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We show that classical density functional theory can be based on the constrained search method [M. Levy, Proc.
Natl. Acad. Sci. USA 76, 6062 (1979)]. From the Gibbs inequality one first derives a variational principle for
the grand potential as a functional of a trial many-body distribution. This functional is minimized in two stages.
The first step consists of a constrained search of all many-body distributions that generate a given one-body
density. The result can be split into internal and external contributions to the total grand potential. In contrast to
the original approach by Mermin and Evans, here the intrinsic Helmholtz free-energy functional is defined by an
explicit expression that does not refer to an external potential in order to generate the given one-body density.
The second step consists of minimizing with respect to the one-body density. We show that this framework can
be applied in a straightforward way to the canonical ensemble.
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I. INTRODUCTION

The variational principle of density functional theory
(DFT) was originally formulated for ground-state properties
of quantum systems by Hohenberg and Kohn in 1964 [1].
The extension to nonzero temperatures was performed by
Mermin in the following year [2], here still formulated for
quantum systems. The application to the statistical mechanics
of classical systems, i.e., the development of classical DFT,
was initiated about a decade later through the work of Ebner,
Saam, and Stroud [3–5]. The generality of the framework was
fully realized by Evans [6]. His 1979 article continues to be
the standard reference on the subject; there are more recent
review [7–9] and textbook [10] presentations.

The Hohenberg-Kohn theorem applies to one-particle
density distributions that correspond to a particular external
(one-body) potential v in the Hamiltonian, in which the kinetic
and internal interaction are those of the true system [1,2].
One refers to v-representability of the one-particle density,
i.e., the condition that a one-particle density is generated by
some external potential v. However, it was realized, already in
the original Hohenberg-Kohn paper, that v-representability is
not guaranteed for an arbitrarily chosen density ρ [1,11,12].
One argues that this does not pose any problems in the
practical applications of DFT to quantum systems [13]. In the
development of the theory, it turned out that there indeed exist
non-v-representable densities, i.e., one-body densities that are
not associated to any ground-state wave function [14]. The
original Hohenberg-Kohn theorem does not apply to these.

In 1979, Levy introduced an alternative foundation of DFT
for quantum systems, based on a constrained, two-stage search
[11]. Here a weaker condition, known as N -representability, is
used, where the density distribution may be directly obtained
from some antisymmetric N -body wave function, although
an external potential that generates this wave function need
not exist [11,14,15]. One defines an exchange-correlation
functional that demands searching all wave functions that
return the fixed (trial) one-body density. The latter need not
be v-representable. Subsequently, a method similar to Levy’s
was proposed by Lieb [16], called the generalized Legendre

transform [12]. Instead of searching all wave functions,
the functional searches all possible external potentials that
correspond to a fixed density. Kohn adopted the constrained
search for his Nobel lecture [13], and it is viewed as an
important theoretical contribution to the foundation of DFT
for electronic structure. Practical applications of constrained
search functionals are of ongoing research interest; see e.g.,
Refs. [12,17]. Levy gives a brief historic account of the
development of his ideas in Ref. [18].

Given the significance of Levy’s and Lieb’s methods for
electronic structure, it is somewhat surprising that there are
very few studies that point to the use of these methods in
classical systems. One example is the work by Weeks [19],
where v-representability of the one-body density in some finite
region of space is investigated through the Gibbs inequality.
Although Weeks cites Levy’s original paper [11] and makes a
remark that his formulation is in spirit similar to that of Levy,
it seems that his method is related more to Lieb’s generalized
Legendre transform method. Earlier work has been carried out
in order to investigate the existence of an external potential that
is associated to a given equilibrium one-body density [20]. It is
concluded that there is such an external potential that produces
any given density for any (classical) system without hard-core
interaction. Although one might guess from general arguments
that the constrained search can be applied to classical DFT, to
the best of our knowledge, this procedure has not been spelled
out explicitly in the literature.

In the present article we show how to formulate the
variational principle of classical DFT based on Levy’s con-
strained search method. This alternative can provide further
insights into the foundation of classical DFT. In particular the
intrinsic free-energy functional is defined here without implicit
reference to an external potential v. A more relaxed condition
for ρ, similar to that of N -representability, is imposed. Here,
the one-body density is only required to be obtained from an
arbitrarily chosen many-body probability distribution f . We
refer to this condition as f -representability of a given ρ. While
distinguishing between the different types of representability
in practical DFT calculations seems unnecessary, we find
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the discrimination to be very useful for conceptual purposes
and hence point out throughout the manuscript which of the
conventions is followed in the reasoning. We also show that
Levy’s method can be applied in a straightforward way to the
canonical ensemble. There is considerable current interest in
the theoretical description of the behavior of small systems,
where the grand and the canonical ensembles are inequivalent
in general, and the latter might model certain (experimen-
tal) realizations of strongly confined systems more closely.
Several relatively recent contributions address the problem
of formulating DFT in the canonical ensemble [21–26]. The
authors of these papers consider the important problem of
how to obtain DFT approximations that make computations
in the canonical ensemble feasible. Our present article has a
much lower goal: We are concerned only with formulating the
variational principle in an alternative way.

This article is organized as follows. We start by defining the
grand potential as a functional of the many-body probability
distribution in Sec. II. This is a necessary step and our
presentation follows [6–8,10]. In Sec. III we give a brief
overview of the standard proof of DFT, expressing the free
energy as a functional of the one-body density based on a
one-to-one correspondence between the one-body density and
the external potential. The full derivation is widely known and
can be found in numerous references [6–8,10,27]. We proceed,
in Sec. IV, by formulating the intrinsic free-energy functional
via the constrained search method; our presentation is similar
to Levy’s original work [11]. Our central result is the definition
(22) of the intrinsic free-energy functional, without reference
to an external potential. We summarize the essence of Levy’s
argument as a double minimization [18] in Sec. V. In Sec. VI
we apply this to the canonical ensemble and we conclude in
Sec. VII.

II. GRAND POTENTIAL FUNCTIONAL
OF THE MANY-BODY DISTRIBUTION

In the grand canonical ensemble of a system of classical
particles, the equilibrium probability distribution for N par-
ticles at temperature T is assumed to exist and to be given
by

f0 = �−1 exp[−β(HN − μN )], (1)

where HN is the Hamiltonian of N particles, μ is the chemical
potential, and β = 1/(kBT ), with kB being the Boltzmann
constant. The normalization constant is the grand canonical
partition sum

� = Trcl exp[−β(HN − μN )], (2)

where Trcl represents the classical trace, i.e., the sum over total
particle number and integral over all degrees of freedom

Trcl =
∞∑

N=0

1

h3NN !

∫
dr1 . . . drN

∫
dp1 . . . dpN, (3)

where h is the Planck constant, r1, . . . ,rN are the position
coordinates, and p1, . . . ,pN are the momenta of particles
1, . . . ,N .

One introduces the grand potential as a functional of the
many-body probability distribution,

�[f ] = Trclf (HN − μN + β−1 ln f ), (4)

where f is a variable trial probability distribution that satisfies
the normalization condition

Trclf = 1. (5)

Note that f as an argument of functional (4) can be quite
general and need not be linked to an external potential at this
stage. Inserting the equilibrium probability distribution (1) into
(4) one obtains

�[f0] = Trclf0(HN − μN + β−1 ln f0)

= Trclf0(HN − μN + β−1[− ln � − β(HN − μN )])

= −β−1 ln � ≡ �0, (6)

where �0 is the equilibrium grand potential. An important
property of functional (4) is that it satisfies the variational
principle

�[f ] > �[f0], f �= f0, (7)

which may be proven using the Gibbs-Bogoliubov relation as
follows. First, from Eqs. (1) and (6), �[f ] of Eq. (4) can be
written as

�[f ] = �[f0] + β−1Trclf ln

(
f

f0

)
. (8)

According to the Gibbs inequality [6,10],

f ln

(
f0

f

)
< f

(
f0

f
− 1

)
, (9)

and hence

Trclf ln

(
f

f0

)
> Trcl(f − f0). (10)

Since f and f0 are normalized, i.e., satisfy (5), the right-hand
side of the inequality above vanishes and

β−1Trclf ln

(
f

f0

)
> 0. (11)

Thus the second term on the right-hand side of (8) is positive,
and the inequality (7) follows.

For classical particles the Hamiltonian may be restricted to
the form

HN =
N∑

i=1

p2
i

2m
+ U (r1, . . . ,rN ) +

N∑
i=1

v(ri), (12)

where the first term is the total kinetic energy, with the
squared momentum p2

i = pi · pi of the i-th particle, U is the
interatomic potential between the particles, v is an (arbitrary)
external one-body potential, and m is the particle mass. The
equilibrium one-body density at position r is given as a
configurational average

ρ0(r) = Trclf0ρ̂(r), (13)

where the density operator for N particles is defined as

ρ̂(r) =
N∑

i=1

δ(r − ri). (14)
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The functional form (4) was originally introduced by
Mermin [2] for (finite-temperature) quantum systems, where
the grand potential is a functional of a (trial) density matrix.
The variational principle (7) will be used in Secs. III and IV
below, where we present two alternative derivations of the
intrinsic free energy as a functional of the one-body density.

III. MERMIN-EVANS DERIVATION
OF THE FREE-ENERGY FUNCTIONAL

Evans gave a formal proof that the intrinsic free energy of
a system of classical particles is a functional of the one-body
density [7]. Here we briefly lay out his chain of arguments. The
many-body distribution f0 as given in (1) is a functional of the
external potential v through Eq. (12), and therefore ρ0 is a
functional of v via (13). This, in principle, requires solution of
the many-body problem and the dependence is in accordance
with physical intuition, i.e., it is the action of v that generates
the shape of the density profile ρ0.

However, the more useful result that can be deduced [7],
is that once the interatomic interaction potential U is given,
f0 is a functional of ρ0. The proof of this statement rests on
reductio ad absurdum [6,7,10], where for a given interaction
potential U , v is uniquely determined by ρ0. The resultant v

then determines f0 via (1) and (12). Hence, f0 is a functional
of ρ0.

An important consequence in this reasoning is that for given
interaction potential U ,

F[ρ] = Trclf0

(
N∑

i=1

p2
i

2m
+ U + β−1 ln f0

)
(15)

is a unique functional of the (trial) one-body density ρ.
Here, the dependence of f0 on the external potential, v, is
now implicit only through the one-body density, ρ. We will
comment on this sequence of dependencies in the conclusions,
after having laid out Levy’s alternative method to define
a free-energy functional in Sec. IV. Furthermore, using a
Legendre transform, the grand potential functional is obtained
for a given external potential as

�v[ρ] = F[ρ] +
∫

dr[v(r) − μ]ρ(r). (16)

The functional �v[ρ] returns its minimum value if ρ = ρ0,
i.e., if the trial density is the true equilibrium one-body density
of the system under the influence of v. The value is the grand
potential �0. The existence of the minimum value of �v[ρ]
may be proven by considering another equilibrium density ρ ′
associated with a probability distribution f ′ of unit trace (5),
such that

�[f ′] = Trclf
′(HN − μN + β−1 ln f ′)

= F[ρ ′] +
∫

dr [v(r) − μ] ρ ′(r)

= �v[ρ ′], (17)

where

F[ρ ′] = Trclf
′
(

N∑
i=1

p2
i

2m
+ U + β−1 ln f ′

)
. (18)

However, it is known from Eq. (7) that �[f ′] > �[f0], for
f ′ �= f0, thus it follows that

�v[ρ ′] > �v[ρ0]. (19)

In other words, the correct equilibrium one-body density,
ρ0, minimizes �v[ρ] over all density functions that can be
associated with a potential v.

This important result may be stated as a functional
derivative

δ�v[ρ]

δρ(r)

∣∣∣∣
ρ0

= 0 (20)

and

�v[ρ0] = �0. (21)

To conclude, the formal argument for the definition (15)
of the intrinsic free-energy functional, F[ρ], is based on
v-representability of the one-body density. A v-representable
ρ is one that is associated with a probability distribution, f , of
the given Hamiltonian HN with external potential v [11,13].
This condition was originally introduced for quantum systems
and is implicit in the current approach. It is used to prove the
chain of dependency outlined above (15) and confirmed for a
large class of (classical) systems in Ref. [20].

IV. FREE-ENERGY FUNCTIONAL VIA LEVY’S
CONSTRAINED SEARCH METHOD

Here we show how one may alternatively define a free-
energy functional via Levy’s method. This is based on the
weaker condition of f -representability, where trial density
fields ρ need not necessarily be associated with some external
potential. We define the intrinsic Helmholtz free-energy
functional as

FL[ρ] = min
f →ρ

[
Trclf

(
N∑

i=1

p2
i

2m
+ U + β−1 ln f

)]
, (22)

where the minimization searches all probability distributions
f , that are normalized according to (5), and that yield the fixed
trial one-body density ρ via

ρ(r) = Trclf ρ̂(r). (23)

The notation f → ρ in (22) indicates the relationship (23).
Note that (i) in general there will be many different forms of
f that yield the same ρ, and (ii) no further conditions on f are
imposed, apart from its normalization. In particular, the form
of f need not be of Boltzmann-type containing the interaction
potential U (as was the case in Sec. III). Hence ρ need
only be f -representable, but not necessarily v-representable.
FL[ρ] returns a minimum value by choosing the probability
distribution that minimizes the term in brackets in (22). Note
that the functional form of this term is formally equivalent to
(15) and that it is a sum of contributions due to kinetic energy,
internal interaction energy U , and (negative) entropy kBf ln f

multiplied by T .
The grand potential functional for a given external potential

is then

�L[ρ] = FL[ρ] +
∫

dr [v(r) − μ] ρ(r). (24)
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This functional possesses two important properties. (i) At the
equilibrium density it yields the equilibrium grand potential

�L[ρ0] = �0, (25)

where ρ0 is given by (13) and �0 by (6). This value also
constitutes the minimum such that

�L[ρ] � �0. (26)

In order to prove (25) and (26), we introduce additional
notation. Let f

ρ
min be the probability distribution that satisfies

the right-hand side of Eq. (22). Then it follows that

FL[ρ] = Trclf
ρ
min

(
N∑

i=1

p2
i

2m
+ U + β−1 ln f ρ

min

)
, (27)

and for the case of the equilibrium density,

FL[ρ0] = Trclf
ρ0
min

(
N∑

i=1

p2
i

2m
+ U + β−1 ln f ρ0

min

)
. (28)

First, we proof the inequality (26). By its very definition
(24), the left-hand side of (26) may be rearranged into∫

dr [v(r) − μ] ρ(r) + FL[ρ]

=
∫

dr [v(r) − μ] ρ(r)

+ Trclf
ρ
min

(
N∑

i=1

p2
i

2m
+ U + β−1 ln f ρ

min

)

= Trclf
ρ
min

(
HN − μN + β−1 ln f ρ

min

)
. (29)

But according to the inequality (7),

Trclf
ρ
min

(
HN − μN + β−1 ln f ρ

min

)
� �0. (30)

Thus, combining (29) and (30), the inequality (26) is recov-
ered. In order to prove (25), it is obvious from (7) that

Trclf
ρ0
min

(
HN − μN + β−1 ln f ρ0

min

)
� �0, (31)

or, recalling (6),

Trclf
ρ0
min

(
HN − μN + β−1 ln f ρ0

min

)
� Trclf0(HN − μN + β−1 ln f0). (32)

But f
ρ0
min and f0 generate the same one-body density ρ0, hence

from ∫
dr (v(r) − μ) ρ0(r)

+ Trclf
ρ0
min

(
N∑

i=1

p2
i

2m
+ U + β−1 ln f ρ0

min

)

�
∫

dr [v(r) − μ] ρ0(r)

+ Trclf0

(
N∑

i=1

p2
i

2m
+ U + β−1 ln f0

)
, (33)

we obtain

Trclf
ρ0
min

(
N∑

i=1

p2
i

2m
+ U + β−1 ln f ρ0

min

)

� Trclf0

(
N∑

i=1

p2
i

2m
+ U + β−1 ln f0

)
. (34)

However, by the very definition of f
ρ0
min, the following

inequality should also hold:

Trclf
ρ0
min

(
N∑

i=1

p2
i

2m
+ U + β−1 ln f ρ0

min

)

� Trclf0

(
N∑

i=1

p2
i

2m
+ U + β−1 ln f0

)
. (35)

The above two inequalities hold simultaneously, if and only if
equality is attained,

Trclf
ρ0
min

(
N∑

i=1

p2
i

2m
+ U + β−1 ln f ρ0

min

)

= Trclf0

(
N∑

i=1

p2
i

2m
+ U + β−1 ln f0

)
. (36)

Inserting (28) into (36) yields

FL[ρ0] = Trclf0

(
N∑

i=1

p2
i

2m
+ U + β−1 ln f0

)
. (37)

Furthermore, as

�0 = Trclf0(HN − μN + β−1 ln f0)

=
∫

dr [v(r) − μ] ρ0(r)

+ Trclf0

(
N∑

i=1

p2
i

2m
+ U + β−1 ln f0

)
, (38)

inserting (37) into (38) returns (25), which completes the
proof. Equation (37) implies that if ρ is v-representable, then
FL[ρ] = F[ρ]. Moreover, f0 = f

ρ0
min means that f0 may be

obtained directly from ρ0 even if v is unknown: Find the
probability distribution that yields ρ0 and which minimizes
(22).

Finally, the inequality (26) implies that the functional
derivative of the grand potential functional vanishes at equi-
librium,

δ�L[ρ]

δρ(r)

∣∣∣∣
ρ0

= 0. (39)

For completeness we mention that it is convenient to split
FL[ρ] into two terms, viz. the ideal and excess free-energy
functionals, Fid[ρ] and Fexc[ρ], respectively, such that

Fexc[ρ] ≡ FL[ρ] − Fid[ρ], (40)

where the free energy of the ideal gas (with no interaction
potential present, U = 0) is given by

Fid[ρ] = β−1
∫

drρ(r){ln[λ3ρ(r)] − 1}, (41)
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where λ = [h2β/(2mπ )]1/2. Thermodynamics enters by real-
izing that FL[ρ0] is the “intrinsic” Helmholtz free energy of
the system such that the total free energy is the sum of internal
and external contributions,

FL[ρ0] +
∫

drρ0(r)v(r). (42)

V. TWO-STAGE MINIMIZATION

The essence of the derivation presented in Sec. IV is a
double minimization of the grand potential functional (4) of
the many-body distribution. In the following, we spell this out
more explicitly. From Sec. II we know that

�0 = min
f

Trclf (HN − μN + β−1 ln f ). (43)

We decompose the right-hand side into a double minimization

�0 = min
ρ

min
f →ρ

Trclf (HN − μN + β−1 ln f ), (44)

where the inner minimization is a search under the contraint
the f generates ρ [via relationship (23)]. For Hamiltonians of
the form (12) the above can be written as

�0 = min
ρ

min
f →ρ

Trclf

×
[

N∑
i=1

p2
i

2m
+ U +

N∑
i=1

v(ri) − μN + β−1 ln f

]
.

(45)

In the expression above

Trclf

[
N∑

i=1

v(ri) − μN

]
=

∫
dr [v(r) − μ] ρ(r), (46)

because f → ρ. So we may rewrite (45) as

�0 = min
ρ

{∫
dr [v(r) − μ] ρ(r)

+ min
f →ρ

Trclf

(
N∑

i=1

p2
i

2m
+ U + β−1 ln f

)}
(47)

or

�0 = min
ρ

{∫
dr [v(r) − μ] ρ(r) + FL[ρ]

}
, (48)

where FL[ρ] is given by (22). Clearly (48) is equivalent to
(25) and (26).

VI. DFT IN THE CANONICAL ENSEMBLE

One benefit of Levy’s method is that it allows straight-
forward generalization to the canonical ensemble, as we
demonstrate in the following. In the canonical ensemble (i.e.
for fixed number of particles, N ) the equilibrium many-body
distribution functions is

fN,0 = Z−1
0 exp(−βHN ), (49)

where the canonical partition sum is

Z0 = TrN exp(−βHN ), (50)

with the canonical trace

TrN = 1

h3NN !

∫
dr1 . . . drN

∫
dp1 . . . dpN . (51)

In analogy to (4) we define the functional

F [fN ] = TrNfN (HN + β−1 ln fN ), (52)

where fN is an arbitrary N -body distribution that satisfies
TrNfN = 1. It is easy to show that the (total) Helmholtz
free energy F0 = −β−1 ln Z0 is obtained by inserting the
equilibrium distribution (49) into the functional (52), hence

F0 = F [fN,0]. (53)

Reasoning based on the Gibbs-Bogoliubov inequality, com-
pletely analogous to the arguments presented in Sec. II, yields

F0 = min
fN

F [fN ]. (54)

We decompose this into a double minimization

F0 = min
ρN

min
fN →ρN

F [fN ], (55)

where the canonical one-body density distribution that is
generated by fN is

ρN (r) = TrNfN ρ̂(r), (56)

with the density operator ρ̂(r) defined by (14). Clearly the
density defined in this way satisfies

∫
drρN (r) = N , and

there are no fluctuations in the total number of particles. For
Hamiltonians of the form (12), Eq. (55) becomes

F0 = min
ρN

min
fN →ρN

TrNfN

×
[

N∑
i=1

p2
i

2m
+ U +

N∑
i=1

v(ri) + β−1 ln fN

]
. (57)

In the above expression

TrNfN

N∑
i=1

v(ri) =
∫

drv(r)ρN (r), (58)

because fN → ρN via (56). Hence

F0 = min
ρN

[∫
drv(r)ρN (r) + min

fN →ρN

TrNfN

×
(

N∑
i=1

p2
i

2m
+ U + β−1 ln fN

)]
, (59)

which we write as

F0 = min
ρN

{∫
drv(r)ρN (r) + FN [ρN ]

}
, (60)

where the intrinsic Helmholtz free-energy functional in the
canonical ensemble is defined as

FN [ρN ] = min
fN →ρN

TrNfN

(
N∑

i=1

p2
i

2m
+ U + β−1 ln fN

)
, (61)

which is formally equivalent to the definition (22) of FL in the
grand ensemble on identifying the different traces and different
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types of many-body distributions. It is clear that the density
distribution ρN,0 that minimizes the right-hand side of (60) is
the true equilibrium distribution in the canonical ensemble

ρN,0(r) = TrNfN,0ρ̂(r) (62)

and that F0 = FN [ρN,0]. The variational principle (60) implies
that

δFN [ρN ]

δρN (r)

∣∣∣∣
ρN,0

+ v(r) = 0, (63)

where the derivative is taken under the constraint∫
drρN (r) = N .

VII. DISCUSSION AND CONCLUSION

The formulation of DFT rests on the existence and unique-
ness of the intrinsic free energy as a functional of the one-body
density for a given classical system. We have described two
methods for defining this quantity, via Eq. (15) based on the
Mermin-Evans argument [2,7] and via (22) based on Levy’s
constrained search [11]. Following the derivations presented
in Secs. III and IV, it is clear that these methods differ in their
procedures and underlying principles.

In the Mermin-Evans sequence of arguments it is formally
proven that the equilibrium many-body probability distribu-
tion, f0, is a functional of the equilibrium one-body density,
ρ0. The existence of this functional rests on a sequence of
functional dependencies. For given interatomic potential U

and given one-body density ρ, there is a unique external
potential v that generates this ρ. When input into the form
of the many-body distribution in the grand ensemble (1), this
uniquely determines f0 as used on the right-hand side of the
definition (15) of the intrinsic free-energy functional F[ρ].
This chain of dependency is implicit in order to properly
define the free-energy functional via (15). Note that the naive
view that the equilibrium probability distribution, f0, is a
function of the external potential, v, such that (15) should
also depend on v gives the impression that functional (15) is
not independent of the external potential energy. Certainly this
is not the case, as one may recall the argument above (15).

On the other hand, Levy’s method does not rely on the above
rather subtle argument. An appealing feature of the constrained

search method is the definition (22) ofFL[ρ]. Here the intrinsic
free-energy functional is explicitly independent of the external
potential, which is not as easily observed from F[ρ] of
Eq. (15). Kohn [13] and Levy [18] describe the constrained
search method as a two-step minimization procedure, and we
have laid out analogous reasoning in Sec. V.

The underlying principle of the Mermin-Evans method
of defining the intrinsic free-energy functional is
v-representability of the trial density, whereas Levy’s func-
tional is based on the weaker condition of f -representability.
However, one may restrict the constrained search to the class of
one-body densities that is v-representable. In this case Levy’s
functional (22) becomes equal to the Mermin-Evans functional
(15). Hence, the constrained search method reduces to finding
the equilibrium one-body density which correspond to an
(equilibrium) external potential, v, that minimizes functional
(24) over all one-body densities, ρ, each associated to a
specific v. Furthermore, applying the Legendre transform on
functional (24) and minimizing a set of external potentials
that yields a fixed one-body density, gives Week’s free-energy
functional [19].

In practice, minimizing Levy’s version of the free-energy
functional (22) will certainly not be easier than solving the
many-body problem itself. Hence, whether the definition (22)
helps to construct approximations for grand-canonical free-
energy functionals remains an open question. For the case
of the canonical ensemble we point the reader to the very
significant body of work that has been carried out to formulate
a computational scheme that permits to capture the effects
that arise due to the constraint of fixed number of particles
[21–26]. While the generalization to equilibrium mixtures is
straightforward, we expect the application of Levy’s method
to DFT for quenched-annealed mixtures [28–31] to constitute
an interesting topic for future work.
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