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D-95440 Bayreuth, Germany

Received 25 October 2010, in final form 23 December 2010
Published 27 April 2011
Online at stacks.iop.org/JPhysCM/23/194111

Abstract
Using fundamental measure density functional theory we investigate paranematic–nematic and
nematic–nematic phase coexistence in binary mixtures of circular platelets with vanishing
thicknesses. An external magnetic field induces uniaxial alignment and acts on the platelets
with a strength that is taken to scale with the platelet area. At particle diameter ratio λ = 1.5 the
system displays paranematic–nematic coexistence. For λ = 2, demixing into two nematic states
with different compositions also occurs, between an upper critical point and a
paranematic–nematic–nematic triple point. Increasing the field strength leads to shrinking of
the coexistence regions. At high enough field strength a closed loop of immiscibility is induced
and phase coexistence vanishes at a double critical point above which the system is
homogeneously nematic. For λ = 2.5, besides paranematic–nematic coexistence, there is
nematic–nematic coexistence which persists and hence does not end in a critical point. The
partial orientational order parameters along the binodals vary strongly with composition and
connect smoothly for each species when closed loops of immiscibility are present in the
corresponding phase diagram.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Dispersions of colloidal platelet-like particles, such as gibb-
site [1, 2], montmorillonite [3, 4] or iron-rich beidellite [5, 6],
are susceptible to the influence of magnetic fields, since the
particles possess nonvanishing diamagnetic anisotropy. When
a magnetic field is applied to an initially isotropic (I) platelet
dispersion, the field induces orientational order in the system,
thus breaking the rotational symmetry; an orientationally
ordered paranematic (P) phase results. The paranematic phase
has interesting optical properties, similar to those of the
nematic (N) phase. When observed through crossed polarizers,
samples of gibbsite suspensions have been shown to exhibit
field-induced birefringence [7]. Birefringence gradients have
also been theoretically modelled for a simple model system [8].
The effects of a magnetic field on montmorillonite platelets
were studied in [4] and on haematite platelets in [9]. Unlike
the gibbsite platelets, haematite platelets are ferromagnetic and

an I–N transition was not observed; rather the authors found a
clustering effect whereby chains of particles were formed due
to the platelet–platelet interactions. Such clustering has also
been observed in simulations [10]. Experimental investigations
of gibbsite platelets, where the suspensions were exposed to
magnetic fields [7, 11], showed that a paranematic phase occurs
in these systems.

The phase behaviour of rods in external aligning fields is
well studied, see e.g. [12–17] for studies of one-component
systems. In [12] the effect of external fields on the phase
behaviour of rigid rods, freely jointed rods and semiflexible
rods was analysed with Onsager theory [18]: the P–N transition
was found to terminate at a critical point in all three cases
at a high enough field strength. In [13] the theories of
Landau and de Gennes [19] and of Maier and Saupe [20] were
used to analyse the effects of an applied field in the nematic
phase. The magnetic field-induced birefringence in solutions
of tobacco mosaic virus (TMV) particles was studied in [14]
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both experimentally and theoretically (using extensions of
Onsager theory). In [15] the phase behaviour of monodisperse
rods with varying aspect ratio was studied using the Parsons–
Lee scaling [21, 22] of the Onsager functional. It was found
that the bifurcation density decreases with increasing field
strength. The nematic order of model goethite nanorods in a
magnetic field was investigated in [23], also using Parsons–
Lee theory. The goethite rods were modelled as charged
spherocylinders with a permanent magnetic moment along
the long axis of the rods. This encourages the rods to
align parallel to the field at low field strengths. However,
goethite rods possess a negative diamagnetic susceptibility
which leads to alignment perpendicular to the field at higher
field strengths. These competing effects were found to yield
rich phase diagrams including biaxial arrangements of the
particles. The phase separation in suspensions of semiflexible
fd-virus particles was studied in [16], where a P–N phase
transition was found. Effects of an external field on the
isotropic, nematic and smectic-A phases of spherocylinders
were compared with simulations and theory in [17], with
results from both approaches being in good agreement.

Even when neglecting positionally ordered phases (such
as columnar and crystal phases), the bulk phase behaviour
of binary mixtures of non-spherical colloidal particles can be
very rich, often including isotropic–isotropic (I–I), isotropic–
nematic (I–N) and nematic–nematic (N–N) phase coexistence,
depending on the value of the size asymmetry parameter of
the two species. The asymmetry parameter may quantify
the difference in thickness or length of the two species. An
example is a binary mixture of thick and thin hard rods in an
external field [24–26]. A general feature of the phase behaviour
of binary mixtures is a widening of the biphasic region on
increasing the asymmetry parameter. In a certain range of
the size asymmetry there is typically an I–N–N and/or an I–I–
N triple point. Coexistence between two nematic states may
or may not end in a critical point depending on the system
under study and the value of the asymmetry parameter. A
well-studied system is the Zwanzig model for binary hard
platelets, where the particles are restricted to occupy three
mutually perpendicular directions. This was shown to exhibit
rich bulk phase diagrams [27–29]. We recently explored the
phase behaviour of binary mixtures of hard platelets with zero
thickness and continuous orientations [30] using fundamental
measure theory (FMT).

Platelets can be characterized by a diamagnetic suscepti-
bility tensor that is diagonal in the platelet frame of reference,
with components χ‖ in the platelet plane and χ⊥ normal to
it. The diamagnetic anisotropy �χ ≡ χ‖ − χ⊥ �= 0, in
general, and it may be positive or negative depending on
the properties of the platelet material. For gibbsite platelets
�χ < 0, therefore the platelets tend to align with their
normals perpendicular to the direction of the applied field.
In order for the platelets to align uniaxially in the presence
of the field, the samples were placed on a central stage and
rotated in a horizontally applied field. In [8], FMT was used
to study the effects of an external field on the phase behaviour
of monodisperse platelets. It was found that above a critical
field strength the P–N coexistence ceases to exist and the

system is homogeneously nematic. In [31], van den Pol et al
have experimentally investigated the general phase behaviour
of the board-like goethite colloidal particles (α-FeOOH) in
the presence of an external magnetic field. The particles
were found to align parallel to a small magnetic field and
perpendicular to a large magnetic field; this had already been
known since the observations of Lemaire et al [32]. This effect
is due to the particles having a permanent magnetic moment
along their long axis but the magnetic easy axis being the short
axis. An exciting prospect is that suspensions of beidellite
platelets, which have a disc-like morphology, have recently
been shown to undergo an I–N transition [5] and the nematic
phase aligns strongly in the presence of an externally applied
magnetic or electric field [6]. These platelets possess a positive
diamagnetic susceptibility and, as such, a simpler experimental
setup would be required to investigate the P–N transition; the
platelets are expected to align with their normals parallel to the
magnetic field.

Since Rosenfeld’s pioneering work [33–35] there has been
much interest in the development of FMT for non-spherical
particles, see e.g. [36]. In the current investigation we use the
FMT of [30], which is the mixtures generalization of the theory
proposed in [37], to study binary mixtures of diamagnetic
platelets in a magnetic field. We consider three different size
ratios representative of the different topologies of the bulk
phase diagram and the full range of external field strengths. We
investigate how the phase behaviour for each of these three size
ratios changes on increasing the external field strength, which
we take to scale with the platelet area and to induce uniaxial
alignment.

This paper is organized as follows. In section 2 we outline
the density functional theory for the model system. The phase
diagrams and results for order parameters are presented in
section 3 and we conclude in section 4.

2. Theory

2.1. Pair interactions, model parameters and external
orienting field

We consider a binary mixture of hard circular platelets
with vanishing thickness and continuous positional and
orientational degrees of freedom. Particles of species 1 and 2
possess radii R1 and R2, respectively, and we take R2 > R1.
The pair potential ui j between two particles of species i and
j , where i, j = 1, 2, models hard core exclusion and is hence
given by

ui j(r − r′,ω,ω′) =
{

∞ if particles overlap

0 otherwise,
(1)

where r and r′ are the positions of the particle centres and
ω and ω′ are unit vectors indicating the particle orientations
(normal to the particle surface). As a control parameter that
characterizes the radial bidispersity we use the size ratio

λ = R2

R1
> 1. (2)
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The effect of a magnetic field on the diamagnetic platelets is
described by an external potential for each species,

V (i)
ext (θ) = β−1Wi sin2 θ, i = 1, 2, (3)

where β = 1/(kBT ), with kB being the Boltzmann constant
and T absolute temperature; θ is the angle between the platelet
orientation ω and the direction of the external field. The
strength of the external potential of species i is related to the
material and field properties via

Wi = −β

4
B2�χi , (4)

where B is the magnetic flux density (measured in T) and
�χi = χ

(i)
‖ − χ

(i)
⊥ is the diamagnetic susceptibility anisotropy

(with units of JT−2) of species i , with χ
(i)
‖ and χ

(i)
⊥ being

the susceptibilities perpendicular and parallel to the field,
respectively3. In general both W1 and W2 constitute further
control parameters. We restrict ourselves in the following to
special cases and assume that Wi scales with the platelet area,
i.e. Wi ∼ R2

i . This implies the relationship W2 = λ2W1,
and we hence take W1 to be our second control parameter,
besides the size ratio λ itself. Scaling with the platelet area is
motivated by the assumption that the platelets interact with an
external field in a manner proportional to their mass (neglecting
any effects of thickness). We could well envisage that scaling
the strength of the potential e.g. with the radius would be
another, different yet sensible, choice. We neglect platelet–
platelet interactions due to induced dipoles because of their
small magnitude, see e.g. the discussion in [8].

The thermodynamic state is characterized by two
dimensionless densities c1 = ρ1 R3

1 and c2 = ρ2 R3
1 , where ρ1

and ρ2 are the number densities of the two species, ρi = Ni /V ,
where Ni is the number of particles of species i = 1, 2 and
V is the system volume. The composition (mole fraction)
of the (larger) species 2 is x = ρ2/(ρ1 + ρ2) and the total
dimensionless concentration is c = (ρ1 + ρ2)R3

1 = c1 + c2.

2.2. Density functional theory

Density functional theory (DFT) is formulated on the level of
the one-body density distributions ρi (r,ω) of each species i .
The variational principle [38] asserts that minimizing the grand
potential functional 	 yields the true equilibrium density
profile,

δ	([ρ1, ρ2], μ1, μ2, V , T )

δρi(r,ω)
= 0, i = 1, 2, (5)

where μi is the chemical potential of species i . The grand
potential functional is given by

	([ρ1, ρ2], μ1, μ2, V , T ) = Fid([ρ1, ρ2], V , T )

+ Fexc([ρ1, ρ2], V , T )

+
2∑

i=1

∫
dr

∫
dω ρi(V (i)

ext (r,ω) − μi ), (6)

3 In the case of an electric field, Wi = −E2�εi /2, where E is the electric
field strength measured in V m−1. �εi = ε

(i)
‖ −ε

(i)
⊥ is the dielectric anisotropy.

Beidellite platelets possess a negative dielectric anisotropy.

where the spatial integral (over r) is over the system volume
V and the angular integral (over ω) is over the unit sphere.
The inter-particle interactions are described by the excess
(over ideal gas) contribution to the Helmholtz free energy,
Fexc([ρ1, ρ2], V , T ). We skip the explicit definition of the
FMT approximation here; this can be found in [30]. The free
energy functional for a binary ideal gas of uniaxial rotators is
given by

β Fid([ρ1, ρ2], V , T ) =
2∑

i=1

∫
dr

∫
dω ρi (r,ω)

× [ln(ρi (r,ω)�3
i ) − 1], (7)

where �i is the (irrelevant) thermal wavelength of species i .
For bulk fluid states (i.e. with the density distribution

not depending on r) the orientational distribution functions
(ODFs), i(θ), i = 1, 2, are related to the one-body density
distributions by ρi (r,ω) = ρii (θ). There is no dependence
of the ODF on the azimuthal angle φ since the platelets are
uniaxial rotators, and we assume that only uniaxial states are
formed. A powerful feature of DFT is that V (i)

ext (r,ω) (3)
appears explicitly in the grand potential and therefore enters
straightforwardly into the minimization procedure (5); see the
appendix for the explicit form of the corresponding Euler–
Lagrange equations that we solve numerically.

The requirements for phase coexistence between two
phases A and B are the mechanical and chemical equilibria
between the two phases and the equality of temperature in the
two coexisting phases (which is trivial in hard-body systems).
Hence we have the non-trivial conditions: the equality of
pressure pA = pB and the equality of chemical potentials
μA

i = μB
i , where i = 1, 2 again labels the species, and

A, B label the phase. We calculate the total Helmholtz free
energy F = Fid + Fexc numerically by inserting i (θ) into the
free energy functional. Likewise, the pressure can be obtained
numerically as p = −F/V + ∑2

i=1 ρi∂(F/V )/∂ρi and the
chemical potentials as μi = ∂(F/V )/∂ρi . We define a reduced
pressure p∗ = βpR3

1 and reduced chemical potentials μ∗
i =

βμi . The equations for phase coexistence are three equations
for four unknowns (two statepoints each characterized by two
densities) hence regions of two phase coexistence depend
parametrically on one free parameter (which can be chosen
arbitrarily, e.g. as the value of composition x in one of the
phases) and are solved numerically with a Newton–Raphson
procedure [39]. The resulting set of solutions yields the
binodal. P–N–N triple points are located where the P–N and
N–N coexistence curves cross. In the fieldless case there is, of
course, not a paranematic phase, but an isotropic phase.

We characterize orientationally ordered phases (P and N)
of the binary mixture by two partial order parameters, S1 and
S2, defined by

Si = 4π

∫ π/2

0
dθ sin(θ)i(θ)P2(cos θ), (8)

where P2(cos θ) = (3 cos2 θ − 1)/2 is the second Legendre
polynomial in cos θ .

3
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Figure 1. Paranematic–nematic phase diagram of the one-component system(s). (a) Behaviour of the pure system of species 2 (i.e. x = 1).
The variation of the paranematic (P) and nematic (N) coexistence concentrations c2 (horizontal axis) with the strength of the aligning field W1

(vertical axis) is shown for λ = 1, 1.5, 2 and 2.5 (from right to left, as indicated). The inset shows the phase diagram for the pure system of
species 1 (i.e. x = 0). This is equivalent to the case λ = 1 in the main plot when identifying the horizontal axes. The critical point is depicted
as a filled circle. (b) Variation of the orientational order parameter S = S2 along the paranematic and nematic branches of the binodal
(horizontal axis) of the pure system of species 2, with increasing field strength W1 (vertical axis) for the same size ratios as in (a). Critical
points are depicted as filled circles.

3. Results

We first review the behaviour of the pure system under the
influence of an aligning field [8]. The inset of figure 1(a)
shows the phase diagram for a system composed of particles
of species 1 only. Upon increasing the field strength W1, the
coexisting concentrations c1 initially shift to lower values. The
biphasic density gap decreases slightly as the strength of the
external potential is increased. At approximately W1 = 0.02,
the paranematic coexistence concentration starts to increase,
while the nematic coexistence concentration continues to
decrease. The two branches of the binodal meet at a critical
point at ccrit

1 = 0.42. For W1 > W crit
1 = 0.045, there is

no longer a phase transition and complete destabilization of
the P–N transition results in a homogeneous nematic phase.
For the case of equal sizes of the two components, the pure
system of species 2 possesses the same phase diagram, see the
binodal for the case λ = 1 in the main plot of figure 1(a).
However, due to the definition of c2 (recall that c2 = ρ2 R3

1 ,
using the radius of species 1 in order to obtain a dimensionless
quantity) and the scaling of W2 with the square of the size
ratio (W2 = λ2W1), the phase diagram of the pure system of
species 2 displays strong variation with size ratio λ, as shown in
figure 1(a). A shift to smaller values of both c2 and W1 occurs
upon increasing the value of λ. However, this effect is entirely
due to the choice of coordinates, which for both pure systems
are related via c2 = c1/λ

3 and W2 = W1/λ
2. Numerical values

for the location of the critical point are summarized in table 1.
The variation of the order parameter S for monodisperse

platelets with field strength is displayed in figure 1(b). In the
field-free case, W1 = 0, the nematic phase at coexistence
possesses an unusually small order parameter, see e.g. the
discussion in [40]. For all size ratios, as W1 is increased,
the coexistence value of S in the paranematic phase increases
monotonically, and the value of S along the nematic branch

Table 1. Scaling of the location of the critical point with size ratio:
critical concentration ccrit

2 = λ−3ccrit and critical field strength
W crit

1 = λ−2W crit for a range of size ratios λ, where ccrit and W crit are
the critical concentration and field strength in the pure system
(without species index).

λ λ2 λ3 ccrit
2 W crit

1

1 1 1 0.42 0.045
1.5 2.25 3.375 0.124 0.019
2 4 8 0.053 0.011
2.5 6.25 15.625 0.027 0.0072

of the binodal decreases with increasing field strength. This is
consistent with the fact that the coexistence density decreases
as the field strength increases, overcompensating for the
ordering effect caused by the applied field. At the critical point
the nematic order parameter takes on the value S2 = 0.27. For
increasing values of λ = 1, 1.5, 2 and 2.5, the critical point
shifts to smaller values of field strengths.

We next consider the binary mixture in the external
field and hence explore the full range of compositions, 0 �
x � 1. In figure 2 the phase diagram for λ = 1.5 is
shown. We consider a range of external field strengths up
to W1 = 0.15 (which corresponds to W2 = λ2W1 =
0.3375). For the fieldless case, W1 = 0, there is I–N
phase coexistence over the entire range of compositions x .
We display this phase diagram (and subsequent ones) both
in the (c1, c2) representation (figure 2(a)) as well as in the
(x, p∗) representation (figure 2(b)). Tie-lines are omitted for
clarity; in the (c1, c2) representation these connect the lower
branch of the binodal to the upper branch in such a way that
the isotropic (or paranematic) phase is rich in (the smaller)
species 1 and the nematic phase is rich in (the larger) species 2.
In the (x, p∗) representation (figure 2(b)) the tie-lines are
(trivially) horizontal due to the condition of equal pressures

4
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Figure 2. Phase behaviour of binary platelet mixtures with size ratio λ = 1.5 and external potential strengths W1 = 0, 0.01, 0.03, 0.05, 0.07,
0.1, 0.12 and 0.15 (with W2 = λ2W1) from outside to inside. Phase diagrams are shown in (a) the (c1, c2) representation and (b) the (x, p∗)
representation. The partial order parameters Si along the binodal are shown in (c) for species 1 and in (d) for species 2.

in the coexisting phases. For W1 = 0.01, the binodal still
connects to the axes (which correspond to the pure systems).
Recall that the P–N transition still occurs in the pure systems
at this field strength, cf figure 1(a). However, the isotropic
phase has now become a weakly ordered paranematic phase.
Hence there is P–N phase coexistence over the entire range
of compositions. The isotropic phase has been replaced by
a paranematic phase, because the order parameter along the
lower branch of the binodal is non-zero, see figures 2(c) and
(d), where the partial nematic order parameters are shown for
species 1 and 2, respectively. On increasing W1 to 0.03, the
upper and lower branches of the binodal still persist to the
pure system of smaller platelets, consistent with the findings
of [8]. However, the binodal does not touch the c2-axis,
indicating that there is no longer a phase transition in the
pure system of species 2 (we found the critical field strength
for the monodisperse system at λ = 1.5 to be 0.019, which
is less than 0.03, figure 1(a)). Hence the two branches of
the binodal connect at a (lower, in pressure) critical point.
Therefore the state of the system changes continuously from
paranematic to nematic for compositions greater than about
0.7 by increasing the pressure. For compositions less than this

value, increasing the pressure from below the lower branch of
the binodal to the upper branch of the binodal, the system, as
before, passes through a biphasic region. For W1 = 0.05 the
departure of the binodal from c1 = 0 (and x = 0) occurs as is
consistent with the critical field strength being W crit

1 = 0.045
in the pure system. The result is a phase diagram in which
the two branches of the binodal have joined to form a closed
loop of immiscibility. There is a larger range of compositions
towards the x = 1 side of the phase diagram (approximately
x > 0.45) than towards the x = 0 side of the phase diagram
(approximately x < 0.02), where an increase in pressure leads
to a continuous change in state from a paranematic state to a
nematic state. The order parameter of species 1, measured
along the binodal, varies with composition (figure 2(c)) such
that for W1 = 0, 0.01 and 0.03 the paranematic and nematic
branches of the binodal do not connect on the low-composition
side of the order parameter graph since these values of W1

are less than W crit
1 = 0.045. For 0.05 � W1 � 0.15 the

two branches of the binodal connect on the low-composition
side of the graph. For W1 = 0 and 0.01 the two branches
of the binodal do not connect on the high-composition side of
the graph since these values of W1 are smaller than W crit

2 =
5
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Figure 3. Same as figure 2 except for size ratio λ = 2 and for external field strengths W1 = 0, 0.02, 0.6, 1 and 1.2.

λ2W crit
1 = 0.019. For W1 � 0.05 the partial order parameters

measured along the binodal form closed loops. These islands
become smaller with increasing field strength and eventually
coalesce to a point when the double critical point is reached.
The partial order parameters of species 2 (figure 2(d)) follow
a similar pattern except that the order at a given statepoint is
higher than that for species 1, as one could expect, given that
species 2 is of the larger size.

In figure 3 we show results for λ = 2. Increasing the
size ratio to this value leads to an increase of the size of
the I–N biphasic region [30]. The fieldless case possesses
a reentrant phenomenon whereby the system undergoes the
following change of state when increasing the pressure at fixed
mole fraction at around x = 0.7 starting in the isotropic region:
I → I–N → N → I–N → N. In addition, there is N–N
coexistence between a nematic phase rich in species 1 (N1)

and a nematic phase rich in species 2 (N2) ending in an upper
critical point and an I–N–N triple point. Applying a small
field strength of W1 = 0.02, the binodal no longer reaches
the pure system of species 2, as W1 = 0.02 > W crit

1 = 0.011,
which is the critical field strength for the monodisperse system
at λ = 2. An effect of this is that the reentrant part of the
phase diagram alters: the range of compositions for which the

system undergoes P → P–N → N → P–N → N at just
over x = 0.5 is much smaller than in the fieldless case. The
binodal ends in a tail-like feature at just under x = 0.6. Aside
from these differences, the rest of the phase boundaries follow
closely those of the fieldless case, though remaining slightly
inside those of the latter. There is N–N coexistence ending in
an upper critical point. The triple point is retained as a P–
N–N line in the (x, p∗) representation and a triangle in the
(c1, c2) representation although we do not show these features
in the plots for clarity. Upon increasing the field, triple phase
coexistence vanishes, i.e. the triple point collapses onto two
phase coexistence. We have not calculated the precise value of
the external field where this happens. We expect this value
to be different from the values where the binodal detaches
from either of the density axes (i.e. differ from the critical
field strengths in the pure systems). Applying a field strength
W1 = 0.6, which is much greater than the critical field strength
for the monodisperse case, W crit

1 = 0.045, leads to a closed
loop of immiscibility. The nematic phase rich in small platelets
(N2) and the paranematic phase have merged.

In figure 4 we present results for λ = 2.5. The fieldless
case displays I–N coexistence, an I–N–N triple point and
coexistence between two nematic states, which does not end
in a critical point. Applying just a small field W1 = 0.01

6
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Figure 4. Same as figure 2 except for λ = 2.5 and for external field strengths W1 = 0, 0.01, 1, 2.5, 5 and 7. In (c) and (d) we only present
partial order parameters for W1 = 0.01, 1, 2.5 and 5 for clarity. The small kinks at low values of Si in (c) and (d) are due to numerical
artefacts.

has a considerable effect on the phase behaviour: the pure
system of species 2 loses the P–N transition as W1 = 0.01 >

W crit
1 = 0.0069. However, the transition persists in the pure

system of species 1. Hence, there is still P–N coexistence and
indeed a tail between about x = 0.5 and 0.6 where reentrant
behaviour occurs. For W1 = 1, there is no P–N transition
for either of the pure limits. There is, however, a large
immiscibility gap between two distinct nematic phases, N1 and
N2. Increasing the field strength raises the phase coexistence
to higher pressures and narrows the phase coexistence region.
However, large steps in field strength are required to have a
significant effect on the system. W1 = 7 (which corresponds
to W2 = 49) is approximately 45 times stronger than the
field required to homogenize the system at λ = 1.5 and yet
even with such a high field strength, there persists a wide
coexistence region. The order parameter curves approach very
high values (close to 1) for large values of W1. This forms
a limit to the densities at which we may probe at λ = 2.5:
for very high order parameters it is numerically difficult to
determine the ODFs, even with very fine θ -grids.

4. Conclusions and outlook

We have investigated the effects of an external aligning
(magnetic) field on the phase behaviour of binary mixtures
of circular hard core platelets with zero thickness. Using the
FMT of [30, 37], we have traced paranematic and nematic
phase boundaries and have examined the partial nematic order
parameters at coexistence. Three different representative
values for the radial bidispersity (λ = 1.5, 2, 2.5) have been
studied. The topologies for each of these values are different
from each other in the fieldless case. For the smallest size ratio
considered, λ = 1.5, the fieldless case shows only I–N phase
coexistence over the entire range of compositions. For λ = 2,
besides I–N coexistence there is also N–N coexistence ending
in an upper critical point and an I–N–N triple point occurs.
For λ = 2.5 the N–N phase coexistence no longer ends in
a critical point (at least up to the densities we considered).
Applying the external field induces paranematic order in the
low-density regions of the phase diagrams (which are isotropic
in the absence of a field). Increasing the field strength leads in
all cases to a narrowing of the biphasic P–N region. The P–N
transition further destabilizes upon increasing the external field
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strength. The system becomes more strongly ordered, such that
for λ = 1.5 and 2 phase coexistence disappears (at a double
critical point) and the system is in a single phase nematic state
for all statepoints. The field strength required to complete
the homogenization increases for increasing size ratio. In
contrast, for λ = 2.5, the coexisting nematic states become so
well ordered that the system does not become homogeneously
nematic up to the field strengths we have applied.

Results from computer simulation studies for this (or
a similar) model mixture are highly desirable, as are
experimental studies. Colloidal platelets are often significantly
polydisperse in both radius and thickness, see for example [41],
so effects due to polydispersity will play a role in experimental
systems, which are not accounted for in the present theory.
Recently, the P–N interface in suspensions of board-like
goethite particles has been investigated experimentally [42].
Anticipating that similar studies could be made in systems
of colloidal platelets, a further exciting avenue would be
to investigate the properties of the P–N interface using
FMT, which has already been shown to compare well with
experimental and simulation results for the I–N interface [43].
It would be interesting to consider in theoretical work the
effects that are induced by finite thickness of the platelets.
In the present study we restricted ourselves to mixtures with
moderate size asymmetry, as we expect the theory to describe
these accurately. Investigating highly asymmetric mixtures,
possibly based on the depletion picture, is an interesting issue
for future work.
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Appendix. Self-consistency equations for the
orientational distribution functions

We give a summary of the equations that are necessary to find
the ODFs at a given composition, x , and concentration, c. The
excess free energy from FMT is the sum of the right hand sides
of equations (13) and (27) of [30]. Inserting this, together with
the ideal free energy (7) and the external potential (3), into the
grand potential functional (6), and employing the minimization
principle (5) leads to two coupled Euler–Lagrange equations
for the ODFs:

1(θ) = 1

Z1
exp

[
−8πc

∫ π/2

0
dθ ′ sin θ ′K (θ, θ ′)

× [(1 − x)1(θ
′) + 1

2 x(λ2 + λ)2(θ
′)]

− 32πc2
∫ π/2

0
dθ ′ sin θ ′

∫ π/2

0
dθ ′′ sin θ ′′L(θ, θ ′, θ ′′)

× [(1 − x)21(θ
′)1(θ

′′) + 2x(1 − x)λ21(θ
′)2(θ

′′)

+ x2λ42(θ
′)2(θ

′′)] + W1 sin2 θ

]
, (A.1)

2(θ) = 1

Z2
exp

[
−8πc

∫ π/2

0
dθ ′ sin θ ′K (θ, θ ′)

×
[

xλ32(θ
′) + 1

2 (1 − x)(λ2 + λ)1(θ
′)

− 32πc2
∫ π/2

0
dθ ′ sin θ ′

∫ π/2

0
dθ ′′ sin θ ′′L(θ, θ ′, θ ′′)

× [x2λ62(θ
′)2(θ

′′) + 2x(1 − x)λ41(θ
′)2(θ

′′)

+ (1 − x)2λ21(θ
′)1(θ

′′)] + W2 sin2 θ

]
, (A.2)

where the constants Z1 and Z2 are such that the normalization∫
dω i (ω) = 1, for i = 1, 2. The numerical procedure is

the same as that described in [30], which is an extension of the
procedure introduced in [44]. The integral kernel K (θ, θ ′) is

K (θ, θ ′) =
∫ 2π

0
dφ sin γ =

∫ 2π

0
dφ

√
1 − (ω ·ω′)2

=
∫ 2π

0
dφ

√
1 − (cos θ cos θ ′ + sin θ sin θ ′ cos φ)2, (A.3)

where φ is the difference between the azimuthal angles of the
two platelets and the kernel L(θ, θ ′, θ ′′) is

L(θ, θ ′, θ ′′) =
∫ 2π

0

∫ 2π

0
dφ′ dφ′′|ω · (ω′ × ω′′)|

=
∫ 2π

0

∫ 2π

0
dφ′ dφ′′ | sin θ(sin φ′ sin θ ′ cos θ ′′

+ cos θ ′ sin φ′′ sin θ ′′) + cos θ(cos φ′ sin θ ′ sin φ′′ sin θ ′′

− sin φ′ sin θ ′ cos φ′′ sin θ ′′)|. (A.4)

The solutions of equations (A.1) and (A.2), 1(θ) and 2(θ),
are then inserted into the equations pA = pB and μA

i = μB
i ,

i = 1, 2 in order to find the coexisting states. Triple points
are located where the P–N binodals and the N–N binodals
intersect.
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