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We study the steady state of a phase-separated driven Ising lattice gas in three dimensions using computer
simulations with Kawasaki dynamics. An external force field F�z� acts in the x direction parallel to the
interface, creating a lateral order parameter current jx�z� which varies with distance z from the interface. Above
the roughening temperature, our data for “shearlike” linear variation of F�z� are in agreement with the picture
wherein shear acts as effective confinement in this system, thus suppressing the interfacial capillary-wave
fluctuations. We find sharper magnetization profiles and reduced interfacial width as compared to equilibrium.
Pair correlations are more suppressed in the vorticity direction y than in the driving direction; the opposite
holds for the structure factor. Lateral transport of capillary waves occurs for those forms of F�z� for which the
current jx�z� is an odd function of z, for example the shearlike drive, and a “steplike” driving field. For a
V-shaped driving force no such motion occurs, but capillary waves are suppressed more strongly than for the
shearlike drive. These findings are in agreement with our previous simulation studies in two dimensions. Near
and below the �equilibrium� roughening temperature the effective-confinement picture ceases to work, but the
lateral motion of the interface persists.
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I. INTRODUCTION

Dimensionality d of space is a relevant parameter in con-
densed matter systems that exhibit large spatial fluctuations,
e.g., thermal fluctuations of the order parameter near a
second-order phase transition. Such critical fluctuations are
correlated over large distances, which gives rise to singular
behavior characterized by a set of critical exponents whose
values depend on d. Moreover, the very existence of the
phase transition depends on d. Below the lower critical di-
mension fluctuations are strong enough to destroy the or-
dered phase, and hence there is no phase transition. In con-
trast, above the upper critical dimension fluctuations are no
longer important, and the critical exponents become the same
as in mean field theory.

An important dependence on dimensionality also occurs
in systems where two distinct phases coexist. In such sys-
tems thermal fluctuations can be correlated over a long dis-
tance within the interfacial region. Then the interfacial cor-
relation length �� �parallel to the interface� increases with
increasing thickness w of the interface, �� �w1/�, where
0���1 �1�, and the interface is termed rough. The value of
the roughness exponent � again depends on dimensionality d.
A statistical-mechanical description of interfacial degrees of
freedom, capillary wave theory, was proposed by Buff,
Lovett and Stillinger �2,3�, who suggested to model the in-
terface as a sharp divide between the two phases, but one that
would freely fluctuate. Capillary wave theory �CWT� pre-
dicts that �= 1

2 �3−d� for d�3, i.e., fluctuations can destabi-
lize the interface in d�3. Then the thickness w of the free
interface is infinite in the thermodynamic limit. At the mar-
ginal dimension d=3, the value �=0 corresponds to a loga-
rithmic divergence. For d�3, one has �=0 but w is finite for

all ��; the interface is then said to be smooth.
These results originate from the choice of the simplest,

Gaussian form of fluctuations, i.e., the probability for a local
departure �height� h�r� of the interface from the reference
plane h=0 is given by the Boltzmann weight �e−	H/kBT,
where kBT is the thermal energy, and

	H =� dd−1r�


2
��h�r��2 + Vext�h�r��� , �1�

where r are coordinates parallel to the interface. 
 is the
interfacial stiffness, which for a continuum fluid is simply
the tension of a free interface �1,4–6�. If the external poten-
tial Vext is quadratic in h�r�, for example due to gravity, the
equipartition theorem for quadratic degrees of freedom may
be applied. The equilibrium interface pair correlation func-
tion for a translationally invariant system is then found to be

C�r� 	 
h�0�h�r�� =
kBT



� dd−1q

�2��d−1

eiq·r

��
−2 + q2 , �2�

where ��
−2=
−1��2Vext /�h2�, and the limit of infinite interface

dimension Ld−1, L→� has been taken. An upper cutoff on
wave numbers �q��� /a is always assumed. a is usually
identified with some appropriate microscopic length in the
interface region, e.g., the lattice spacing or the bulk correla-
tion length �b �7�. The behavior of C�r� is obviously
d-dependent—as is the interface width w, defined by
w2=C�0�.

For certain microscopic models, such as the Ising model,
which is equivalent to the lattice gas model of a fluid, exact
results are available �5,8�. A description starting from a mi-
croscopic Hamiltonian is particularly useful because it ac-
counts for both interfacial and bulk fluctuations. In contrast
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bulk degrees of freedom of coexisting phases are absent in
CWT, in which one considers only interfacial configurations.
On the other hand, in the “classical” theories for the interface
based on order parameter �or density� profiles, for example
the van der Waals theory �9,10�, interfacial fluctuations are
absent and the structure of the interface is reduced to an
inhomogeneity of the order parameter, i.e., it is of order of
the bulk correlation length �b.

In d=2, Ising interfaces are rough for all temperatures T
below the critical temperature Tc, and w2�L, as revealed by
exact results for the local magnetization profile on a scale
large compared to �b �11�, in agreement with CWT. How-
ever, in d=3 there is evidence �5,12,13� for the existence of
a finite roughening temperature 0�TR�Tc, below which the
interface is smooth. This evidence is supported by Monte
Carlo �MC� simulations �14� and by rigorous analysis of dis-
crete random surface models, such as the solid-on-solid
�SOS� and discrete Gaussian �DG� models �13,15�. These
models approximate the interface of the Ising model at low
temperatures, for example the SOS model can be regarded as
a certain anisotropic-coupling limit of the Ising model where
the SOS interface configurations are selected from the Ising
configurations by the requirement that there are no over-
hangs or bubbles �8�.

In the situations that we shall address, the interface is
stabilized by the presence of two walls at spacing L�. This
problem is interesting because the fluctuating interface will
experience collisions with the constraining walls. The stan-
dard capillary wave model does not apply for this case; it has
to be extended to take into account entropic repulsion from
the walls. Confined Ising interfaces can be treated rigorously
in d=2. Results for the magnetization profile �16� indicate
that in two dimensions, in spite of the entropic repulsion at
its extremities, the interface meanders back and forth be-
tween the walls so that w�L�. This is markedly different
from what is expected in three dimensions on the basis of the
analysis of low-energy excitations in discrete random surface
models �15�. An energy-versus-entropy argument leads to the
conclusion that interface configurations which result in inter-
ference with the boundary are needlelike. A rigorous analysis
gives w2�L� and L�� ln ��. These results support conjec-
tures from the phenomenological effective interface Hamil-
tonian �1,4,17�, and for d=3 Ising interfaces they agree with
MC simulation studies �18�.

Dependence of the structure of equilibrium interfaces on
the spatial dimensionality d has repercussions also on relax-
ation dynamics of the fluctuating interface. Relaxation dy-
namics of capillary waves have been recently studied using
molecular dynamics simulations of simple liquids in d=3
�6,19�. For the liquid interface constrained between two
walls at separation L�, a pronounced enhancement of the
relaxation time of capillary waves was found; the most af-
fected are relaxation times of waves with the wave number
qL�

−1 �19�.
These results for equilibrium suggest that a nontrivial de-

pendence of the interfacial structure and dynamics on dimen-
sionality may persist to nonequilibrium situations. In this pa-
per, we study this problem for fluctuating interfaces that are
driven into a steady state by the action of an external field
parallel to the plane of the interface. The problems of rough-

ness, spatial, and temporal correlations of laterally driven
interfaces were first addressed in the lattice gas driven by a
spatially uniform force field via MC simulations �20,21�.
These studies, which were of two-dimensional systems,
found that the interface becomes less rough when drive is
applied. The order-parameter �magnetization� profiles be-
come much sharper upon increasing the drive and the inter-
facial width is reduced as compared to the equilibrium value.
By a suitable coarse graining of microscopic particle con-
figurations, the local position �height� of the interface was
defined, and the behavior of the spatial interface height cor-
relation function was studied. The results are consistent with
a reduction of the interfacial correlation length ��. Moreover,
the structure factor S�q�, defined as the Fourier transform of
the height-height correlation function displays deviations
from the equilibrium capillary wave dependence 1 /q2 as
q→0; the data suggest a weaker singularity S�q��1 /q0.67,
which implies a reduction of the roughness exponent �. In
theoretical attempts to treat driven interfaces, one derives a
dynamic equation for the interfacial degrees of freedom,
starting from the time-dependent Landau-Ginzburg-type
equation for the order parameter �22,23�. This approach leads
to a nonlocal and nonlinear equation for the interface height.
A linear stability analysis of this equation for a spatially
uniform drive parallel to the interface shows that temporal
decay of fluctuations along the driving field is faster than that
orthogonal to the driving field. However, predictions for the
roughness of the interface do not agree with the simulation
results in d=2.

More recent interest in the theoretical challenges of later-
ally driven interfaces originates from an experiment on col-
loidal gas-liquid interfaces subjected to shear flow. In the
experiment of Derks et al. �24� a real-space visualization of
interfacial fluctuations revealed a reduced interfacial rough-
ness when shear was applied. The width w and correlation
function of the height of the interface were analyzed by fit-
ting to the equilibrium CWT results. The fitting parameters
in the analytic CWT expressions were the correlation length
�� along the interface measured in the flow direction, and the
surface tension. The authors concluded that w was decreased
but �� was increased. Recently, the problem of nonequilib-
rium fluctuations of a liquid-liquid interface under shear has
been addressed theoretically �25� within the framework of
fluctuating hydrodynamics. This approach leads to a mode-
coupling equation for the interface height which was solved
using a perturbation theory. Results for the interfacial width
are in agreement with the experiment of Ref. �24�, but the
results for the interfacial correlation length in the flow direc-
tion are not. The theoretical height-height correlation func-
tion and the structure factor imply a decrease of the correla-
tion length in the direction of flow. Interestingly, in the
direction perpendicular to the flow �vorticity direction�, the
correlation length seems to increase. Similar conclusions
have been obtained from molecular dynamics simulations
�19�.

Previously we have studied interfaces in the two-
dimensional Ising strip driven by an external field that is
applied parallel to the walls �and to the interface�, and may
vary in the direction perpendicular to the mean position of
the interface, by using MC simulations with spin-exchange
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Kawasaki dynamics �26–28�. These studies were partially
motivated by the need to understand sheared fluid interfaces.
Because our results were obtained in d=2, and because of
the simplified character of our model and its dynamics, we
were not in the position to attempt a direct comparison with
experimental data. However, our results were in partial
qualitative agreement with Ref. �24�. We found that the
shear-like drive acts as an effective confinement on the sys-
tem; a steady state is reached in which the magnetization
profile is the same as that in equilibrium, but with a rescaled
length implying a reduction of the interfacial width. Pair cor-
relation functions along the interface decay more rapidly
with distance under drive than in equilibrium, and for cases
of weak drive can be rescaled to the equilibrium result.
Moreover, we find that interfacial transport can occur in an
unexpected way parallel to the interface. The lateral flux of
the order parameter at a planar interface induces lateral mo-
tion of the thermal capillary waves, provided that the flux is
an odd function of distance from the interface.

In the present paper we study the same model system
using the same approach, but in three spatial dimensions. We
wish to investigate to what extent our findings from 2d per-
sist to higher dimensions. Moreover, dependence on dimen-
sionality of various quantities characterizing the structure
and dynamics of the interface, as well as of transport prop-
erties in a driven state is interesting. One would like to know
whether the different character of interfacial fluctuations, i.e.,
“wandering” in d=2 and “spikes” �15� in d=3 has any re-
percussions. There are also new aspects that deserve to be
studied: the behavior of the system near the roughening tran-
sition, and the anisotropy effects introduced by the introduc-
tion of the vorticity direction. Last but not least, results in
d=3 permit a more direct comparison to experiment.

The rest of this paper is organized as follows. In Sec. II
we introduce the model and give details of the simulations.
In Sec. III A, we present and discuss results for the interfa-
cial structure of the driven 3d Ising system, via the magne-
tization profile, interface width, and correlation functions in
real and Fourier space. In Sec. III B, we investigate the dy-
namics of the driven interface, showing results for the cur-
rent and evidence for capillary wave transport. Finally we
draw conclusions in Sec. IV.

II. MODEL AND SIMULATION DETAILS

We consider a three-dimensional �3d� Ising model on a
simple cubic lattice. On lattice sites i sit spins i, which may
take values �1. In lattice gas language, the spin variables
become particle occupation numbers �i= �+1� /2=0,1, cor-
responding to the absence and presence of a particle at a site,
respectively. The Hamiltonian for the system is

H = − J�

i,j�

i j , �3�

where 
i , j� indicates that the sum is over nearest neighbor
sites i and j. The coupling constant J�0, so that the inter-
actions are ferromagnetic �attractive in lattice gas language�.

The lattice has dimensions Lx�Ly �Lz, with periodic
boundary conditions applied in the x and y directions.

�All lengths are expressed in units of the lattice constant
b=1�. Spin layers are located at heights z=−

Lz−1
2 ,−

Lz−3
2 . . . ,

− 1
2 , 1

2 , . . . ,
Lz−1

2 , for a total of Lz layers. The interface
is induced by walls of fixed spins =+1 at the top
�z= �Lz+1� /2� and =−1 at the bottom �z=−�Lz+1� /2�
planes of the lattice; these boundary conditions energetically
favor parallel alignment of the interface with the x-y plane,
with the “+” phase in the upper half of the volume, z�0. We
focus on slab-like lattice geometries, with Lx, Ly �Lz, and
Lx=Ly 	L, so that the system is confined between the two
walls, and the scaling length scale for the interfacial width is
Lz	L� �4,15�.

Time evolution of the system proceeds under Kawasaki
�29� spin-exchange dynamics, which conserve the magneti-
zation, or equivalently the number of lattice-gas particles,
locally. Elementary simulation moves consist of exchanging
the values of two randomly chosen nearest-neighbor spins
with probability p; in the lattice gas, this corresponds to a
particle moving to a neighboring empty lattice site. The key
features of these dynamics are their conservation of order
parameter, and their locality. These attributes are desirable
from the point of view of simulating particle movement �al-
beit crudely� and the competition between diffusive motion
and driven motion.

In the general case, an external force field
F�z�= �Fx�z� ,Fy�z� ,0� acts on the system, driving in the x-y
plane. This field alters the Monte Carlo acceptance rates, to
produce a modified Metropolis rate,

p = min�1,exp�− ��	H + 	W��� . �4�

Here, �=1 /kBT is the inverse temperature �the Boltzmann
constant is set to unity�, and 	H is the change in internal
energy from the proposed exchange. 	W is the work done by
or against the external force field; for 	W=0, the above rate
reduces to the standard Metropolis one, which samples ther-
mal equilibrium states. We are interested in the case of non-
zero 	W, when the system will reach a nonequilibrium
steady state. The system is immersed in a heat bath at con-
stant temperature T, into which the work done is dissipated.
The driving field is related to the work term by

Force Motion Interface

t1 t2 > t1

z

x

Lz/2

−Lz/2

γz(a)

(b)

Lz/2

−Lz/2

γ|z|
t1

t2 > t1

+++++++++++++

- - - - - - - - -

+++++++++++++
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FIG. 1. �Color online� Illustration of the force field, microscopic
particle motion, and coarse-grained interface motion in the model
system. �a� Shearlike driving field Fx�z�=�z. The “intruders” of one
phase into the other move in the same direction in both the upper
and lower halves of the system. As explained later, the interface
displays transport. �b� V-shaped driving field: the intruders now
move in opposite directions. No interfacial motion occurs; interfa-
cial fluctuations decay and new ones appear as time passes.
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	W = − J� · F�z��i −  j�/2, �5�

where i= �x+�x ,y+�y ,z�, j= �x ,y ,z�, and the displacement
vector between spins i and j is �= ��1,0 ,0� or �0, �1,0�.
In the following we will consider the forms of the driving
field F which are perhaps the most relevant experimentally.
Our main focus is the case of “shearlike” linear variation of
driving field with z, and the field acting in the x direction
only, such that the field components are Fx�z�	�z,
Fy�z�	0. Thus exchanges along x are enhanced or sup-
pressed, while exchanges in the y and z directions proceed
with equilibrium rates �	W=0�. We also study the case of a
V-shaped spatial dependence, Fx�z�	��z�, Fy�z�	0, such
that the drive acts in the same direction throughout the sys-
tem. Some results for a spatially uniform driving field in the
x direction, Fx	 f =const, Fy 	0, and a steplike field,
Fx�z�=sgn�z� · f , are also included. Figure 1 illustrates the
driving field and particle motion in the system.

We have carried out extensive Monte Carlo �MC� simula-
tions of the above model using single-spin and multispin
�30,31� coding techniques, in the latter case generalizing the
driven multispin algorithm used previously to 3d systems.
The multispin method we have adopted allows simulation of
64 independent systems �and hence greatly enhanced statis-
tics� on a 64-bit computer system, using efficient bitwise
operations. The state of an Ising spin may be represented by
one bit; thus the values of a particular site in 64 different
systems can be stored in a 64-bit variable �the natural word
size�. Bitwise operations operate on all bits of a variable at
once, and are computationally cheap instructions. By com-
bining these operations appropriately, and generating random
bits with the required probabilities, the desired acceptance
rates can be produced.

Single-spin results provide a check as to the correctness
of the multispin implementation. Parallelization via domain
decomposition was employed to speed up simulations; the
lattice was subdivided along the x direction, and appropriate
synchronization used when exchanging spins on and near the
boundary between two domains. Data processing was also
parallelized, owing to the large quantity of data produced by
the multispin algorithm. Results reported here are from total
run lengths of 2–4�107 MC sweeps �Lx�Ly �Lz trial
moves�, the slow evolution of Kawasaki dynamics to a
steady state proving to be less of a problem in 3d than in 2d
�27�.

The majority of the results shown here are for a system
size Lx=Ly =128 and Lz=10 or Lz=20, at a temperature
T /Tc=0.75, where Tc�4.5115 ��c=0.221 654 4�3�� is the
bulk critical temperature of the equilibrium 3d Ising system
�32�. We have checked that going to larger values of
Lx=Ly �192 has a minor effect on the results only for the
smallest considered wall separation Lz, i.e., as long as the
longitudinal correlation length ��, which grows exponentially
with Lz, is less than Lx ,Ly. We have also varied the tempera-
ture, firstly to investigate the effect of an increase to
T /Tc=0.90, and secondly to study the behavior near and be-
low the roughening transition. For an equilibrium system in
the thermodynamic limit, the roughening temperature is
TR�2.454J �14�. In a finite system, the �pseudo�transition

will occur at a shifted value of temperature, which will be
governed by the system size �33�. As temperature is in-
creased in the smooth regime, either the interfacial width
will reach the scale of Lz, or the lateral correlation length will
reach Lx or Ly—in either case, the interface reaches the
rough regime. We have thus covered a range of temperatures
around the roughening temperature in the simulations, from
T /Tc=0.4 to T /Tc=0.6. The roughening transition belongs to
the universality class of the Kosterlitz-Thouless transition
�34�. The renormalization group method of Kosterlitz �35�
showed that the correlation length �� diverges very rapidly as
T→TR from below:

�� = A exp� B
��TR/T − 1�� , �6�

where A and B are non-universal parameters. The numerical
values for these constants obtained from MC simulation
studies of the Ising interface in 3d are A=0.80�1� and
B=1.01�1� �14�. The shift of the pseudoroughening tempera-
ture can be estimated from the condition �� Lx�=Ly =L�,
which yields �TR−TR�L ,L ,Lz�� /TR�L ,L ,Lz�		T
�B / ln�L /A��2. This is a very weak dependence on L and
for our system size it gives 	T0.04. At the same time the
width of the interface diverges upon approaching the bulk
roughening temperature, as w2� ln����. The condition
wLz yields 	T�B / �Lz

2−ln A��2, which is a much stronger
dependence on the finite dimension Lz than that obtained
from the condition involving ��. For Lz=10, 	T10−4,
therefore we conclude that the shift of the roughening tran-
sition is governed by ��. Using that estimate of 	T gives
TR�L ,L ,Lz� /Tc0.52, so the range of simulation tempera-
tures should include the equilibrium pseudotransition tem-
perature.

III. RESULTS

A. Structure

We first investigate the interfacial structure of the driven
3d Ising model in order to see whether also in three dimen-
sions the effective action of drive is to increase the confine-
ment of the interface.

1. Magnetization profiles

The magnetization profile along the z axis is calculated as

m�z� =
1

LxLy
��

x,y
�x,y,z�� , �7�

where the angles denote an average in the steady state. In a
phase separated system m�z� changes sign across the inter-
face, and attains values close to �1 near the upper and lower
walls respectively. In Fig. 2 we plot the magnetization as a
function of the scaled variable z̃=2z /Lz. Upon applying ei-
ther shear-like or V-shaped drive, the magnetization profile
becomes “sharper:” m�z̃� changes sign more rapidly in the
interfacial region, and there is a more extended flat region
near either wall. The size of this effect increases with in-
creasing �. These trends are the same as in two dimensions
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�26�, but for given driving strength, we find that the magni-
tude of the effect is smaller in 3d.

It is possible to rescale the driven profiles to collapse back
onto the equilibrium result: see Fig. 2. We interpret this as
the drive acting to reduce the effective distance between the
walls from Lz to Lz

�, and thus to effectively increase the con-
finement of the system. This increase may be quantified by
introducing the scaling m�a�z̃��meq�z̃�, where a�=Lz

� /Lz is
the ratio of the effective and actual wall separations. For
shearlike drive with �=1.0, we find a�=0.71�8�, whereas for
two dimensions �26�, for the same value of � �� is named �
there�, a�

2d=1 /3.4=0.29. One may more formally express
this in terms of a finite size scaling function for the profile.
The scaling relation for an equilibrium fluid confined be-
tween two walls was proposed by Fisher and de Gennes �36�.
In the absence of a bulk field it reads

meq�z,T,Lz� = mb�T�M̃eq� z

�b�T�
,

Lz

�b�T�
�

= mb�T�Meq� z

Lz
,

Lz

�b�T�
� , �8�

where �b�T� is the bulk correlation length, and mb�T� is the

spontaneous magnetization in bulk. M̃eq and Meq are finite-
size scaling functions: Meq�u ,w� is obtained from

M̃eq�ũ ,w� by changing the first scaling variable ũ=uw. Thus
in equilibrium the shape of the scaling function can be varied
by changing the wall separation at fixed T or, equivalently,
by changing the temperature at fixed Lz. We find that driving
changes the shape of the interfacial profile at fixed tempera-
ture and Lz such that

m�z,T,Lz�
mb�T�

� Meq� z

Lz
� ,

Lz
�

�b�T�� + Mcorr�z� with Lz
� � Lz,

�9�

where Mcorr is a boundary correction that decays away from
the walls on the scale of �b. Relation �8� admits �in the scal-
ing regime� another interpretation of the result �9�, namely,
as the drive acting to reduce the effective temperature of the
system at fixed actual distance between the walls. The esti-
mation of the rescaling factor a� is obtained by rescaling the
driven data to spline-interpolated equilibrium curves and
minimizing the associated chi-squared statistic—the value of
a� at the minimum is the optimal value. For the Lz=20 sys-
tem, the eight points in the centre of the system were in-
cluded in the rescaling procedure—points further out are
subject to stronger wall interaction effects. Both ways of
driving yield very similar rescaling factors; more pronounced
differences are observed for smaller values of � and lower
temperatures with the conclusion that effective confinement
is stronger for the V-shaped drive. Rescaling fails for lower
temperatures closer to and below the equilibrium bulk rough-
ening transition temperature.

The magnetization profile may also be used to study the
behavior of the interfacial width. We measure the width via
the second moment of dm /dz and study its variation with
driving strength, wall separation Lz, and temperature. Upon
increasing driving strength � or f , the width reduces, as ex-
pected from the results for the full profile. For shearlike
drive, we are also able to obtain data collapse for the behav-
ior of w /�Lz as a function of a scaling variable �=Lz�

s. Here
s is an adjustable exponent. The division of the width by �Lz
corresponds to the expected equilibrium behavior �4,15,18�,
so that for �→0, w /�Lz→constant. The scaling behavior of
the width is shown in Fig. 3, for fixed temperature
T /Tc=0.75, and a variety of wall separations and drive gra-
dients in the ranges 10�Lz�20, 0���2. Previously we
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FIG. 2. �Color online� Magnetization profiles m�z̃� as a
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Lx=Ly =128, Lz=20, at a temperature T /Tc=0.75. Results for
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1 ,2 ,5, respectively. Error bars are of order or smaller than the line
thickness or symbol size, and are not shown.
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FIG. 3. �Color online� Scaling behaviour of the interfacial width
w at a temperature T /Tc=0.75, as a function of the scaling variable
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s, with s=0.3. The width is scaled by �Lz according to the
equilibrium relation w /�Lz=const., as discussed in the text. Differ-
ent point types correspond to differing values of Lz, from 10 to 20,
as indicated. Inset: variation of the width with drive gradient �, for
shearlike drive �filled circles� and V-shaped drive �open circles�.
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obtained data collapse as a function of the same scaling vari-
able in the 2d system �26� �there the width was scaled by the
2d equilibrium behavior, w�Lz�. Remarkably, we obtain
data collapse for the same value of exponent s=0.3 as for the
2d system. From Fig. 3 we see that for small � at the larger
values of Lz=16 and 20, the data collapse is lost—we believe
that this is because one moves out of the confined regime
with w��Lz for these parameters. For these wall separa-
tions, the longitudinal correlation length �� becomes compa-
rable to the linear dimension L of the interface, and the sys-
tem crosses over to the regime where the dominant length
scale is L. This does not require a large increase in Lz, be-
cause �� exp��Lz /4�, where the transverse length scale
�−1=�b for Gaussian interface fluctuations �1,18�. Data col-
lapse is regained for larger values of �, because the effective
wall separation Lz

��Lz is the controlling length scale �from
the discussion of the magnetization profile above�, and Lz

� is
small enough for the system to be in the “confined regime.”
The inset of Fig. 3 shows the variation of the width with
drive gradient � for shear-like and V-shaped drive. The
trends are rather similar, with the width for given � very
slightly smaller for V-shaped drive—this is consistent with
the previous conclusion that the confinement is stronger for
this drive type.

2. Spin-spin correlation functions

In order to characterize the behavior of the system on the
two-body level, we first consider the microscopic interface
pair correlation function, i.e., the spatial spin-spin correlation
function at the midplane, defined as

G�x,y,z = Lz/2�

=
1

LxLy� �
x�,y�

�x�,y�,Lz/2��x� + x,y� + y,Lz/2�� ,

�10�

which depends on separations in both the x and y directions.
Comparing the specific cases G�x ,y=0� and G�x=0,y� pro-
vides information on the anisotropy in the x and y directions.
In equilibrium, G�x ,0�=G�0,y� for Lx=Ly, but for driven
systems, the two functions may differ. Results in Fig. 4�a�
show that shearlike drive causes both G�x ,0� and G�0,y� to
decay more quickly and for larger separations to saturate at
larger asymptotic values than in equilibrium. In the x direc-
tion, this finding is in agreement with hydrodynamics results
�25�; however in that study, the correlation length in the y
direction was found to increase under shear, contrary to the
trend in our system. We defer further exploration of this dif-
ference to the discussion of the height correlations below,
since the height variable provides a more direct point of
comparison between the systems.

As in the 2d case, the spin correlation functions at inter-
mediate separations may be transformed to the equilibrium
result via a rescaling of the lateral coordinate, x or
y :G�a�

xx ,0��Geq�x ,0� and G�0,a�
yy��Geq�0,y� �26�; see

the inset of Fig. 4�a� for rescaling results for G�x ,0�. The
rescaling factors are obtained via the same method as for the
magnetization profile; in this case, very small values of x or

y are cutoff in the procedure, as are the tails of the functions,
so that the rescaling procedure is carried out over
2�x ,y�16. The a� parameters may be interpreted as ratios
of lateral interfacial correlation lengths in and out of equilib-
rium: a�

x=��
x /��

x,eq. Rescaling the driven results produces
a�

x�1 and a�
y �1, so that the correlation length is reduced

under drive—this tallies with the faster decay evident from
Fig. 4�a�, which shows results for equilibrium and shearlike
drive. The x-y anisotropy may be measured by the ratio
a�

y /a�
x; this is consistently slightly smaller than unity, leading

to the surprising conclusion that the correlations are slightly
more suppressed in the y �vorticity� direction. As with the
magnetization profile, the effect of drive is much weaker in
three dimensions than in two—for example, in 2d,
a�

x=1 /1.27 for �=0.025, while in 3d, a�
x=1 /1.271�0.79 for
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FIG. 4. �Color online� Spin-spin correlation functions
G�x ,y=0� and G�x=0,y� as a function of scaled separation x /Lx or
y /Ly. �a� Results for a 128�128�10 system at T /Tc=0.75. The
equilibrium result is shown, as well as driven results for shearlike
drive at several values of drive gradient �, as indicated. In the inset
the driven results for G�x ,y=0� are rescaled via the parameter a�

x, as
described in the text; rescaling factors are a�

x=0.95,0.79,0.69 for
�=0.05,0.25,0.5, respectively. The maximum separation for the
correlation functions is x /Lx=y /Ly =0.5, due to the periodic bound-
ary conditions; beyond the displayed region the functions have es-
sentially reached their asymptotic values. �b� Results for
G�x ,y=0� for 128�128�10 systems at T /Tc=0.75 and
T /Tc=0.5, for equilibrium and two strengths of shearlike drive.
Below the equilibrium roughening temperature, i.e., for T /Tc=0.5,
the asymptotic value is large, and increases with stronger drive.
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�=0.25: a ten times larger field gradient is required to pro-
duce a comparable confinement. As a result, the rescaling
procedure works for much larger values of � than in 2d—a
stronger drive is required to push the system into a regime
which is too far from equilibrium for rescaling to be pos-
sible. The V-shaped drive has a similar effect on the interfa-
cial correlations: for example, with �=0.25, a�

x=0.74, corre-
sponding to a slightly stronger confinement effect than with
shear, consistent with the findings for the magnetization pro-
file.

Figure 4�b� shows the effect of varying the temperature on
the interfacial correlations. Lowering the temperature to
T /Tc=0.5 �below the roughening transition in a bulk equilib-
rium system� in equilibrium results in correlations G�x ,0�
that decay only to �0.6 for the largest separations. Since on
the lattice the average interface position lies between two
lattice points �for zero overall magnetization�, one measures
the correlations just either side of the interface �which side
does not matter, due to symmetry�. Thus at zero temperature,
G�x ,y ,z=Lz /2�=1 for all x ,y, since the interface is perfectly
flat at T=0. This explains the observed increase of
asymptotic values of G�x ,0� for low T. Moreover, the width
of smooth interfaces is of order of the bulk correlation
length, which at low temperatures is �2–3 lattice spacings.
Therefore, for low temperatures G�x ,0� essentially measures
correlations in the bulklike phase. We also see from Fig. 4�b�
that driving the system enhances the asymptotic value further
for T /Tc=0.5, which indicates that at fixed temperature the
bulklike phase is more ordered under drive than in equilib-
rium. As for the magnetization profile, rescaling does not
work for the low temperatures—the drive affects the
asymptotic value more than the decay rate for these tempera-
tures.

3. Height-height correlation functions

We now turn to the interfacial height-height pair correla-
tion function. The interface height is obtained via a coarse-
graining procedure, which produces a single-valued height
function h�x ,y� from the real microscopic configuration. The
latter contains “bubbles” of one phase in the other, and
“overhangs” at the interface, meaning a height cannot be
defined from it directly. To coarse grain, we use a simple
method which we found to be successful in the 2d system,
where it gives results equivalent �26� to a more complicated
coarse-graining method �37�. The height h�x ,y , t�
= �1 /2��z�x ,y ,z , t� is simply a sum of the spins over a col-
umn. Thus when there are equal numbers of “+” and “−”
spins in a column, h�x ,y�=0, while when there is a majority
of one species, h�0. The general height-height correlation
function depends on spatial separations x, y and on temporal
displacement t,

C�x,y,t� =
1

LxLy� �
x�,y�

h�x�,y�,t��h�x� + x,y� + y,t� + t�� ,

�11�

where the angles indicate an average over time. We first con-
sider the equal-time correlations, with one of the spatial
separations set to zero: Fig. 5 shows results for

C�x ,y=0, t=0�. In two dimensions, C�x , t=0� �also G�x��
in equilibrium exhibits strong anticorrelated regions for
medium-to-large separations, presumed to be finite-size ef-
fects �27�. These are not present in 3d for the system sizes
considered—the functions decay to zero without becoming
significantly negative, indicating less severe finite-size ef-
fects; an explanation may be the following. With conserva-
tive dynamics, a positive-height “bump” must be accompa-
nied by one with negative height, since �h	0. In 2d, these
must lie on the same x-z layer �the only one�, so an anticor-
relation is measured in C�x�. However in 3d there are Ly x-z
layers, so the pair may be located in different layers, mean-
ing C�x ,y=0� does not necessarily display anticorrelations.
Turning to the driven cases, we see that applying shearlike
drive leads to more rapid decay of C�x ,0 ,0�, as well as a
smaller initial value C�x=0� �a measure of the interfacial
width�. The magnitude of this effect increases with increas-
ing �. In this section, the results shown are for shearlike
drive, but the conclusions also apply to V-shaped drive—as
for other static quantities, the effect is similar to shear, with
slightly greater correlation suppression.

As for other quantities, rescaling to the equilibrium result
is possible in the same manner as in 2d. For the height cor-
relations, the rescaling takes the form a�

−2C�a�
xx��Ceq�x�.

The values of a� and a� are those obtained from the rescaling
of the magnetization profile and the spin-spin correlation
function for given simulation parameters. In 2d this proce-
dure was motivated by Weeks scaling in equilibrium �3�:
Ceq�x��w2C�x /��

eq�, where C is the scaling function, and
since w�Lz in 2d, the correct rescaling involves a�

2 . Al-
though Weeks scaling does not hold in 3d, this procedure
works reasonably well for ��0.5, except at zero separation,
where the rescaled values become larger than the equilibrium
width. As with the spin correlations, this range of validity is
much greater than in two dimensions.

Furthermore, we are able to fit the results for C�x ,0 ,0�
and C�0,y ,0� for small-to-intermediate separations to the
equilibrium capillary wave result for the height correlation
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FIG. 5. �Color online� Height-height correlation function
C�x ,y=0� as a function of separation x, for a 128�128�10 system
at T /Tc=0.75. In the inset, data for non-zero drive are rescaled to
the equilibrium result via the relation a�
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xx��Ceq�x� given in

the text, where the values of a� and a�
x are obtained from the res-

caling of the magnetization profile and spin-spin correlation func-
tions, respectively.
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function in 3d; see Fig. 6 for results for shearlike drive. This
procedure was used previously by Derks et al. to describe
their experimental data, where an excellent fit was obtained
�24�. By evaluating Eq. �2�, the �equilibrium� capillary wave
result for C�x ,0 ,0� in d=3 and in the limit Lx=Ly→� is �3�

C�x,0,0� =
kBT

2�

K0���x/��

x�2 + �2� , �12�

where K0 is the modified Bessel function of the second kind.
The upper wave-number cutoff has been sent to infinity in
order to obtain an analytic result; in order to regularize the
integral at x=0, a shift � is introduced. Bedeaux and Weeks
�3� give ��1 / �qmax���, where qmax is the original wave-
number cutoff in the integral �Eq. �2��. Combining Eq. �12�
with the capillary-wave result for the interfacial width,

w2 	 C�0,0,0� =
kBT

4�

ln�1 + qmax

2 ��
2� , �13�

we are able to substitute for the �unknown� qmax in terms
of the width, and obtain a fitting form with two parameters:
the correlation length �� and the prefactor kBT /
. In the
above, we have specialized to separations in x rather than the
radial distance r usual in CWT, since isotropy is broken in
the nonequilibrium situation. For separations in y, the form
for C�0,y ,0� is the same, but different values of the param-
eters are expected—i.e., the correlation length ���

y� will be
different, as will the prefactor. The interpretation of the latter
quantity is difficult. Indeed, the interface tension is an equi-
librium concept and cannot be carried over directly to non-
equilibrium situations, so the meaning of the prefactor is not
initially clear—here we just note its anisotropy.

The equilibrium fit wanders off the data for larger sepa-
rations; this may be due to a �less serious� manifestation of
the finite-size effects encountered in 2d, which were men-
tioned above, and the conserved order parameter. �This is
most obvious for the equilibrium data on the log scale in Fig.
6, where the data diverge as they approach zero and become

negative�. For the driven cases, as drive becomes stronger,
the fit works for a smaller range of separations—the example
of shearlike drive is given in Fig. 6. This trend is expected
from the findings for the rescaling procedures applied
above—initially the system is “close enough” to equilibrium
for CWT to be approximately applicable, but as drive in-
creases, this ceases to be true. From the fits we obtain the
equilibrium and nonequilibrium correlation lengths in the x
and y directions, ��

x and ��
y—see the inset of Fig. 6 for their

variation with �. The trend of decreasing correlation length
with increasing drive strength mirrors the one found in 2d,
although there we were not able to obtain the correlation
length reliably, due to the difficulty of fitting the correlation
function data over a reasonable range. We also note that ��

y is
consistently smaller than ��

x, in agreement with the earlier
conclusions, based on the behavior of the spin-spin correla-
tion functions, that correlations are slightly more strongly
suppressed in the vorticity direction than in the driving di-
rection.

The suppression of correlations we find in the drive �x�
direction is in agreement with the hydrodynamics work of
Thiébaud and Bickel �25�, who studied phase separated flu-
ids between two walls under shear. This trend is also the
same as in the 2d Ising system, and both microscopic �G�x�,
spin-spin� and coarse-grained �C�x�, height� measures of cor-
relations give the same conclusion. Both the theoretical and
simulation findings disagree, however, with the experimental
results of Derks et al. �24�, who found an increase of corre-
lation length in the flow direction when shear was applied to
a phase-separated colloid-polymer mixture. The fact that we
have used the same method of fitting the height correlation
data to the equilibrium capillary wave form as Ref. �24�,
makes the method of comparison the same, at least.

Finally, we consider the prefactor resulting from the fit of
the height correlation data to the CWT form �Eq. �12��. In
equilibrium, the prefactor is proportional to kBT /
, where 

is the surface stiffness, which for a continuum fluid is the
interfacial tension—the free energy associated with the inter-
face. Out of equilibrium, this quantity is not defined, so the
meaning of the prefactor resulting from the fit is not clear.
Numerically, we find that the prefactor from fitting C�x ,0 ,0�
is a decreasing function of drive gradient � for shearlike
drive. If one defines a “nonequilibrium surface tension” from
the CWT fit, and further takes the temperature T to be fixed
�i.e., the value of the parameter in simulations�, the conclu-
sion is then that this “tension” increases as the system is
more strongly driven. This procedure of defining an effective
nonequilibrium surface tension via the CWT fit was the ap-
proach taken in the analysis of the experiments of Derks et
al. �24�, who also found this tension to be an increasing
function of shear rate. The CWT fits of experimental data in
Ref. �24� show that an increase in a “nonequilibrium surface
tension” is accompanied by an increase in correlation length,
but our simulations show the opposite relationship—a de-
creasing correlation length as the effective interfacial tension
increases. Our findings seem to be inconsistent with the
CWT result �see Eq. �2� and below� �� ��
. However, in our
system at equilibrium �� ��
exp�Lz / �4�b��, so that the effec-
tive increase of the confinement due to driving �reduction of
Lz� wins over the effective increase of 
.
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parameters are the same as in Fig. 5. Inset: correlation lengths ��

x

and ��
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4. Structure factor

To further complicate the situation, our finding of a de-
crease of correlation length in the vorticity �y� direction is in
disagreement with Ref. �25�, where an increase was found.
Intriguingly, Thiébaud and Bickel found the structure factor
S�q�=S�qx ,qy� to be unaffected in the qy direction by the
application of shear �25�. The same was concluded for the
uniformly driven system from the analytic approach based
on the time-dependent Landau-Ginzburg functional by Le-
ung �22�. The static structure factor in our system is acces-
sible via a two-dimensional spatial Fourier transform of the
equal-time height correlations, C�x ,y , t=0�,

S�q� = �F�C�x,y,t = 0���2, �14�

where F� � denotes a two-dimensional spatial Fourier trans-
form, q= �2nx� /Lx ,2ny� /Ly�, and nx,y =0,1 . . . ��Lx,y /2�−1�,
so that qx and qy lie on the range 0. . . ��− �2� /Lx,y��.
In Fig. 7 we plot 1 /S�q� for equilibrium and driven systems,
along either the qx or qy direction, as a function of
q2= �q�2. From Eq. �2�, in equilibrium, one expects
1 /S�q�� �
 /kBT��q2+��

−2�. In Fig. 7 we fit the equilibrium
data to this form. The data shown are along the direction
with qy =0, although we have checked that the equilibrium
structure factor behaves the same along the qy direction, as
expected. For qx�1, this behavior is indeed observable in
the simulations, except at very small qx, which we attribute
to finite-size effects. For qx�1, the data diverge from the
CWT prediction, when other powers of qx presumably be-
come important. We note that this crossover makes a com-
prehensive fitting of the structure factor inherently tricky �es-
pecially in the presence of drive�, so we have concentrated
on a limited regime.

Turning to the nonequilibrium behavior, we see that for
shearlike drive, S�q� is affected �suppressed� in both the
drive �x, blue crosses� and vorticity �y, red squares� direc-
tions, but the effect is smaller in the vorticity direction.
These results are in disagreement with the hydrodynamics

results �25�; however, since the effect in the drive direction is
stronger than in the vorticity direction, the latter effect could
possibly be of higher order than was considered in Ref. �25�.
The data for shearlike drive along qy =0 are also fit to the
equilibrium CWT form in Fig. 7; we see that as for equilib-
rium, the fit is reasonable for qx�1. The finite-size effects at
very small qx are also less severe under drive than in equi-
librium, in agreement with our observations in 2d �26�. Ad-
ditionally, the intercept at qx=0 is greater, indicating a
smaller lateral correlation length, as found in real space
above. Indeed, one can compare the parameters resulting
from the CWT fits in real space and Fourier space. We find
that the qualitative trend for the correlation length is the
same, but do not obtain quantitative agreement—the values
obtained from the real space fits are consistently larger.
These differences are expected—for equilibrium, they can be
caused by the finite system size and lattice discretization ef-
fects. For nonzero drive, the effect of deviations from CWT
can be different in real and Fourier space. Additionally, the
fits in Fourier space are for small q �long wavelengths�,
while the real-space fits are for small separations, so the
length scales the fits are applicable to is not necessarily the
same. For V-shaped drive, we find that for given drive gra-
dient �, the results are similar to those for shearlike drive,
with slightly greater suppression of the structure factor at
small q.

B. Capillary wave transport

We now consider the dynamics of the height-correlation
function defined in Eq. �11�. The primary limit of interest is
C�x ,y=0, t� which we find shows evidence of capillary wave
transport along the driving direction, for suitable forms of
the current profile. Previously �in the context of d=2� �28�,
we conjectured that the capillary wave fluctuations on an
interface will be transported by an external driving field, pro-
vided that the lateral order parameter current has a compo-
nent which is an odd function of distance from the interface.
Thus only purely even current profiles are expected to give
no transport.

1. Order parameter current

In the 3d system, the order parameter current profile is
defined as j�z�= j+�z�− j−�z�, where j�z� is the current profile
of the �1 spin species. The components j

x �z� and j
y �z� of

j�z� are the net number of spins of that species moving in
positive x and y directions per unit time at perpendicular
coordinate z. We also note that the Ising symmetry means
that the order parameter current can also be written as
j�z�=2j+�z�; the first definition may be applied to systems
lacking the Ising symmetry, i.e., liquid-gas or liquid-liquid
interfaces.

As shown in Fig. 8, the shearlike drive Fx�z�=�z, Fy�z�
=0 gives a purely odd order parameter current component
jx�z�. Since the y component of the field is zero, jy�z�=0. For
the V-shaped drive, the current is an even function of z, since
Fx�z�=��z�. We thus expect transport along x for the shear-
like drive, but none for the V-shaped drive. For the same
value of �, the currents for the two drive types almost coin-
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As before, the system dimensions are 128�128�10, and the tem-
perature is T /Tc=0.75. Equilibrium data are shown, as well as for
shearlike drive with �=1, and fits to the CWT form are displayed
for equilibrium and for S�qx ,0� with �=1, up to qx

2=1.
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cide in the region z�0, where the driving fields are the same
in magnitude and direction.

In Figs. 8�a� and 8�b�, jx�z� is shown for various drive
gradients �, for temperatures above and below the �equilib-
rium� roughening transition. Looking at the high temperature
data in Fig. 8�a� we see that for small �, �jx�z�� has maxima at
the walls; as � is increased, plateaus develop with the maxi-
mum current shifted slightly from the wall. Eventually for
strong drive the maxima become localized near the interface.
This reflects the competing effects of local drive strength and
current carrier availability �+− pairs�: for large �, the drive
strength is essentially saturated at the walls, so the greater
carrier density at the interface eventually becomes more im-
portant. Below the bulk roughening temperature �T=2.4, Fig.
8�b��, the current �jx�z�� also has maxima at the walls for
small �, and quickly develops maxima at the middle two
layers as � is increased. These maxima appear for much
weaker drive �approximately six times smaller �� than they
do for T /Tc=0.75. They are also localized to the two middle
layers either side of the interface, and are much more pro-
nounced than at the higher temperature; this indicates that at

low temperatures the interface region is very sharp, reduced
to approximately two lattice spacings. For strong drive, the
greater carrier density at the interface again “wins,” and
these maxima become global. We also note that �jx�z�� is
roughly five times smaller than that at the higher tempera-
ture, since the carrier density is much smaller due to the
increased bulk and interfacial order.

Finally, Fig. 8�a� also shows an example of mixed sym-
metry in the current profile. The driving field is of the “V”
type, but with different values of � in the upper and lower
halves of the system: �l=0.25 in the lower half, �u=0.5 in
the upper. Thus the total driving field can be written in the
form F�z�=�1�z�+�2z, with �1=0.75 /2, �2=0.25 /2, showing
the even and odd components explicitly. The current profile
reflects the asymmetry in the drive: in the lower half of the
system, the current matches that for a �symmetric� V-shaped
drive with �=0.25, while in the upper half, it matches that
for either V or shear with �=0.5 �see Fig. 8�a��—the cross-
over occurs over a single lattice spacing.

2. Space-time correlations

We investigate whether the conjecture for the occurrence
of capillary wave motion holds for 3d systems by measuring
C�x ,y=0, t� for different forms of driving field, which pro-
duce differing current profiles. For current profiles with odd
symmetry in z �or more generally, profiles with an odd com-
ponent�, we expect to see evidence of capillary wave trans-
port in C�x ,y=0, t�. Figure 9 shows that this is indeed the
case—see the main panel for results for C�x ,y=0, t� for
shearlike drive, and the inset for V-shaped drive. For time
difference t=0, the peak lies symmetrically around x=0 due
to the translational invariance ensured by the periodic bound-
aries along x. However, at time differences t�0, the peak
moves to negative x values for shearlike drive, indicating
that now the greatest correlations are between spatially dis-
placed points. We interpret this to mean that wavelike height
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fluctuations are being coherently transported along the inter-
face by the drive. For the V-shaped drive, the peak remains at
x=0 for all t, showing the absence of wave motion. In both
cases, correlations decay with increasing time difference, due
to thermal noise. We note that the rate of decay of correla-
tions is much faster for driven systems than it is for equilib-
rium systems with Kawasaki dynamics.

We have also investigated other forms of driving field, for
example spatially uniform driving field in the x direction,
Fx	 f =const, Fy =0 and steplike drive: Fx�z�=sgn�z� · f . The
former produces an even order parameter current profile
whereas the latter produces an odd one, and results for
C�x ,0 , t� �not displayed� show that wave motion does not
occur for a uniform drive but occurs for a steplike drive,
consistent with the conjecture. For the case of the asymmet-
ric V-like drive discussed in the previous section, which has
mixed symmetry, we expect to see wave movement, since
the current profile is not purely even, but like the driving
field itself, can be written as a sum of even and odd compo-
nents. Indeed we find this is the case, with the peak of
C�x ,0 , t� moving with time. From these results we conclude
that the criteria for capillary wave motion are the same in the
2d and 3d Ising systems.

Having established the occurrence of wave motion, it is
natural to investigate the dependence of the wave velocity on
system parameters. We measure the speed of the peak of
C�x ,0 , t�, vpeak, and vary the driving strength �� for shearlike
drive, f for steplike drive�, temperature and wall separation
Lz. As shown in Fig. 10, vpeak shows linear variation with �
or f for fixed temperature and system size, for � , f �2. For
shearlike drive, the gradient of vpeak��� is close to 2 in this
range. We also see that varying Lz has a rather small effect on
the peak velocity—doubling Lz from 10 to 20 reduces the
gradient of vpeak��� by only a few percent. Changing the
temperature from 0.75Tc to 0.90Tc also has small effect, in
the other direction—the peak moves faster for the higher
temperature at given Lz, �. For the step drive, vpeak also
seems to be linear in driving strength f for small f , with a
reduced gradient compared to shearlike drive. For both forms

of drive, nonlinearity appears to set in for ��2. For the
mixed symmetry case, where the driving field could be writ-
ten as F�z�=�1�z�+�2z, we find that the velocity of motion is
smaller than that for a purely odd field with �=�2—the ve-
locity in the mixed case is linear in �2 and approximately
80% that of the pure case for � ,�2�2. For lower tempera-
tures near and below the equilibrium roughening tempera-
ture, we find that the interfacial motion still occurs, with a
much reduced velocity; correlations also decay much more
quickly with time.

3. Dispersion relation

In order to characterize the dynamics of capillary waves

we consider the evolution of the spatial Fourier modes h̃�k , t�
of the height function h�r , t�ªh�x ,y , t� defined by

h�r,t� = �
k=1

L

e2�i�k/L�·rh̃�k,t� , �15�

where k= �kx ,ky� and r= �x ,y� are two-dimensional vectors
and the division k /L is defined as k /L= �kx /Lx ,ky /Ly�.
�Recall that x and y are integer coordinates of the lattice.�
The sum denotes summations over integer kx and ky from 1
to Lx and Ly, respectively. Because h�x ,y , t� is a real func-
tion, the Fourier transform has the conjugate symmetry

h̃�kx ,ky , t�= h̃��Lx−kx ,Ly −ky , t�, i.e., there are Lx /2�Ly /2
independent terms in Eq. �15�. Each complex Fourier com-

ponent h̃�k , t� can be written in terms of its modulus and
phase ��k , t�,

h̃�k,t� = �h̃�k,t��ei��k,t�, �16�

where −����k , t���. If ��k , t�=��kx ,ky�t
= �2�kx /Lx�vx�ky�t, each mode would correspond to a travel-
ing wave moving in the x direction with a velocity vx and
h�x ,y , t�=h�x+vxt ,y� �with no dispersion�.

In a steady state, the phase shift of each mode is a fluc-
tuating quantity, with a distribution which when measured
with increasing time intervals spreads and decays quickly to
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zero. However, at short times, we are able to measure its
mean value in unit time to obtain the dispersion relation of
the frequency � as a function of the wave vector
q= �qx ,qy�= �2�kx /Lx ,2�ky /Ly� as

��q� = arg
h̃��q,t�h̃�q,t + dt��/dt . �17�

Results for ��q�=��qx ,qy� calculated for dt equal to 1/10 of
an MC sweep are shown in Fig. 11 as a function of qx for
several values of qy. We observe similar behavior for all
considered temperatures, including below the roughening
temperature �data not shown�. The shape of ��qx ,0� is very
similar to that obtained in the two-dimensional system �see
Ref. �28��, which suggests to use the same analytical formula
for describing the dispersion relation,

��qx,qy = const� = �v + 2u�sin�qx� − u sin�2qx� + s sin2�qx�
�18�

with small-qx expansion

��qx,qy = const� = vqx + sqx
2 + �u − v/6�qx

3. �19�

Indeed, as can be seen in the Fig. 11, our data for ��qx ,0� fit
well with v=0.0089�8� , u=0.01095�15� , s=0.0071�9�.
Waves with larger qy are less dispersive in the sense that the
corresponding coefficients u and s are smaller. The fastest
mode is the one with qy =�, or a wavelength of two lattice
spacings; ��qx ,�� can also be fitted using Eq. �18� with
v=0.0547�5� , u=0.00530�26� , s=0.0014�15�. As we
pointed out in Ref. �28�, if the dynamics of the height func-
tion are modeled by the following linear transport operator
�propagator�

L̂ = ��t − v�x + u�x
3� , �20�

then the Ansatz in the form of the traveling wave
A exp�i��t+q ·r�� yields the first and the second terms
in the fit function �18�. In Eq. �20�, time is treated as a
continuous variable whereas spatial derivatives are discrete:
�xh�x ,y , t�= �h�x+1,y , t�−h�x−1,y , t�� /2, and a five-point
stencil is used for �x

3. The third term, which for small qx gives
the quadratic dependence in Eq. �19�, can be obtained if one
allows an imaginary contribution is��x

2+�x
4 /4� �with three-

and five-point stencils� to the linear operator L̂. One may be
able to understand the presence of complex coefficients in
the transport equation for the height function h�r , t�, by rec-
ognizing that the plane wave solution above neglects the
dependence of the amplitude A on the wave number. In fact

the average modulus �h̃�q , t�� of each complex Fourier com-
ponent varies significantly with q= �q�, even in the absence of
driving �see the plot for the structure factor Fig. 7�. Taking
this into account, it should be possible to derive an equation
for the amplitude as well as the phase—this may aid in un-
derstanding the presence of real and imaginary parts in the
transport operator. The t→� limit of the solution of the am-
plitude equation should yield the static structure factor,

which may be compared to simulation data. We leave the
interesting and difficult problem of deriving the full transport
equation from these considerations to future work.

IV. CONCLUSIONS AND OUTLOOK

We have presented evidence from Monte Carlo simula-
tions that the main characteristics of interfacial structure and
dynamics in the laterally driven stochastic lattice gas model
are generic and persist to three dimensions. Far above the
equilibrium roughening temperature the structure of the in-
terface confined between two walls is affected by lateral
driving in a way similar to that resulting from an increase of
confinement �by reducing the distance between the walls� of
the equilibrium system. However, the effect of drive is much
weaker in three dimensions than in two, plausible due to the
different nature of low-energy interfacial fluctuations, i.e.,
the “spike”-like excitations rather then interface “wander-
ing.” In the case of the shearlike drive, our findings for the
decay of the height-height correlation functions and for the
structure factor are in partial agreement with recent results
from fluctuating hydrodynamics �25�. The discrepancy con-
cerns the behavior in the vorticity direction. We have found a
decrease of correlation length in this direction whereas hy-
drodynamic calculations predict an increase. Also, our data
show that the structure factor is suppressed both in the drive
and the vorticity directions. In Ref. �25� it is concluded that
S�qx ,qy� is unaffected in the vorticity direction. Moreover,
our results for the interfacial width are in agreement with the
experiment of Ref. �24�, but the results for the interfacial
correlation length in the flow direction are not. It would cer-
tainly be desirable to carry out more studies, experimental,
theoretical and simulation-based, to clarify these discrepan-
cies. Nearer �and also below� the bulk roughening tempera-
ture, the confinement/ordering effect of the drive is reduced,
since there are no large fluctuations to “smoothen out.” The
picture of an equilibrium system under a greater effective
confinement no longer seems to apply for these low tempera-
tures.

The conjecture made in Ref. �28� for the occurrence of
lateral transport of interfacial fluctuations is supported by our
results in three dimensions. The transport also occurs for low
temperatures below the equilibrium roughening transition.
However, the dynamics of the lateral propagation of capillary
waves which gives rise to the observed dispersion relation
are still not understood. A full treatment should include non-
linear effects, and treat the time and wave-vector dependence
of the Fourier amplitude. Further insight, especially into the
effect of coupling between bulk and interfacial degrees of
freedom, could be gained by considering theoretical models
based on the order parameter �38�.
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