣∣∣
ρ̄1,ρ̄2

= 0, $[ρ̄1, ρ̄2] = $̄, (6)

where the left-hand side of the first equation represents the
functional derivative of $[ρ1,ρ2] with respect to ρi (r), i =
1, 2, evaluated with the equilibrium density profiles, ρ̄1(r) and
ρ̄2(r).

Properties of bulk fluid states can be obtained from
evaluating (4) with constant bulk densities, ρi (r) = ρb

i , such
that the Helmholtz free energy in bulk is

F(ρb
1 ,ρb

2 ) = F[ρb
1 ,ρ

b
2 ]. (7)

The chemical potentials and the pressure are given respectively
by,

µi(ρ
b
1 ,ρ

b
2 ) = V −1 ∂F(ρb

1 ,ρ
b
2 )

∂ρb
i

,

P(ρ1,ρ2) = −F(ρb
1 ,ρ

b
2 )

V
+

2∑

i=1

ρb
i µi ,

(8)

where V is the system volume. For a system that exhibits
phase separation, coexistence curves (binodals) are obtained
by finding pairs of statepoints for which the chemical potentials

and the pressure are the same in the two phases, labelled A and
B, i.e., by solving simultaneously the three equations;

P(A) = P(B) and µ
(A)
i = µ

(B)
i , i = 1, 2,

(9)
where µ

(A)
i is the chemical potential of species i in phase

A and P(A) is the pressure of phase A (and similarly for
phase B). The limit of mechanical stability of the system
(spinodal) can be obtained from the (numerical) solution
of det(∂2(F/V )/∂ρi∂ρ j) = 0. At the spinodal the
compressibility of the fluid becomes infinite and the correlation
length of the fluid, which is the length-scale on which the
fluid correlations decay, diverges to infinity. The binodal and
the spinodal meet at the critical point, where the correlation
length in the coexisting phases becomes infinite and the order
parameter that describes the difference between the two phases
vanishes, i.e. the two phases become indistinguishable from
each other.

2.2. The binary non-additive hard sphere excess free energy
functional

In FMT the excess Helmholtz free energy functional is
constructed from a set of weighted densities, n(i)

ν (r), which
are formed by convolution of the bare density profiles, ρi(r),
with a set of geometrically inspired weight functions, w(i)

ν (r),
appropriate for the model. The index ν labels the type of
weight function. In the binary NAHS functional the weight
functions are spherically symmetric so that the weighted
densities are given by

n(i)
ν (x) =

∫
dr ρi (r)wν(|x − r|, Ri ), i = 1, 2, (10)

where ν = 0, 1, 2, 3, and Ri = σii/2 is the hard sphere
radius of species i . The weight functions represent the
‘fundamental measures’ of the model in question, i.e. their
volume (ν = 3), surface area (2), integral mean curvature (1),
and Euler characteristic (0). They have dimension (length)ν−3,
and therefore the weighted densities also have dimension
(length)ν−3. We define components of a free energy density
that depend on the weighted densities,

*αβ(x, x′) ≡ *αβ({n(1)
ν (x)}, {n(2)

τ (x′)}), (11)

where α,β = 0, 1, 2, 3. These terms have dimension
(length)α+β−6 and their full form is given below. The excess
(over ideal) Helmholtz free energy functional, Fex[ρ1,ρ2], is
given by a double integral over space and double sum over the
geometric indices,

Fex[ρ1,ρ2]
kBT

=
3∑

α,β=0

∫ ∫
dx dx′ *αβ(x, x′)Kαβ(|x − x′|),

(12)
where the convolution kernels, Kαβ(r), control the range
of non-additivity between unlike components. The kernel
functions are isotropic and are similar to the weight functions,
although they depend on a new length-scale,

R12 = "(R1 + R2) = σ12 − 1
2 (σ11 + σ22), (13)
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which is the difference between the cross-species diameter
and the mean particle diameter. (Note that in general
R12 &= σ12/2.) The kernel functions Kαβ have dimension
(length)−α−β , therefore the products *αβ Kαβ have the correct
dimension (length)−6, as required by (12).

We use the (fully scalar) Kierlik–Rosinberg form
for wν(r, R). Hence the four weight functions used
in equation (10) are defined as

w3(r, R) = sgn(R).(R − r),

w2(r, R) = δ(R − r),

w1(r, R) = sgn(R)

8π
δ′(R − r),

w0(r, R) = − 1
8π

δ′′(R − r) + 1
2πr

δ′(R − r),

(14)

where r = |r|, R = R1, R2, R12, sgn(·) is the sign
function, .(·) is the Heaviside step function, δ(·) is the Dirac
distribution, and the prime denotes the derivative w.r.t. the
argument. Although the hard sphere radii Ri are strictly greater
than zero, the factor sgn(R) is included in order that the weight
functions may be reused below for the kernel functions, where
R12 may be negative (if " < 0).

The set of convolution kernels are symmetric w.r.t.
exchange of indices, Kαβ = Kβα, so that there are only ten
independent weight functions. Four of these are given via (14)
with R = R12;

K00(r) = w3(r, R12), K01(r) = w2(r, R12),

K02(r) = w1(r, R12), K03(r) = w0(r, R12).
(15)

The set of further weight functions, suppressing for notational
convenience the arguments of w(†)

ν (r, R12), are:

K11(r) = w†
1 = sgn(R)δ′(R − r),

K12(r) = w†
0 = 1

8π
δ′′(R − r),

K22(r) = w†
−1 = 1

64π2
δ(3)(R − r),

K13(r) = w−1 = sgn(R)

[
1

2πr
δ′′(R − r) − 1

8π
δ(3)(R − r)

]
,

K23(r) = w−2 = 1
16π2r

δ(3)(R − r) − 1
64π2

δ(4)(R − r),

K33(r) = w−3 = sgn(R)

8π2

[
1
r
δ(4)(R − r) + 1

8
δ(5)(R − r)

]
,

(16)
where R = R12, and the derivatives of the Dirac delta function
are defined by δ(γ )(x) = dγ δ(x)/dxγ for γ = 3, 4, 5. The
Fourier space expressions of all weight functions are given
explicitly in appendix A.

The terms *αβ are built from a sum of derivatives of
the zero-dimensional excess free energy, φ0d(η) = (1 −
η) ln(1 − η) + η, where η is a dummy argument (which
can be viewed as the average occupation number of a
zero-dimensional cavity [27]), and γ labels the derivative:
φ

(γ )
0d (η) ≡ dγ φ0d(η)/dηγ . The derivatives of φ0d(η) are

multiplied by products of weighted densities to ensure the
correct dimensionality of the free energy density. We introduce
ansatz functions A(i)

αγ that possess the dimension of (length)α−3

and the order γ in density (i.e. they contain γ factors n(i)
ν ).

These are combined as

*αβ =
6∑

γ=0

3∑

γ ′=0

A(1)
αγ ′ A(2)

β(γ−γ ′)φ
(γ )
0d (n(1)

3 + n(2)
3 ). (17)

Expressions for the non-vanishing terms of the ansatz functions
are,

A(i)
01 = n(i)

0 , A(i)
02 = n(i)

1 n(i)
2 , A(i)

03 = 1
2π

(n(i)
2 )3,

A(i)
11 = n(i)

1 , A(i)
12 = 1

8π
(n(i)

2 )2, A(i)
21 = n(i)

2 ,

A(i)
30 = 1.

(18)
The specific form of (18) ensures both that the terms in the sum
in (12) possess the correct dimension of (length)−6 and that the
prefactor of φ0d in (17) is of the total order γ in densities.

This completes the prescription for the excess Helmholtz
free energy functional. Evaluating the sums in equation (17)
explicitly results in a total of 49 terms, which can be grouped
either by the 16 kernel functions, or alternatively by the 10
unique weight functions. In appendix B we transcribe some of
the terms; all further terms can be obtained by symmetry.

2.3. Fluid structure and asymptotic decay of correlations

In order to study the pair structure of the bulk fluid, we rely on
the OZ equation, which separates the partial pair distribution
functions, gi j(r), into a ‘direct’ part between pairs of particles,
and an ‘indirect’ part that comes from the interaction between
all the other particles in the system:

hi j(r) = ci j(r) +
2∑

l=1

ρb
l

∫
dr′ hil(r ′)cl j (|r − r′|), (19)

where hi j(r) = gi j(r) − 1 is the total correlation function
and ci j(r) is the two-body direct correlation function between
species i and j . The latter can be obtained from the excess free
energy functional via functional differentiation,

ci j(|r − r′|) = −(kBT )−1 δ2 Fex

δρi(r)δρ j(r′)

∣∣∣∣
ρ1,ρ2=const

. (20)

By Fourier transforming one can re-write (19) as

ĥi j (k) = ĉi j(k) +
2∑

l=1

ρb
l ĥil(k)ĉl j (k), (21)

where ĥi j (k) is the (three-dimensional) Fourier transform of
hi j(r),

ĥi j(k) = 4π

k

∫ ∞

0
dr r sin(kr)hi j(r), (22)

5
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and similarly for ĉi j(k). It can be shown by rearranging the OZ
equations that

ĥi j(k) = N̂i j (k)

D̂(k)
, (23)

where the common denominator is

D̂(k) = [1 − ρ1ĉ11(k)][1 − ρ2ĉ22(k)] − ρ1ρ2ĉ12(k), (24)

and the numerators in (23) depend on the species indices:

N̂11(k) = ĉ11(k) + ρ2[ĉ2
12(k) − ĉ11(k)ĉ22(k)],

N̂22(k) = ĉ22(k) + ρ1[ĉ2
12(k) − ĉ11(k)ĉ22(k)],

N̂12(k) = ĉ12(k).

(25)

Using the definition of the inverse Fourier transform, we obtain

hi j (r) = 1
2π2r

∫ ∞

0
dk k sin(kr)ĥi j(k),

= 1
2π2r

∫ ∞

0
dk k sin(kr)

N̂i j (k)

D̂(k)
. (26)

For the present functional, expressions for ĉi j(k) can be
obtained analytically via (20) and hence can be substituted
into (24) and (25), before numerically Fourier transforming to
obtain gi j(r) = hi j(r)+1 from (26). No numerical scheme for
solving (19) is required. Indeed this method has already been
successfully used in [23] and [36] to calculate the distribution
functions and partial structure factors,

Si j (k) = δi j +
√

ρb
1ρ

b
2 ĥi j (k), (27)

where δi j is the Kronecker delta.
Another method that we will make extensive use of in

the following is to investigate the singularities of ĥi j(k) in
the complex k-plane [42]. Using (26) and assuming that the
singularities of ĥi j(k) for the present systems are simple poles,
we can proceed via Cauchy’s residue theorem. Performing
contour integration around a semicircle in the upper half of the
complex k-plane, the total correlation functions can be written
as a sum of contributions from the poles enclosed,

rhi j(r) =
∑

n

A(i j)
n exp(iknr), (28)

where n labels the poles, kn satisfies D̂(kn) = 0, A(i j)
n is the

amplitude associated with the pole at kn and i is the imaginary
unit. The amplitude is related to the residue R(i j)

n by A(i j)
n =

R(i j)
n /2.

The poles are either purely imaginary, kn = iα0, or occur
as a complex pair, kn = ±α1 + iα0, where both α0 and α1

are real. In general there will be an infinite number of poles
and contributions from many of those are required to account
for the behaviour of hi j(r) at small distances r . However, the
ultimate, r → ∞, decay of all hi j(r) is determined by the
pole(s) that gives the slowest exponential decay, i.e., the pole(s)
with the smallest imaginary part α0. These are referred to as the
leading order pole (or poles in the case of a conjugate complex
pair).

If the leading order pole is purely imaginary, then all
rhi j(r) ultimately decay exponentially, rhi j ∼ Ai j exp(−α0r),
as r → ∞, where Ai j is an amplitude specific to each
correlation function. On the other hand, if the leading order
poles are a conjugate pair, then the sum of contributions from
this pair of complex poles gives damped oscillatory ultimate
decay, rhi j(r) ∼ 2Ai j exp(−α0r) cos(α1r − θi j), with a
common characteristic decay length α−1

0 and wavelength of
oscillations 2π/α1. Ai j and θi j denote the amplitude and the
phase, respectively.

As the model parameters and statepoint change, the
positions of the poles in the complex plane vary. The
pole(s) which have the smallest imaginary part, referred to
as the leading order pole(s), can therefore be replaced by a
different set of poles. This can lead to abrupt changes in
the type of decay, either between damped oscillatory decay
and monotonic decay, or between damped oscillatory decay
with one wavelength to damped oscillatory with a different
wavelength.

For the one-component hard sphere fluid the decay is
always damped oscillatory with a wavelength similar to the
hard sphere diameter [42]. For the binary additive hard sphere
mixture there is an abrupt crossover in the phase diagram
from one wavelength similar to the diameter of species 1
to a different wavelength similar to the diameter of species
2 [48]. The two different oscillatory wavelengths are each
described by a complex conjugate pair of poles with real
components which determine the oscillatory wavelength. This
abrupt change occurs when these two pairs of poles have the
same imaginary component. This marks a structural crossover
line in the phase diagram.

In general, there may also be a crossover between damped
oscillatory and monotonic decay, particularly in systems which
exhibit phase separation and where correlation functions obey
Ornstein–Zernike (asymptotic exponential decay) behaviour
close to the critical point. This crossover can occur via two
mechanisms: In Fisher–Widom crossover a pair of leading
order complex poles and a single imaginary pole change their
positions in the complex plane as the statepoint is varied. As
the critical point is approached the leading order pole(s) change
from the complex pair to the purely imaginary pole. The
statepoints where this crossover occurs trace the FW line in
the phase diagram.

It has been shown, both via simulation and theory, that
additive mixtures of hard spheres with small size ratio, q #
0.2, can exhibit (meta-stable) fluid–fluid phase separation [51].
However, the PY approximation is unable to account for this
phenomenon. Correspondingly, the asymptotic decay of the
distribution functions is always oscillatory, for all size ratios,
within PY theory [48]. In the same study, the authors also
consider an effective one-component depletion potential, from
which they are able to obtain the phase transition and to also
find Fisher–Widom crossover from oscillatory to monotonic
decay. Since the NAHS functional, taken in the additive
limit " = 0, recovers the PY approximation for the bulk
correlation functions, we do not see Fisher–Widom crossover
in the additive model.

In Kirkwood crossover two purely imaginary poles come
together, coalesce and become a pair of complex poles. This
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Figure 1. Bulk fluid–fluid binodals (solid lines) and spinodals
(dashed lines) for the binary non-additive hard sphere fluid with fixed
size ratio q = σ11/σ22 = 1 and varying non-additivity parameter
" = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 and 1 (from top to bottom), plotted
as a function of the partial packing fractions, η1 and η2. For each
system the binodal meets the spinodal at the bulk critical point (•).

mechanism often occurs in fluids that interact via soft, steeply
repulsive, pair-potentials [52, 53]. Indeed we do not find it in
the present system.

2.4. Inhomogeneous systems

In order to calculate inhomogeneous density profiles in the
grand-canonical ensemble we consider the thermodynamic
grand potential functional (3) and minimize $[ρ1,ρ2] with
respect to variations in the density profiles. This is equivalent
to solving a pair of Euler–Lagrange equations,

µi = kBT log(&3ρi ) − kBT c(1)
i (r) + V ext

i (r), i = 1, 2,

(29)
where c(1)

i (r) = −(kBT )−1δFex/δρi(r) is the one-body direct
correlation functional for species i = 1, 2. In practice, the
pair of equations (29) must be solved simultaneously via an
iterative numerical scheme. Explicit functional derivation of
the excess part of the present functional, (12), yields

δFex

δρi(r)
=

3∑

γ=0

∫
dx w(i)

γ (|x − r|)

×
[ 3∑

α,β=0

∫
dx′ ∂*αβ

∂n(i)
γ

(x, x′)Kαβ(|x − x′|)
]
, (30)

which has the structure of two nested convolutions. For each
value of γ , the partial derivatives of the excess free energy
terms, φαβγ = ∂*αβ/∂n(i)

γ , are first convolved with the kernel
functions, Kαβ(r), and then the sum of these is convolved with
the single-particle weight function, wγ (r). There are a total of
60 terms of the form of (30) to be evaluated.

In the present study we consider the planar fluid–fluid
interface between coexisting fluid phases, where V ext

i (r) = 0.
The boundary conditions are chosen so that the density profiles
decay to the coexisting bulk values far away from the interface.

Figure 2. The same as figure 1, but for fixed size ratio
q = σ11/σ22 = 0.5 and varying " = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 and
1 (from top to bottom).

Figure 3. The same as figure 1, but for fixed size ratio q = 0.1 and
varying " = 0.1, 0.2, 0.3, 0.4, 0.5 and 1 (from top to bottom). Note
the scale on the (horizontal) η1-axis.

3. Results

3.1. Fluid demixing phase diagram

It has previously been shown [23] that for suitable parameters
the present theory reproduces the phenomenon that the mixture
separates into two different fluid phases [6]. Using (8) and
solving for coexisting states we have calculated the coexistence
curves (binodals), as well as the spinodals, for a range of model
parameters. The statepoint is specified by the partial packing
fractions, ηi = πρb

i σ
3
ii /6; recall that ρb

i is the bulk number
density for species i .

Figure 1 shows the binodals and spinodals for the
symmetric mixture, q = σ11/σ22 = 1, with " varying
between 0.05 and 1, in the (η1, η2) plane. Increasing " causes
phase separation at increasingly lower densities, and therefore
the partial packing fractions at the critical point, ηcrit

i , both
decrease monotonically as " increases. Figure 2 displays the
binodals and spinodals for asymmetric mixtures with fixed q =
0.5 and " again varying between 0.05 and 1. On increasing ",
again both ηcrit

1 and ηcrit
2 decrease monotonically.
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Figure 4. Fluid–fluid coexistence curves for fixed size ratio q = 0.1
and varying " = 0.2, 0.3, 0.4 and 0.5, plotted in the plane of
pressure, P, and relative concentration of the large particles
x2 = ρ2/ρ. Results from present density functional (solid lines) are
compared to the results from Gibbs ensemble simulations (crosses),
as reported in [7], and a mean-field theory due to Barboy and
Gelbart [56] (dashed lines). The pressure is scaled by the size of the
larger species so that the figure is consistent with figure 3 of [7].
Both theories predict phase separation at lower pressures than the
simulation results.

We also consider a mixture with large size asymmetry,
q = 0.1, where we can compare to Gibbs ensemble Monte
Carlo simulation results of Dijkstra [7]. This large asymmetry
is a significant test for the functional, as previous studies have
shown that FMT struggles with large size asymmetry already
in the additive case [54, 55]. Figure 3 shows the binodals
and spinodals for q = 0.1 and " varying between 0.1 and 1.
Although we show the binodal for " = 0.1, in simulations it
was found that fluid–fluid phase separation for this value of "
is meta-stable with respect to crystallization [7]. Note that the
relevant range of values of η1 is much smaller than in figures 1
and 2.

To compare our results to those of [7], in figure 4 we plot
the binodals in the plane spanned by pressure, P , and relative
concentration of the larger particles, x2 = ρ2/ρ, alongside
the simulation results of Dijkstra and the results from Barboy
and Gelbart’s mean-field theory [56] (data taken from [7]).
We find that the coexistence curves from the three approaches
have similar shapes and positions, for all values of " shown.
However, both theories predict demixing pressures that are
lower than the simulation results. Such a systematic error is
often a feature of mean-field theories, which underestimate the
strength of density fluctuations close to the critical point.

3.2. Asymptotic decay of correlations

Despite the presence of subtle artefacts [39] in the results for
the radial distribution functions, gi j(r), calculated via the test
particle route from the present functional, it has previously
been shown that there is good agreement between the gi j(r),
calculated via the Ornstein–Zernike route and Monte Carlo
simulation data, both in 3D [23], and in 1D [36]. Here we
explore in detail the asymptotic, r → ∞, decay of correlations
which is determined by the poles of the partial structure factors,

Figure 5. The partial radial distribution functions, gi j (r), for the
system with q = 1 and " = 0.1. Note that g11(r) = g22(r) and that
the pairs of curves are offset upwards by 4 units for clarity. The pairs
of profiles are at the following statepoints: (i) η1 = η2 = 0.1,
(ii) η1 = η2 = 0.13, and (iii) η1 = η2 = 0.14. As the density
increases and the statepoint approaches the binodal, the oscillations
in all gi j (r) become more pronounced. The inset shows ln |r hi j (r)|
where hi j (r) = gi j (r) − 1 is the total correlation function. For (i) the
intermediate and asymptotic decay is oscillatory with a wavelength
∼σ11. For (ii) the decay is oscillatory at small r , but as distance
increases, the relative amplitude of the oscillations quickly decreases,
and the profiles start to decay monotonically. For (iii) there are some
short-range oscillations which die out by r ) 7σ11 so that the
intermediate (and asymptotic) decay is monotonic.

Si j(k), in the complex plane. We expect the asymptotic decay
to be robust and not be affected by the test particle artefacts.

We begin by showing representative examples of the
radial distribution functions obtained from numerically Fourier
transforming the analytical expressions for hi j(k) (26). For
the symmetric mixture, q = 1 and " > 0, by varying the
statepoint and calculating gi j(r), we find that there are two
types of intermediate and asymptotic, r → ∞, decay. In
figure 5 we plot gi j(r) for the symmetric mixture, q = 1,
with " = 0.1, at three statepoints (i) η1 = η2 = 0.1,
(ii) η1 = η2 = 0.13, and (iii) η1 = η2 = 0.14. We find
that as the statepoint approaches the binodal, the oscillations
in gi j(r) become more pronounced, when viewed on a linear
scale.

To elucidate the intermediate and asymptotic, r → ∞,
decay of gi j(r), the inset of figure 5 shows ln |rhi j(r)|. Recall
that hi j(r) = gi j(r) − 1 is the total correlation function.
For the low density case, (i) the intermediate and asymptotic
decay is oscillatory with a wavelength ∼σ11. As the statepoint
approaches the coexistence region, the decay of gi j(r) starts
to become monotonic. For (ii) the intermediate decay is
oscillatory, but the amplitude of these oscillations quickly
decreases with increasing distance r and the decay becomes
monotonic. For (iii) the oscillatory contribution decays much
more rapidly and the asymptotic and even intermediate (r $
7σ11) decay is monotonic.

Calculating gi j(r) for the asymmetric case q < 1 with
" > 0 we find that there are three types of intermediate and
asymptotic, r → ∞, decay. In figure 6 we plot representative
examples of gi j(r) corresponding to the three types of decay
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Figure 6. The same as figure 5, but for q = 0.5 and " = 0.1. The
sets of profiles correspond to the following statepoints
(i) η1 = 0.151, η2 = 0.001, (ii) η1 = 0.051, η2 = 0.051, and
(iii) η1 = 0.151, η2 = 0.07. In the three subplots we display
ln |r hi j (r)| for the three different statepoints. In (i) the intermediate
and asymptotic decay is oscillatory with a wavelength ∼σ11. In
(ii) the intermediate and asymptotic decay is oscillatory is with a
wavelength ∼σ22 = 2σ11. In (iii) the intermediate decay is
oscillatory, but the asymptotic decay is monotonic.

for parameters q = 0.5 and " = 0.1. In the main panel
of figure 6 we show the set of gi j(r) for the three statepoints
(i) η1 = 0.151, η2 = 0.001, (ii) η1 = 0.051, η2 = 0.051,
and (iii) η1 = 0.151, η2 = 0.07. On the linear scale
there is a relatively small variation in the overall magnitude
of the correlation functions between the three statepoints. In
the subplots of figure 6 we display ln |rhi j(r)| for the same
statepoints. For statepoints close to the η1-axis (i ), we find
that the decay is oscillatory with a wavelength ∼σ11. For
statepoints which are close to the η2-axis (ii), the intermediate
and ultimate decay is oscillatory with wavelength ∼σ22. Since
σ22 = 2σ11 we find that the oscillatory wavelength in (ii)
is approximately twice as large as that in (i). Again, as
we approach the coexistence region (iii), we find that the
intermediate decay is oscillatory, but the relative amplitude of
the oscillations decreases with increasing r and the ultimate
decay is monotonic.

In order to understand this behaviour, we next determine
the pole structure. For the one-component hard sphere fluid
(q = 1, " = 0), it has been established that for all
statepoints there is an infinite number of complex poles,
kn = α1 + iα0, but there are no purely imaginary poles [44].
Therefore, the asymptotic decay of the distribution functions,
which is determined by the pole(s) with the smallest imaginary
part, α0, will always be damped oscillatory, rhi j(r) ∼
2Ai j exp(−α0r) cos(α1r − θi j) and since q = 1 there is only
one length-scale in the fluid, so the oscillatory wavelength,
2π/α1, is always ∼σ11.

For the symmetric mixture, q = 1, but with non-additivity
" > 0, we find an infinite number of complex poles, as in
the additive case, but there is also a single purely imaginary
pole. In order to illustrate how the poles appear in the
complex structure factors, in figure 7 we plot S11(k) = S22(k)

and S12(k) as a function of the complex wavenumber k, for

Figure 7. (a) and (b) Complex partial structure factors, Si j (k), where
k is the complex wavenumber, for the symmetric mixture, q = 1,
with " = 0.1, at statepoint η1 = η2 = 0.12. The height and colour of
the surfaces represents the absolute value and the complex argument,
respectively, of Si j (k). The surfaces are plotted over the range k = 0
to 20 + 10i. Since the mixture is symmetric the intra-species
structure factors are identical, i.e. S11(k) = S22(k). Note that the two
structure factors both have strong divergences (poles) at identical
positions. (c) The real partial structure factors Si j (k) plotted along
the real axis, at the same statepoint as (a) and (b).

parameters q = 1, " = 0.1, and statepoint η1 = η2 =
0.12. The height and the colour of the surface plots represent
the amplitude and the polar argument, respectively, of Si j (k).
Although S11(k) and S12(k) are very different, they both exhibit
sharp divergences at identical positions in the complex plane.
These are the common poles of the complex partial structure
factors. They are located at solutions of the equation, D̂(k) =
0, where D̂(k) is the common denominator (24) of the complex
structure factors. To determine the positions of the poles, we
numerically solve D̂(kn) = 0 for complex kn = α1 + iα0.
The relationship between the complex structure factor(s) and
their more commonly known real structure factor(s) is that
the former evaluated along the real axis equals the latter, see
figure 7(c).

Figure 8 displays a sequence of positions of the poles in
the complex plane as the statepoint approaches the coexistence
region, as indicated in the phase diagram in figure 9. We
show the positions of six of the complex poles, with index
n = 1–6 (arbitrarily) labelling the poles, along with the single
imaginary pole, n = 0. For each conjugate complex pair of
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Figure 8. Positions of the complex poles, kn = α1 + iα0, of the partial structure factors, Si j (k) for q = 1 and " = 0.1. Only the poles with
α1 ! 0 are shown, and α0 and α1 are scaled by the diameter of the particles, σ11 = σ22. The poles are labelled with an (arbitrary) index,
n = 0–6. The parts labelled (a)–(d) correspond to the points marked in the phase diagram, figure 9, (a) η1 = η2 = 0.08, (b) η1 = η2 = 0.1,
(c) η1 = η2 = 0.12, and (d) η1 = η2 = 0.14. As η = η1 + η2 increases, the imaginary component, α0, of the purely imaginary, n = 0, pole
decreases and the leading order pole (the one with the smallest α0) changes from the pair of complex, n = 1, poles (*+) to the single imaginary,
n = 0, pole (•). The crossover occurs at the statepoint η1 = η2 = 0.117.

Figure 9. Fluid–fluid demixing phase diagram for q = 1 and
" = 0.1. The tie-lines are at pressures Pσ 3

11/kBT = 3, 5, 7, 9, 11
(from bottom to top). The Fisher–Widom line (dash-dotted line)
separates regions of the phase diagram where the decay of
correlation functions has a different type (monotonic or damped
oscillatory) of asymptotic, r → ∞, decay.

poles, k = ±α1 + iα0 we show only the pole with real part
α1 > 0. In part (a), at statepoint η1 = η2 = 0.08, the complex
pair, n = 1, of poles with real part σ11α1 ∼ 2π are the leading
order poles and give rise to ultimate oscillatory decay with a
wavelength 2π/α1 ∼ σ11. As we increase the total density,
the positions of all poles change, but in general their imaginary
components, α0, decrease, see figure 8(b) for η1 = η2 = 0.1.

The decrease in the value of α0 proceeds much more
rapidly for the purely imaginary pole, n = 0, than for the
complex poles and for η > 0.117 this pole possesses the

smallest imaginary part and therefore becomes the leading
order pole. Figure 8(c) is at statepoint η1 = η2 = 0.12, where
the leading order pole is the (n = 0) purely imaginary pole.
This determines the ultimate asymptotic decay of correlations
to be purely exponential. Increasing η further results in the
imaginary components of all poles decreasing. In part (d),
at statepoint η1 = η2 = 0.14, which is very close to the
bulk critical point, the purely imaginary pole, n = 0, is still
the leading order pole, and is very close to the real axis. As
the critical point (or in general the spinodal) is approached
the purely imaginary pole approaches the real axis, which
corresponds to the divergence of the correlation length, 1/α0.

By varying η1 and η2 we determine the statepoints where
the leading order pole(s) changes from the n = 1 complex pair
of poles to the n = 0 purely imaginary pole. This yields the
FW crossover line. We find that the FW line lies between the
spinodal and the axes, and that the two ends of the FW line
approach the spinodal—see figure 9 which displays the FW
line alongside the binodal and spinodal for the case q = 1
and " = 0.1. Note that the FW line intersects the binodal
twice. Since the mixture is symmetric (q = 1) this occurs at
coexisting statepoints. We show the importance of this feature
below, when we investigate the planar fluid–fluid profiles.

Turning to the asymmetric non-additive mixture, we find
that there is again an infinite number of complex poles with
non-vanishing real parts, as well as a single purely imaginary
pole, see figure 10. In figure 11 we plot the positions of
the poles, with (arbitrary) index n = 0–4, at four different
statepoints for parameters q = 0.5, and " = 0.1, as indicated
in the phase diagram in figure 12. Figure 11(a) plots the
positions of the poles for statepoint η1 = 0.151, η2 = 0.001,
which is very close to the η1-axis. The leading order poles are
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Figure 10. Same as figure 7, but for q = 0.5 and " = 0.1, at statepoint η1 = 0.111, η2 = 0.051. The surfaces are again plotted over the range
k = 0 to 20 + 10i. Since the mixture is asymmetric, the intra-species structure factors, which are plotted in (a) and (c), are no longer identical.
The real partial structure factors are shown in (d).

a complex pair, n = 2, that give rise to ultimate oscillatory
decay with a wavelength, λ = 2π/α1 ∼ 1.2σ11. Figure 11(b)
is at statepoint η1 = 0.051, η2 = 0.051 where the leading
order poles are a different complex pair, n = 1, that gives
rise to an oscillatory wavelength, λ = 2.83σ11. As the
coexistence region is approached, the imaginary components
of all the poles decrease, see figure(c), which is at statepoint
η1 = 0.111, η2 = 0.051. This decrease in the imaginary
components proceeds most rapidly for the purely imaginary,
n = 0, pole which in figure 11(d) (η1 = 0.151, η2 = 0.051),
now possesses the smallest value of α0 and thus becomes the
leading order pole.

Therefore, for q < 1 and " > 0 by varying the statepoint
we find three regions of the phase diagram that have different
types of asymptotic decay. There are two regions, close to the
axes, where the decay is damped oscillatory with a wavelength
similar to the majority component, and there is one region,
which contains the spinodal and critical point, with monotonic
decay. The phase diagram in figure 12 shows these regions for

the mixture with q = 0.5 and " = 0.1. Note that the FW line
again crosses the binodal twice, but that these crossings do not
occur in coexisting phases. Thus, there are coexisting phases
which have different types of asymptotic decay, or different
oscillatory decay wavelengths.

The most obvious difference that distinguishes the non-
additive from the additive mixture is the presence of an
additional purely imaginary pole in the former case. In order
to understand where this pole comes from, and to elucidate the
full effect of introducing non-additivity on the pole structure,
we start with an additive mixture and slowly increase " from
zero. Figure 13 displays the positions of the poles for fixed
q = 0.5, η1 = η2 = 0.1 and increasing " from zero.
The asymmetric additive hard sphere mixture has two sets
of complex poles, each set having real components that are
related to each of the length-scales. As " is increased from
zero, a third set of complex poles, including the single purely
imaginary pole, with very large imaginary components appear.
As " increases, the imaginary components, α0, of the new
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Figure 11. Same as figure 8, but for q = 0.5 and " = 0.1. The parts labelled (a)–(d) correspond to the points marked in the phase diagram,
figure 12, (a) η1 = 0.151, η2 = 0.001, (b) η1 = 0.051, η2 = 0.051, (c) η1 = 0.111, η2 = 0.051, and (d) η1 = 0.151, η2 = 0.051. In part (a)
the leading order poles are a complex pair, n = 2, (%). In (b) and (c) the leading order poles are a different complex pair, n = 1, (*+), and in
part (d) the leading order pole is the purely imaginary pole, n = 0 (•).

Figure 12. Same as figure 9, but for size ratio q = 0.5 and " = 0.1.
The tie-lines are shown at pressures Pσ 3

11/kBT = 1, 1.25, 1.5, 1.75
and 2 (from bottom to top). There are three regions of the phase
diagram, each with its own type of asymptotic decay. The structural
crossover line (short-dash dotted line) separates the two regions with
oscillatory decay and the Fisher–Widom line (long-dash dotted line)
separates the two regions where the asymptotic decay is oscillatory
from the region where the decay is monotonic. The structural
crossover line for the additive case, " = 0 (double dashed line), is
shown for comparison.

set of poles decrease so that this set of poles moves into
positions in the complex plane comparable to the set of original
‘additive’ poles. Increasing " further results in the decrease of
the imaginary parts of the new set of ‘non-additive’ poles. This
proceeds most rapidly for the purely imaginary pole, n = 0,
(from the new set of ‘non-additive’ poles) which then becomes
the leading order pole. For these parameters, the FW crossover
occurs at " = 0.101. As " is increased further, the purely
imaginary pole reaches the real axis, which corresponds to the
divergence of the correlation wavelength at the spinodal. In

Figure 13. The positions, kn = α1 + iα0, of the poles of the structure
factors, Si j (k), in the complex plane for q = 0.5, η1 = η2 = 0.1 and
increasing " from 0 to 0.164. The positions of the poles are
indicated for " = 0, 0.054, 0.108, 0.162. At " = 0 there exists an
infinite set of complex poles (no purely imaginary poles), four of
which are shown here, n = 1, 2, 4 and 5 (+). The asymptotic decay
is necessarily damped oscillatory, determined by the n = 1 pair of
conjugate complex poles. As " is increased from zero, a second set
of poles, three of which are shown n = 0, 3, and 6 (•), including
one purely imaginary pole (n = 0), appear. Initially these poles have
large imaginary components i.e. large α0. As " is increased, the
imaginary components, α0, of the new set of poles decrease (the
poles move down the complex plane). At " = 0.101 the leading
order pole changes from the n = 1 pair of poles in the original set to
the purely imaginary, n = 0, pole in the new set, via FW crossover.
The asymptotic decay is now monotonic. As " is increased further
the value of α0 of the purely imaginary, n = 0, pole then decreases to
zero which is equivalent to the correlation length diverging at the
spinodal.

the following section, we will investigate the repercussion of
the asymptotic decay of correlation on the structure of the free
fluid interface.
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Figure 14. Free interface density profiles, ρi(z), between coexisting
fluid phases for q = 1 and " = 0.1, and pressures Pσ 3

11/kBT = 3,
5, 7, 9 and 11 corresponding to the tie-lines in figure 9. The profiles
are plotted as a function of scaled position from the interface, z/σ11.
Since the mixture is symmetric, the density profiles of species 2 are
identical to those of species 1 under the reflection z → −z. The
insets show the decay of |ρ1(z) − ρb

1 | for z < 0 and z > 0 where ρb
1

is the bulk density of species 1 on the side of the interface shown in
each inset. The profiles in the insets are plotted on a
semi-logarithmic scale and each profile is offset from the one above
by a factor of 10−2.

3.3. Structure of the free fluid–fluid interface

By numerically minimizing $[ρ1,ρ2], using the method
outlined in section 2.4 and the planar weight functions given
in appendix C, we calculate the equilibrium one-body density
profiles, ρ̄i (r) (referred to as ρi (r) in the following) for the
fluid–fluid interface between coexisting phases with a simple
iterative Picard scheme. Figure 14 shows the density profiles,
ρi (z), of the free interface as a function of distance z from
the interface for a range of pressures, corresponding to the tie-
lines shown in figure 9. Since the mixture is symmetric, we
plot all results for species 1, but only one representative profile
for species 2 as an illustration. Starting with coexisting phases
close to the critical point, we find that the density profiles
vary monotonically as a function of z. This is fully consistent
with the type of asymptotic decay of the pair correlation
functions, which is monotonic for both coexisting statepoints.
As one moves away from the critical point one finds that ρ1(z)
becomes oscillatory on the side of the interface where species
1 is the majority component (z < 0). This agrees with our
results for the asymptotic decay changing on crossing the FW
line, but there are apparently no oscillations on the side of the
interface where species 1 is the minority component (z > 0).
Similarly, ρ2(z) is oscillatory at Pσ 3

11/kBT = 11 for z > 0 but
does not appear to be oscillatory for z < 0.

It is clear that as the pressure is increased, the oscillations
in the density profiles for each species appear on one side of the
interface, but to examine how the abrupt change in the type of
asymptotic decay on crossing the FW line affects the profiles,
we must investigate the decay of the profiles away from the
interface. The inset in figure 14 shows the intermediate decay
of ρ1(z) for z < 0 and for z > 0. We plot the absolute
difference of the density profiles and their bulk value on that

Figure 15. Same as figure 14, but for q = 0.5 and " = 0.1. The
profiles for the smaller particles are plotted in (a) and those for the
larger, species 2, in (b). The coexisting pressures are
Pσ 3

11/kBT = 1.0, 1.25, 1.5, and 1.75 corresponding to the tie-lines
in figure 12. The insets show the asymptotic decay of the profiles on
a semi-logarithmic scale, where each profile is offset by a factor 10−2

from the one above.

side of the interface, |ρ1(z) − ρb
1 |, on a logarithmic scale. The

profile between the coexisting phases closest to the critical
point, Pσ 3

11/(kBT ) = 3, clearly decays monotonically on both
sides of the interface. The case Pσ 3

11/(kBT ) = 5, appears
to be monotonic on the linear plot, but if one looks at the
intermediate decay behaviour (shown in the inset), one finds
that there is oscillatory decay on both sides of the interface,
but that these oscillations do not appear until at least a distance
z/σ11 ) 3 from the interface. As the pressure of the coexisting
phases is increased, the oscillations shown in the insets grow
in relative amplitude and start to appear closer to the interface
and thus become more pronounced on the linear scale.

For q = 0.5 and " = 0.1, corresponding to the phase
diagram shown in figure 12, we again start at the critical point
and trace pairs of coexisting statepoints along the binodal.
Figure 15 displays the density profiles for coexisting phases,
corresponding to the tie-lines in figure 12. Close to the
critical point the coexisting statepoints both reside in the
region of the phase diagram where the asymptotic decay of
gi j(r) is monotonic. On the linear plot we find that the

13
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Figure 16. The surface tension, γ , of the planar fluid–fluid interfaces
with parameters q = 1 and " = 0.1, 0.2, 0.3, 0.4, 0.5 and 1, plotted
against the absolute difference in the partial packing fraction of
species 1, |ηA

1 − ηB
1 |, in the two coexisting phases A and B. The inset

shows the same quantities on a double-logarithmic scale, and
compares them to the mean-field behaviour, γ ∝ |ηA

1 − ηB
1 |3, labelled

x3 (thin solid line).

density profiles for coexisting phases close to the critical
point appear monotonic. The inset of figure 15(a) shows
that the density profile corresponding to the lowest pressure,
Pσ 3

11/kBT = 1, decays monotonically on both sides of the
interface. As we increase the pressure and move along the
coexistence curve, we find that the statepoint rich in species
2 crosses the FW line and moves into the oscillatory region
(labelled oscillatory-2), while the other statepoint remains in
the monotonic region. Therefore, the density profiles decay
with an oscillatory component on the side of the interface
where species 2 is the majority component (z > 0). The inset
shows that the profiles for Pσ 3

11/kBT = 1.25 and 1.5 both
exhibit this behaviour; for z < 0 the decay is monotonic and
for z > 0 the decay is oscillatory. If the pressure is increased
further, the other statepoint (rich in species 1) crosses the FW
line and moves into the other oscillatory region (Oscillatory-
1). The inset shows that the intermediate decay of the profiles
for Pσ 3

11/kBT = 1.75 is oscillatory, but that this is very
far away from the interface and occurs with a small relative
amplitude. These coexisting phases both have oscillatory
decay but with different wavelengths; if one examines the
profile for Pσ 3/kBT = 1.75, the oscillatory wavelength for
z > 0 is approximately twice as large as that for z < 0.

3.4. Interface tension of the fluid–fluid interface

From the density profiles we have calculated the surface
tension of the free interface,

γ = ($[ρ1,ρ2] + PV )/A, (31)

where $[ρ1(r),ρ2(r)] is the grand potential of the inhomoge-
neous system with the free interface, −PV = $[ρb

1 ,ρ
b
2 ] is

the grand potential of the uniform system, and A is the area
of the interface. Figure 16 displays the surface tension for

Figure 17. Same as figure 16, but for q = 0.5 and " = 0.1, 0.2, 0.4
and 0.5, and shown as a function of the absolute difference in the
total packing fraction, |ηA − ηB|, in the two coexisting phases A and
B. Within this representation we find that for fixed order parameter,
|ηA − ηB|, γ varies non-monotonically with ". The inset shows the
same quantities on a double-logarithmic scale and compares them to
the mean-field behaviour, γ ∝ |ηA − ηB|3, again labelled x3.

the mixture with q = 1 and varying ", plotted against the
order parameter |ηA

1 − ηB
1 |, where ηA

1 is the packing fraction
of species 1 in phase A (and similarly for B). As the mixture
is symmetric, this quantity is symmetric w.r.t. interchange of
species, i.e. |ηA

1 −ηB
1 | = |ηA

2 −ηB
2 |. We find that increasing the

non-additivity has a dramatic effect on the surface tension, for
constant |ηA

1 − ηB
1 | = 0.1, γ increases over fifty times between

" = 0.1 and 1.
It can be shown [57] that as the critical point is

approached, γ follows a simple mean-field scaling law, γ ∝
|ηA

1 − ηB
1 |3. In order to check our calculations of γ we plot

γ against |ηA
1 − ηB

1 | on a double-logarithmic scale in the
inset of figure 16. For comparison, in the inset we show the
asymptotic result, γ = a|ηA

1 − ηB
1 |3 (labelled x3) where a is

a proportionality constant. For all values of ", as |ηA
1 − ηB

1 |
approaches zero, γ tends towards the mean-field behaviour,
i.e. the slope of the curves in the inset tends towards the slope
of the asymptotic result.

Figure 17 displays the surface tension of the free interface
for the mixture with q = 0.5 and varying ". As the
mixture is asymmetric, we plot these results using the (species
independent) order parameter |ηA − ηB| which is the absolute
difference in the packing fraction between phases A and B.
Note that γ is scaled by the square of the diameter of the
larger species, σ22, so as to keep the values of γ comparable
across a range of q values. In this representation, we find
that the curves are broadly similar to those in figure 16, but
that γ exhibits a rapid increase with increasing |ηA − ηB|.
Furthermore, for all values of the order parameter, the value
of γ for " = 0.2 is smaller than the value for " = 0.1. These
two features arise from our choice of order parameter. If we use
an order parameter similar to the one in figure 16, we do not
have either of these two features. Although we have a different
order parameter, the surface tension follows a similar scaling
law as we approach the critical point, γ ∝ |ηA − ηB|3. In
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Figure 18. Same as figure 17, but for q = 0.1 and " = 0.2, 0.4
and 1.

figure 18 we plot γ for the mixture with fixed q = 0.1 and
varying " as a function of |ηA − ηB|. We find that, unlike in
figure 17, γ does not increase rapidly as |ηA − ηB| approaches
its maximum value, and that γ increases monotonically with "

(for the values considered).

4. Discussion

Using a fundamental measure density functional theory we
have investigated some of the properties of homogeneous
and inhomogeneous fluid states of a binary non-additive hard
sphere model with positive non-additivity. This model exhibits
fluid–fluid demixing. We have calculated the coexistence
curves and showed that these compare reasonably well to
existing simulation results. The theory predicts that the critical
point occurs at a pressure and density lower than the simulation
results. This is typical of mean-field type theories, such as
DFT, which do not take account of all fluctuations in the
fluid. We have not investigated whether the fluid–fluid phase
transitions are stable with respect to crystallization, which is
expected to occur at high packing fractions. To investigate
this one would require a more sophisticated functional which
is capable of modelling the extreme confinement in a crystal.
Moreover, even for the additive mixture, where a suitable
theory exists [58, 30], we are not aware of any systematic DFT
investigation of freezing.

Using the Ornstein–Zernike equation, we calculated the
asymptotic decay of correlation functions, gi j(r), by solving
for the poles of the partial structure factors, Si j (k), in the
complex plane. Using Cauchy’s theorem, one can express the
correlation functions as an infinite sum over these complex
poles. In particular the poles with the smallest imaginary part
are interesting, as these determine the asymptotic, r → ∞,
decay of the entire set of gi j(r). We find that for q < 1 and
" ! 0 there is, at low densities, a crossover between two
modes of asymptotic damped oscillatory decay with different
wavelengths, which are similar to the diameters of the two
species. For " > 0 we find Fisher–Widom crossover from

oscillatory to monotonic asymptotic decay as the coexistence
region is approached. We find that the positive non-additivity
introduces a new set of poles, including one purely imaginary
pole. As " is increased from zero this new set of complex
poles appears in the complex plane initially with very large
imaginary components. As " is increased, the value of the
imaginary components decreases and the poles occupy a region
of the complex plane similar to the set of poles that exist
already in the additive model.

One might imagine that the new length-scale, σ12, would
induce a third regime where the asymptotic decay is oscillatory
with a wavelength similar to the cross-species diameter, σ12.
However, for " > 0 this does not occur since the new
set of complex poles, related to a non-zero R12, is always
accompanied by a purely imaginary pole which is always the
leading order pole of this set. It would be interesting to
investigate the case " < 0 in future work.

Furthermore, we have studied the inhomogeneous free
fluid interface between coexisting phases and have calculated
the density profiles and the surface tension. We showed
how the type of asymptotic decay affects the intermediate
and short-range behaviour of the density profiles. We have
presented detailed results for the surface tension of the free
fluid interface. These can be compared to both simulation and
experimental results, and furthermore play a vital role in the
investigation of capillary condensation phenomena.
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Appendix A. Weight functions in Fourier space

For completeness we include the Fourier space representations
of the weight functions,

w̃3 = 4π(s − k Rc)/k3, w̃2 = 4π Rs/k,

w̃1 = (k Rc + s)/(2k), w̃0 = c + (k Rs/2),

and

w̃†
1 = 4π(k Rc + s)/k, w̃†

0 = c − (k Rs/2),

w̃†
−1 = − 1

16π
(k2 Rc + 3ks), w̃−1 = (k2 Rc − ks)/2,

w̃−2 = − 1
16π

k3 Rs, w̃−3 = 1
16π

(k4 Rc − 3k3s),

where s = sin(k R) and c = cos(k R).

Appendix B. Free energy density contributions

Representative cases of the free energy terms, *αβ , where,
α,β = 0–3, are shown below. The remaining terms can be
obtained through symmetry by changing the species labels:
*βα = *αβ(n(1)

ν → n(2)
ν , n(2)

τ → n(1)
τ ). η is the total packing
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fraction, given by η = n(1)
3 + n(2)

3 ,

*00 = n(1)
1 n(1)

2 (n(2)
2 )3

4π(1 − η)4
+ (n(1)

2 )3n(2)
1 n(2)

2

4π(1 − η)4
+ n(1)

0 n(2)
1 n(2)

2

(1 − η)2

+ n(1)
1 n(1)

2 n(2)
0

(1 − η)2
+ n(1)

0 (n(2)
2 )3

12π(1 − η)3
+ 2

n(1)
1 n(1)

2 n(2)
1 n(2)

2

(1 − η)3

+ (n(1)
2 )3n(2)

0

12π(1 − η)3
+ (n(1)

2 )3(n(2)
2 )3

24π2(1 − η)5
+ n(1)

0 n0
(2)

1 − η
,

*01 = n(1)
0 n(2)

1

1 − η
+ n(1)

0 (n(2)
2 )2

8π(1 − η)2
+ n(1)

1 n(1)
2 n(2)

1

(1 − η)2

+ n(1)
1 n(1)

2 (n2
(2))2

4π(1 − η)3
+ (n(1)

2 )3n(2)
1

12π(1 − η)3
+ (n(1)

2 )3(n(2)
2 )2

32π2(1 − η)4
,

*02 = n(1)
1 n(1)

2 n(2)
2

(1 − η)2
+ (n(1)

2 )3n(2)
2

12π(1 − η)3
+ n(1)

0 n(2)
2

1 − η
,

*03 = (n(1)
2 )3

24π(1 − η)2
+ n(1)

1 n(1)
2

1 − η
− n(1)

0 ln(1 − η),

*11 = n(1)
1 n(2)

1

1 − η
+ n(1)

1 (n(2)
2 )2

8π(1 − η)2

+ (n(1)
2 )2n(2)

1

8π(1 − η)2
+ (n(1)

2 )2(n(2)
2 )2

32π2(1 − η)3
,

*12 = n(1)
1 n(2)

2

1 − η
+ (n(1)

2 )2n(2)
2

8π(1 − η)2
,

*13 = (n(1)
2 )2

8π(1 − η)
− n(1)

1 ln(1 − η),

*22 = n(1)
2 n(2)

2

1 − η
,

*23 = −n(1)
2 ln(1 − η),

*33 = (1 − η) ln(1 − η) + η.

Appendix C. Weight functions in planar geometry

In this paper we consider planar density profiles, where we can
simplify the convolutions by performing the integration over
the radial direction in advance, yielding a set of planar weight
functions;

w̄(†)
τ (z) = 2π

∫ ∞

0
dξ ξw(†)

τ (
√

ξ 2 + z2), (C.1)

where ξ =
√

x2 + y2. This yields

w̄3(z) = πsgn(R).(R − |z|)(|R|2 − |z|2),

w̄2(z) = 2π R.(|R| − |z|),

w̄1(z) = 1
4 sgn(R)[.(|R| − |z|) + zδ(|R| − |z|)],

w̄0(z) = 3
4δ(|R| − |z|) − 1

4 zδ′(|R| − |z|),

and

w̄†
1(z) = 2πsgn(R)[.(|R| − |z|) + zδ(|R| − |z|)],

w̄†
0(z) = 1

4 [δ(|R| − |z|) + zδ′(|R| − |z|)],

w̄†
−1(z) = 1

32π
[δ′(|R| − |z|) + zδ(2)(|R| − |z|)],

w̄−1(z) = 3
4 sgn(R)[δ(|R| − |z|) + zδ(2)(|R| − |z|)],

w̄−2(z) = 1
32π

[3δ(2)(|R| − |z|) − zδ(3)(|R| − |z|)],

w̄−3(z) = 1
32π

sgn(R)[−7δ(3)(|R| − |z|) + zδ(4)(|R| − |z|)].

Furthermore, we can perform the convolution of a general
one-dimensional function, f (z), with these planar weight
functions,

F (†)
τ (z) =

∫
dz′ f (z ′)w̄(†)

τ (|z − z′|),

giving

F3(z) = πsgn(R)

∫ z′+|R|

z′−|R|
dz′ f (z ′)[R2 − (z − z ′)2],

F2(z) = 2π R
∫ z′+|R|

z′−|R|
dz′ f (z ′),

F1(z) = 1
4

sgn(R)

[∫ z′+|R|

z′−|R|
dz′ f (z ′) + R

4

∑

±
f (z ± |R|)

]
,

F0(z) = 1
2

∑

±
f (z ± |R|) − R

4

∑

±
± f ′(z ± |R|),

F†
1 (z) = 2πsgn(R)

[∫ z′+|R|

z′−|R|
dz′ f (z ′) + R

∑

±
f (z ± |R|)

]
,

F†
0 (z) = 1

2

∑

±
f (z ± |R|) + R

4

∑

±
± f ′(z ± |R|),

F†
−1(z) = 3

32π

∑

±
± f ′(z ± |R|) + R

32π

∑

±
f ′′(z ± |R|),

F−1(z) = 1
4

sgn(R)

[∑

±
± f ′(z ± |R|)− R

4

∑

±
f ′′(z ± |R|)

]
,

F−2(z) = R
32π

∑

±
± f (3)(z ± |R|),

F−3(z) = 3
32π

sgn(R)

×
[∑

±
± f (3)(z ± |R|) + R

32π

∑

±
f (4)(z ± |R|)

]
,

where f ′(z), f ′′(z), f (3)(z) and f (4)(z) represent successive
derivatives of f (z).

The weighted densities and convolutions with weight
functions for the individual species are calculated using
Fourier transforms, while the convolutions with the kernel
functions are calculated directly by integrating over z ′.
The γ th derivative of the free energy density derivative
term, d*αβ/dnγ , is calculated using a central difference
approximation with a symmetric (γ + 1)-point stencil.
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