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Colloidal particles in emulsions
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We propose a statistical mechanical model for colloidal particles suspended in an emulsion of liquid drop-
lets. The particles are modeled as hard spheres. The interaction between droplets is also hard, but the particles
are able to penetrate the droplets. A swelling of droplets is taken into account to ensure material conservation
of the droplet liquid. Hence the presence of the colloids generates droplet polydispersity. Using computer
simulation and liquid state theory, we find that the relative polydispersity exhibits nonmonotonic behavior as
a function of the particle packing fraction and can be traced back to hard sphere bulk density fluctuations.

PACS numbsd(s): 82.70.Kj, 61.20.Gy, 05.20.Jj

[. INTRODUCTION are mixtures of twolor more liquid phases, one being the
continuous phase that contains droplets of the dispersed
Soft matter is divided into many subdisciplines dealingphasés). The droplets can be very well controlled to have
with membranes, polymers, colloidal suspensions, or emulunique size$3] so that even freezing occurs. Although both
sions. These systems have in common that they exhibit struélispersed particles and dispersed droplets float in a surround-
ture on a mesoscopic length scale and that they include mari§d liquid, the important difference is that the dispersed ob-
degrees of freedom’ sSo one is usua”y interested in the avejects in emulsions are in the fluid rather than in the solid
age, statistical behavior. Nevertheless, the physical phenorgiate.
ena as well as the methods employed to understand them In the present work, we investigate a mixture of colloidal
may differ substantially from, say, polymers to colloidal sus-Particles and emulsion droplets; see Fig. 1 for a schematic
pensions. Insight can be gained by investigating systems th&ketch of the physical situation. Therefore we propose and
bridge such areas. In the present work we investigate thétudy a model system. This system is simplified in many
interplay between colloidal suspensions and liquid emulfespects, but it keeps the freedom for the particles to choose
sions. between being dissolved in the continuous phase or within a

Suspensions of colloidal particles are mixtures between dispersed droplet. In reality, the surface tensions between the
molecular solvent and mesoscopic solid partidiés The  colloid material and both solvents will determine whether the
latter are often loosely called “colloids.” Apart from effects colloids tend to aggregate within or become depleted from
of gravity like sedimentation, the colloids float in their sol- the droplets. There is, however, an even more fundamental
vent liquid and interact with each other in similar ways to themechanism based on material conservation that we aim at.
interaction of atoms in “hard” condensed matter. The im- As we consider the emulsion on a small time scale, where no
portant and interesting difference is the large variety of in-coalescence of droplets appears, we are faced with the fact
teraction potentials present between colloidal particlesthat the amount of the dispersed phasi) and that of the
These interactions are effective in the sense that they ariggontinuous phaséwate) are conserved guantities. These
from underlying microscopic mechanisms like van der Waal<onstraints lead to a nontrivial behavior of the droplet sizes.
forces, Coulomb forces, or the Born repulsion. One simpleAS particles penetrate inside an empty droplet, the droplet
theoretical model for the treatment of these systems is thgize (diametey has to grow, in order to keep the oil volume
hard sphere model, namely, a collection of spherical particle§onstant. The present work aims at the study of the emerging
that cannot interpenetrate each other. It is the generic modéfoplet size distribution, its polydispersity, and the structural
to understand dense fluids and crystalline solids. Surpriscorrelations present in the system.
ingly, it is realized in nature in suspensions of sterically sta- There are important phenomena present in emulsions that
bilized colloidal particles. By matching the refractive indices e neglected within the current approach. Here, we deal
of the solvent with the colloid material, it is possible to turn only with perfect spherical droplets. Fluctuations of the drop-
down the van der Waals attraction. The particles are coated

with short polymer brushes needed to stabilize the suspen- "'. A O ~ @ ~

sion against coagulation of particles. As the polymer brushes ."' O ~

are tiny compared to the particle diameter, which is of the ~ ) drse phase

order of microns, a repulsive potential emerges that is almost @ ~ ~ ~

hard-sphere-like. There is also considerable current activity e O } [5)

in the field of computer simulations of colloidg]. s ~ ~  colloidal
Hard spheres are also considered as a model for the sec- ~continuous phase LHAten) particle

ond area we want to cover, namely, liquid emulsions. These ~

FIG. 1. Physical system of colloidal particles suspended in an
emulsion. The different components are colloi@sall spheres
*Present address: Departamento dgice Aplicada, Facultad de emulsion dropletgbig spherek and solventwiggles. Particles can
Ciencias, Universidad de Salamanca, E-37008 Salamanca, Spainpenetrate inside droplets.

1063-651X/2000/6(6)/54457)/$15.00 PRE 61 5445 ©2000 The American Physical Society



5446 ROMAN, SCHMIDT, AND LOWEN PRE 61

let shapd4,5] are ignored. Denkoet al.[6] have considered
colloidal particles pinned at the surface of emulsion droplets
and have proposed that this coating may lead to stabilization
of the emulsion against coalescence. Similar to our current
study is the theoretical work on colloids suspended in a two-
phase solvert7,8] and measurements of the phase behavior
of colloids in binary liquid mixture$9]. In our system, how-
ever, both liquids are in a metastable emulsion state. This
enables the preparation of spherical droplets of one phase
within the other, which is not the case in the above men-
tioned bulk systems.

The study of polydisperse systems, especially polydis-
perse hard spheres, has attracted a lot of recent interest; sg
e_.g., [.10_1.3' In thesg studies, t.he distribution of Spherfaempty droplet isop ; the actual diameter of thieth droplet is de-
sizes is an input quantity, and the impacts on phenomena I'kﬁoted bvor
freezing are investigated. In the present work, however, the Yook

polydispersity is generated through material conservation For each set of particle positiofisc ;}, the droplet radius

and hence is an output quantity. - ) : :
Our system has two components with hard sphere interc_)f the kth _droplet at position | is determined by material
onservation, expressed as

actions among like species. However, as our results wilf
show, it is quite dissimilar from a binary additive hard sphere
mixture, which has also attracted a lot of recent intefese, Tod =T o3| a3 %_b(_r |
. 6 Dk~ 9D 2 D,k
e.g.,[14]). We note that this system has been prepared ex-
perimentally using either colloid&see, e.g.[15]) or binary Np
emulsions(see, e.g.[16]). Hence, it is conceivable that ex- x> @(2_ |x—r _|) 3)
. . . . . ) C,il [
perimentalists will be able to prepare well-defined mixtures i=1 2
of droplets and colloids, which are the issue of interest of the
present work. where® (x) is the Heaviside step function. The diameter of
In Sec. Il the model for colloidal particles suspended in anan empty droplet isrp . Equation(3) expresses the fact that
emulsion is proposed. Then a theoretical approach linkinghe volume of a swollen droplet equals the volume of an
density fluctuations to polydispersity is presented in Sec. lllempty droplet plus the volume of particles inside the droplet.
Various limiting cases are discussed. Section IV explains th&@he latter is expressed as an integration over a function that
Monte Carlo simulation method, and results are given in Seds unity for space points that are both inside a particle and

FIG. 2. Theoretical model of colloids in emulsions containing
8lloids (small circleg with positionsr; and diametersrc, and
rdplets (large circleg with positionsrp . The diameter of an

V. We finish with concluding remarks in Sec. VI. inside a droplet, and vanishes otherwise. The total potential
energy is
Il. THE MODEL Ne Np
We consider a mixture of two components. One compo- ¢totaI:i<j2:1 d’CC(rC,ij)"'k;:l ¢oo(rpk)- (4

nent is made o monodisperse hard spheres, called col-
loids, with diametersrc and position vectorsc ;, wherei
=1,... N¢c. They interact with a pairwise hard core poten-
tial

In Fig. 2 the model is sketched.
Next we introduce dimensionless quantities that govern
the system. The packing fractions of colloids and of droplets

_ are defined as
o if rC'ij<O'C

D

Peclfei) =1 o otherwise, Nem
7c 6_\/000 ®)
wherercjj=|rci—rc | is the separation distance between
colloidsi andj. Np7
The second component is constituted\gf droplets with o= 6V, Op- (6)
polydisperse diametersp , k=1,... Np, and position
vectorsrp, . Again, the interaction between droplets is pair- The third reduced parameter is the size ratig/oc of the
wise hard core, diameter of colloids and empty droplets.
© if rD,k|<1(aD'k+ op.1) lll. THEORY

op(rp )= 2 (2

) As the droplet size distribution is not prescribagriori
0 otherwise,

in our model, we have to find means to analyze it. Therefore
we will develop a theory for the calculation of the polydis-
whererp =|rpx—rp,| is the separation distance between persity of the emulsion. The droplet size distribution is de-
dropletsk andl. The total system volume ig,. fined by
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Np

()

1
p(o)=<

N_E 5(0'_U'D,k)>y
D k=1
where(:--) denotes a canonical average with the total poten
tial energy given in Eq(4).

The polydispersitys is the standard deviation of the drop-
let size distribution divided by the medsee, e.9.[17,18)),

V(my—m?)

s= ;
m;

€S)
wherem; are moments of the droplet size distributip(v),

m, = f:d(rp(a)a'i. 9

The calculation of the polydispersity requires knowledge of

the momentan, and m, of the distributionp(o). Since in
our system the droplet diameter is related(via material
conservationto the numbelN of colloids inside the droplet,
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A. The limit of low droplet densities

For low droplet densities),— 0, the interaction between
emulsion droplets can be neglected. The interaction in our
system is such that the colloidal particles are undisturbed by
the presence of the droplet. Then the colloids form a simple
bulk hard sphere system, which is, of course, monodisperse.
We can therefore obtain the moment (the mean diameter
of the droplets from the following material conservation ex-
pressionsee Eq.(3)]:

T 3 T 3
gml(l_”’)c):go'o- (19

Moreover, if we consider a droplet with volumé= wo/6
then it is possible to write the fluctuation in the number of
colloidal particles inside the droplet as
(N%)—(N)? ch f
— =1+ drdr’ r—r'[)—1],
<N> vV viv [gCC(| |) ]
(16)

wherepC=677c/wa‘é is the number density of the colloid

we shall use this relation to obtain approximate expressiongndgCC is the uniform fluid pair distribution function of the

for m; andm,. Explicitly, material conservation implies

3 3

O-_O-D
Oc
and then
3
_ Mg=0p
(N)= ) (11
and
2
m6_m3
(N?)=(N)?=—7%—, (12
oc

where we have used the identity, = (o*). Expressiong11)
and (12) are exact but difficult to handle since they involve
the momentsn; andmg. These moments can be related to
m; andm, if we assume thap(o) can be approximated by
a Gaussian of meam; and standard deviation/mz—mz1
=m;s. We obtain

1
(N)=— (m}+3s’mi— o), (13
Oc
1
<N2>—<N)2=F332m‘15(3+ 125?+5s%), (14)
C

which are our final expressions for linking the polydispersity
s and the first momenh; to the average number of particles
in a droplet and its fluctuations. In the following subsection

colloid. When the siz&/ of the droplets becomes very large,
Eq. (16) can be written in terms of the isothermal compress-
ibility of the colloid yt,

lim W = pckeTxr,

V— oo

17

wherekg is Boltzmann’s constant anis the temperature of
the system. However, for small droplets finite size effects
arise(see, e.g., Ref419], [20]) and one must take into ac-
count the limits of integration in Eq16).

The procedure for the calculation of Ed.6) follows the
same basic ideas of Ref®1], [19], [20]. First we write Eq.
(16) in Fourier space,

(N2)—(N)? _
Ny

whereG(k) is the Fourier transform of a geometry function
that accounts for the limits of integratidit is 1 inside the
droplet and zero otherwigeand ﬁ(k) is the Fourier trans-
form of the total correlation functioh(r)=g(r)—1. Then,
taking into account tha®(r) is a sphere of diameter, we

R .

On the other hand, we use the Ornstein-Zernike relation for
the total correlation function

Pc
(2m)3V

1+ f dkG2(k)h(k), (18

4

« « ko
6=6(K= 17

2

ko

—700

ko

2

sin (19

&(k)

MOT T peei

(20

we consider the case of low emulsion density where one cawyherec(k) is the Fourier transform of the direct correlation
address suitable approximations for the relative fluctuatiofunction. For simplicity, we use the Percus-Yevick solution

((N?)—(N)?)/{N) and the momentn, that will allow us to
obtain the polydispersity of the droplets.

for the direct correlation function since in this case we obtain
analytical results foh(k) and the fluctuation$18). In our
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system the diameter is not a constant but depends on the
number of particles inside the droplet. As an approximation
we consider the following effective diameter:

E: m1+ oc, (21)

whereao - accounts for the size of the colloids. From E2j1)
we obtain

V= z(m1+ 0'(:)3- (22 FIG. 3. Swelling of droplets. If a colloidal particle tries to move
6 (arrow) inside a droplet, the swelling of the droplet happens against
In summary, the calculation of the polydispersity for the the pressure of the surrounding droplets.
low density case is as follows. First we use Erp) to obtain  ceeds as follows. First, one particle is randomly chogen
m;. Then, from Eqs(22) and(18) we calculate the fluctua- ¢an pe either a droplet or a colloid particiend a random
tions (N?)—(N)?)/(N). Finally, making use of Eq13)  displacement is proposed. The test for acceptance or rejec-

and(14) we solve tion of the move depends on the energy change. As we are
dealing with a hard potential, the energy change is either
(N5)—(N)> 1 3s?mi(3+ 125%+5s5%) zero(if no overlapping situation is reachedr infinity (when

(23)  there is an overlgp In the former case the state is accepted,
in the latter it is rejected. The overlapping states can be
reached because of both the simple movement of a particle or
the growth of a droplet due to the inclusion of colloidal
particles.

After proposing a new position for a droplet or colloid, it
For high or intermediate densities of the emulsion, theis necessary to calculate the new diameters for the droplets in
interaction between droplets cannot be neglected. This inteerder to test for possible overlapping situations. This is done
action has an impact on the colloidal fluid. Thus the effectiveby means of conservation of both the total amount of mate-
volume of the droplet used in expressid8) cannot be cal- rial in the droplets and the positions of the centers of the
culated as in Eq(15), since in this case it depends not only droplets. The growth for the droplets is isotropic with respect

on the mean density of colloidal particles but also on theto the center of each droplétee Fig. 3.

density of the emulsion droplets. Because of this inhomoge- The algorithm for calculating the new proposed diameter

neous character of the density of the colloid, we have noof the droplet is as follows. Let us suppose that a trial move

derived theoretical results for the polydispersity. is proposed for the droplgtwith diameterop, ; and position

However, on the basis of the behavior at low density, itisrp ;, and the proposed position for this dropletri§j . In
possible to argue about the behavior of the polydispersity adrder to calculate its new diametef,yj , we solve the equa-
higher emulsion densities. On the one hand, the exclusiotion

interaction between droplets does not allow for the possibil- Ne

ity of growth, but, on the other hand, at intermediate and T % \3 % % T 3

high densities the colloid particles do not allow for the 5 (0. _;1 I(|rDJ_rC*‘|’UC’UDJ)_gaD_O’

shrinking of the droplets. As a consequence, we expect that (24)

the probability distributiorp(c) should become narrow and \perg| is the intersection volume between particlend the
then the polydispersity should decrease. As we shall see bﬂisplaced droplej. The geometrical functiom is given for

|9W’ this wil be confirmed from re_sults of computer simgla- two intersecting spheres with center separation distaaoe
tion. These simulation results indicate that, for a given f'xeddiameters(rl oo(01<,) by

colloid density, the low emulsion density result provides an
upper bound for the polydispersity of the emulsion. I(r,oq,02)

(N) ol mi+3s’mi-od
to obtain the polydispersity.

B. Intermediate and high emulsion densities

7ool6  if r<(o,—0)/2
= L(r,O’l,O'z) if (0'2_0'1)/2<r$(0'2+0'c)/2
0 otherwise,

IV. COMPUTER SIMULATION

A. Monte Carlo technique

From a general viewpoint, the simulation handles two
coupled systems. One is the emulsion droplet system, which (25
is a polydisperse system of hard spheres of variable diamwhere the auxiliary functiorL is the volume of a lenslike
eters{op i}i-1,.n,- The other is the colloid system, which shape and is given by

consists of a standard monodisperse hard sphere system with

: : ; + 2
particles of diameterc. Both, the emulsion droplets and L(r,oq,05)= B R )
colloidal particles are coupled via the interaction potential 1 2
(4) A ) ) . ) 2 Oy~ 01 2 0'2+0'1
The simulation runs with a fixed number of emulsion X|rc—=3 — +2r —

dropletsNp and a fixed number of colloidal particlég . In
accordance with the standard Monte Carlo method, one pro- (26)
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P 0 0 1 2Mig 4 s
/ sl —
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FIG. 4. Overlap due to swelling. A colloidal Monte Carlo move
(indicated by an arrojymay be rejected, because the swollen drop- o L s : 3
let would overlap(shaded regionwith another droplet. 3 3.05 3.1 3.15 3.2
o
In practice, the terms that actually contribute to the sum over FIG. 6. Detail of Fig. 5. Note the probability spikes correspond-
i in Eq. (24) are selected through a neighbor list. ing to integer numberbl;, of colloid particles inside the droplet.
Once the new diameter is calculated, the next step is to
verify whether an overlapping situation is reached. Fig. 4 V. RESULTS

shows that it is possible to reject a colloid particle displace-
ment because of droplet growth. This is also possible if a
droplet is displaced in such a way that its growth leads to an The behavior of the probability distribution functi@go)
overlap with a neighboring droplet. Then the displacemenfor several colloid densitiesy:.=0.02,0.09,0.32,0.52 is
has to be rejected. Of course, situations in which a colloidashown in Fig. 5. We consider the case of infinite dilution of
particle can interact with two or even more droplets are posdroplets, namely, a system with a single droplet. For large
sible, and it is necessary to calculate the final diameter o€olloid packing fractions, nearly Gaussian behaviorgd6s)
each droplet before testing for droplet overlaps. emerges. The mean value grows upon increagingreflect-
ing the size of a typically swollen droplet. The width of the
distribution, however, decreases upon increasing the colloid
B. Simulation details density fromz.=0.32 to 0.52. The underlying mechanism is
Several simulations for different values of the parameterghe reduction of bulk hard sphere density fluctuations for the
nc and np have been performed to obtain the behavior ofdense colloidal fluid.
the polydispersity of the emulsion droplets. In all of the The Gaussian picture, however, breaks down for low den-
simulations the size ratio isp/oc=3. A typical run starts ~Sities of colloids,7c=0.02 and 0.09see Fig. 6 A hump-
from a face-centered cubic lattice Nf, =32 droplets and a like shape is still present, but there arise additional spikes.
given number of colloidal particleNlc ranging from 50 to We find that these splkes appear in the dllstr|.but|0n when an
1000. The number of Monte Carlo sted4CS) used to ther-  int€ger number of particle;, is completely inside the drop-
malize the system is 10 After that the probability distribu- 1€t SO that no particle mters%cts WltDSthe droplet surface. This
tion function p(o) as well as the pair correlation functions happens av/oc=[(op/oc)*+Nijp]™, whereN;, is an in-

are measured during 1MCS. Finally, the polydispersity is teger or zero. As an explanation for this droplet size distri-
calculated by using Eq8). bution, we note that the number of states with one particle

A. Intrinsic polydispersity

15 T A
—0.02 0.012
— 0.09
0.008
0.004 | |
0 &
0 0.1 02 .. 03 04 05
i's

FIG. 7. Polydispersitys of the droplets versus the packing frac-
3 3.2 3.4 c 3.6 3.8 4 tion of the colloidy . Circles, squares, and diamonds represent the
simulation data obtained for systems of one droplgt=0.45, and
FIG. 5. The diameter probability distributiqge(o) for a system  7p=0.53, respectively. The solid line represents the theoretical re-
with a single emulsion droplet and various packing fractions of thesults coming from Eq(18). The dashed line represents E¢7)
colloid -=0.02, 0.09, 0.32, 0.52, and size ratig /oc-=3. Asthe  (when the size of the droplet is very lajg&lote that the very low
packing fraction of colloid increases, the width of the distribution density cas€one droplekis an upper bound for the polydispersity.
(polydispersity decreases. The size ratio issp/oc=3.
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FIG. 8. Distribution functions of colloidal pairgcc(r) and
droplet pairsgpp(r). The droplet packing fraction igp=0.452.
Three concentrations for colloids are showig=0.026, 0.209,
0.314. Lines are guides to the eye.

FIG. 10. Snapshot from computer simulation. The large trans-
parent spheres are droplets, the smaller ones represent colloidal
particles. A colloid is shaded dark if its center is not inside any

o . droplet. The packing fractions are-.=0.026, 7p=0.452. The
inside the dropletproportional to the volume of one sphere ygpjet subsystem is in a fluid state.

of diameterop— oc/2) will be greater than the number of
states with one patrticle intersecting the surface of the dropl
(proportional to the surface of the dropleFor higher den-

sities of colloid, the presence of more particles located at th
border of the droplet smooths the behavior of the probabilityb

distribution. This leads to a highly nontrivial size distribution that, as the density of the emulsion increases, it is not pos-

that consists of finite probabilities at discrete diameter valueg;, )\ = oo high colloid densities. This is due to the exclu-

with a superimposed continuous probability density that "Nsion interaction for the droplets since the more colloid is
terpolates between the spikes.

In order to condense the information, we study the Widthadded’ the bigger the emulsion droplets become, and it is

of the distribution as a function of the thermodynamic a_even possible to freeze the emulsion.
rameter; FlingIJ:e 7 showsl,JtheI simulation results ¥or th(la p%ly— Solid and dashed lines in Fig. 7 represent the theoretical
dispersity versus the packing fraction of the colloid. CirclesrGSUItS obtained from Eqg18) and(17), respectively. Note

. . that our incorporation of finite size effects improves on the
correspond to the case of one emulsion droplet in the sySte.rPesult for the thermodynamic limit. We get good agreement

?qu?res ar;(ihdlamor:d-s C(()jrreslpond; Beigectlt\j/ely,_tgsr;acklr}gr the case of low emulsion density. Differences between
ractions of the emuision dropletgp=0.45 andnp=0.93. " qjn)ation results and results obtained by using Ea&8)

We observe that the case of I.OW emuIS|or! d¢n5|t|es 'S allhg (23) have a different origin depending on the colloid
upper bound for the polydispersity. Its behavior is as fOHOWS'density For low colloid densities, our Gaussian approxima-
All points start from the value zero that corresponds to aﬁ; ' !

Ei}alue. When still more colloid particles are added, the poly-
dispersity decreases since the colloid system approaches a
ense liquid or even solid phase, and fluctuations in the num-
er of particles inside a droplet decrease. We have found

monodisperse emulsion. As the density increases, more co '_on for p(c) breaks dowr(see Fig. 8. For the high colloid
P : Y ' ensity case, deviations arise partly because of the Percus-

loidal particles are addgd to .the. system and, as a CONSGavick form of the total correlation function in E¢L8) and
guence of that, the polydispersity increases up to a maximum

FIG. 9. Distribution function for colloid-droplet pairgcp(r),
for the same parameters as in Fig. 8. The arrow denotes the radius FIG. 11. Same as Fig. 10, but at a higher particle volume frac-
of an empty droplet. Note the different ordinate scale compared tdion 7»-=0.314. The droplets are frozen on a face-centered cubic
Fig. 8. lattice, while the colloids remain liquid.
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mainly because the voluméin Eq. (18) is approximated by VI. CONCLUSIONS

that of a sphere of the mean diameter of the droplets. A model for the behavior of emulsions in the presence of

colloidal particles has been proposed. It describes colloids as
monodisperse hard spheres and emulsion droplets as polydis-
As the system has two components, one can investigatgerse hard spheres. Migration of colloids into and out of the
three different static pair distributions. First, we discuss thejroplets is allowed. The droplet size distribution is not as-
symmetric correlationgcc(r) between colloidal pairs and sumeda priori, but evolves self-consistently. Therefore in-
doo(r) between droplet pairssee Fig. 8 The packing frac-  teractions between colloidal particles and emulsion droplets
tion of the droplets is highyp=0.452, and there are three gre taken into account so that conservation of the emulsion
cases of particle packing fractions shown, namehs  groplet material is fulfilled. Then the exclusion rule of hard
:0026,0209,0314 The behavior of the colloids is Similarspheres drives the drop|et size distribution. We show that
to that of monodisperse hard spheres, except for a slight shifhjs distribution has quite a rich structure, ranging from mul-
of the second peak toward larger distances compared to thgypike to Gaussian behavior. By means of the study of the
one-component system. The droplet behavior is also hardsize dependent fluctuations in the number of particles located
Sphere-like but the intrinsic pOlydiSperSity washes out thanide the drop|et5, we found an upper bound for the p0|y_
first peak. At the largest values aj-=0.314, the droplet dispersity of the emulsion.
subsystem is found to be in a crystalline state. Concerning future work, we remark that the present
A quite different behavior is found for the asymmetric model may be readily generalized to account for nonvanish-
correlations between pairs of one particle and one droplefng surface tensions. In general, there are three surface ten-
geo(r), Fig. 9. This distribution function can be regarded assjons between the three materials, colloid, oil, and water.
the density profile of particles insid@nd aroungla fixed  within the current approach, the surfaces themselves are
droplet. Of course, it also has the meaning of the densityiven geometrically by intersections of spheres. Hence one
profile of droplets around a fixed particle. There are wealcan take into account the potential energy that comes from
oscillations inside one drOplet radius, which become rapldthe presence of these interfaces. By tuning the surface ten-

damped outside. The amplitude of the oscillations is tinysjons, one then has additional control over the colloidal ten-
even at the highest packing fraction considered. The behavtency to aggregate inside droplets.

ior is dissimilar from that of a hard sphere fluid inside a hard
cavity [22—25, where much stronger structure emerges.

To iIIus'Frate our ﬁndir_lgs we shoyv snaps_hots generated ACKNOWLEDGMENTS
from the simulation. In Fig. 10 the high density droplet lig-
uid phase containing few patrticles is shown. By adding more We thank Lutz Maibaum, Holger M. Harreis, and Juan A.
particles, freezing of the droplet system occurs, Fig. 11. Th&Vhite for valuable contributions. F.L.R. acknowledges the
bare droplet packing fraction of,=0.452 is well inside the financial support from the DirecainGeneral de Investiga-
fluid branch of the hard sphere phase diagram. The swollegion Cientfica y Tecnica (DGICYT) of Spain under Grant
droplets, however, build a nearly close-packed face-centergdos. PB 95-0934 and PB 98-0261 and from the Ministerio
cubic crystal. de Educacio y Cultura.
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