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Abstract
Using fundamental density functional theory we calculate the partial radial distribution
functions, gi j(r), of a binary non-additive hard sphere mixture using either Percus’ test particle
approach or inversion of the analytic structure factor obtained via the Ornstein–Zernike route.
We find good agreement between the theoretical results and Monte Carlo simulation data for
both positive and moderate negative non-additivities. We investigate the asymptotic, r → ∞,
decay of the gi j(r) and show that this agrees with the analytic analysis of the contributions to
the partial structure factors in the plane of complex wavevectors. We find the test particle
density profiles to be free of unphysical artefacts, contrary to earlier reports.

1. Introduction

The simple model of non-additive hard sphere (NAHS)
mixtures has been shown to exhibit a rich phenomenology,
including liquid–liquid demixing [1], crystallization, confine-
ment driven population inversion [2–4], and striking wetting
and layering behaviour at a general hard wall [5]. These
transitions are all driven by excluded volume and hence
entropy effects alone. NAHS mixtures constitute arguably
one of the most fundamental liquid models to exhibit such
behaviour. NAHSs can be used as a reference model in
the study of more complex systems, such as alloys [6–8],
colloids [9], electrolytes [10, 11], and polymers [12, 13].

Recent work has shown that the fundamental measure
density functional theory (DFT) for binary NAHSs [14, 15]
is a very suitable tool for the investigation of the above
phenomena. The theory has been used to successfully describe
(partial) radial distribution functions gi j(r) [14, 16], bulk fluid
demixing phase diagrams [15], the structure and interfacial
thermodynamics of the free fluid interface [15], as well as
phenomena due to confinement in planar slits [4] and due to
exposure to a planar wall [5]. Comparison to results from
Monte Carlo simulations for bulk fluid–fluid phase diagrams,
partial radial distribution functions and density profiles in
planar slits indicates very good quantitative agreement. In this
paper we re-address the problem of calculating gi j(r), in the

light of [15] and [16], with the aim of characterizing the bulk
fluid structure.

Given a DFT approximation, the simplest way to obtain
the gi j(r) is via numerical Fourier transform of the analytic
structure factors. These are obtained from (analytic) direct
correlation functions, which in turn can be directly obtained
from the free energy functional via functional differentiation.
The direct correlation functions are then inserted into the
Ornstein–Zernike (OZ) equation to give partial structure
factors and Fourier transforming to real space yields the
gi j(r). Starting with the direct correlation functions, one
can also transform the OZ equations into contour integrals in
the complex plane, such that the radial distribution functions
are expressed as a sum over the poles (divergences) of
the analytic structure factors [17–20]. The advantage of
this method is that it is possible to investigate individual
contributions to the gi j(r), which either decay monotonically
with distance or are damped oscillatory. In particular one
can identify the contributions with the longest decay length;
these determine the asymptotic (large distance) decay of the
correlation functions in real space. It can be shown that the
gi j(r) for all pairs of species i j exhibit a common asymptotic
decay type and decay length and, in the oscillatory regime, a
common wavelength. These properties of the asymptotic decay
also determine the asymptotic (and often intermediate) decay
of inhomogeneous density profiles, solvent mediated forces
and further thermodynamic quantities.
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An alternative method for obtaining radial distribution
functions is via Percus’ test particle method [21]. Here one
solves for the equilibrium density profiles in the presence
of an external potential that represents a test particle located
at the origin. It can be shown that these profiles, when
normalized by the bulk density, are the radial distribution
functions. This is a generally more involved method, as
it requires one to implement a numerical solver for the
Euler–Lagrange equations for minimizing the functional and
hence to calculate inhomogeneous equilibrium density profiles.
Such results are expected to be more accurate at small and
intermediate distances than those from the OZ route. In [16]
Ayadim and Amokrane calculated the gi j(r) using Percus’ test
particle approach and found good agreement when comparing
to Monte Carlo (MC) simulation data. However, the authors
also reported that their radial density profiles contained small
unphysical jumps due to what they suspected were deficiencies
in the construction of the functional.

In order to re-address this issue, in the present paper
we calculate the gi j(r) from the NAHS functional. We use
both the OZ and the test particle method and compare the
respective results to new MC simulation data. For all values of
positive and small values of negative non-additivity, we show
that the radial distribution functions from the two methods
compare well to the simulation results. For strongly negative
non-additivity the accuracy of the two methods strongly
diverges from the simulation results. Although both theoretical
approaches fail at very small values of non-additivity the test
particle results show significantly better behaviour than those
from the OZ method.

We have previously shown that correlation functions for
NAHS mixtures with positive non-additivity exhibit either
monotonic asymptotic decay or one of two types of damped
oscillatory asymptotic decay with different wavelengths [15].
Here we show that in mixtures with negative non-additivity
only the two types of oscillatory decay remain. We investigate
the asymptotic decay of the gi j(r) from the test particle
method and show that this agrees with that found analytically,
for both positive and negative non-additivity. We also
investigate strongly negative non-additive mixtures, which start
to decouple into two independent pure hard sphere fluids. Here
the functional begins to break down, and we show that the test
particle method still gives good qualitative agreement but poor
quantitative agreement with the MC results.

The paper is organized as follows. In section 2 we give
a brief introduction to DFT and to the NAHS functional, in
particular we give details about our implementation of the test
particle procedure. In section 3 we present results for the radial
distribution functions and their asymptotic decay. Finally, in
section 4 we draw conclusions.

2. Density functional theory

2.1. The NAHS excess free energy functional

The NAHS pair potential between particles of species i and j
is

vi j (r) =
{

∞ r < σi j

0 otherwise,
(1)

where r is the radial distance between the two particles, σii is
the diameter of species i = 1, 2, and

σ12 = 1
2 (1 + ")(σ11 + σ22) (2)

is the hard core distance between species 1 and 2, where
" ! −1 measures the degree of non-additivity. The mixture
is parameterized by the ratio of particle diameters, q =
σ11/σ22 " 1, and by ". We characterize bulk states by the
bulk packing fractions ηi = πρb

i σ
3
ii/6, where ρb

i is the bulk
number density of species i = 1, 2.

For a two-component system the grand potential
functional depends on the one-body density profiles, ρi(r),
where i = 1, 2 labels the species, and is given by

&[ρ1,ρ2] = Fid[ρ1,ρ2] + Fex[ρ1,ρ2]

−
2∑

i=1

∫
dr ρi(r)(µi − Vi(r)) (3)

where Fid[ρ1,ρ2] = ∑2
i=1

∫
drρi (r)(ln('3

i ρi (r)) − 1) is the
ideal Helmholtz free energy functional for a binary mixture,
'i is the de Broglie wavelength of species i , µi is the
chemical potential of species i , Vi(r) is the external potential
that acts on species i , and r is the spatial coordinate. The
interactions between the particles are described by the excess
Helmholtz free energy functional, Fex[ρ1,ρ2], for which an
approximation must be used in order to proceed.

The excess Helmholtz free energy functional for
NAHSs [14] is a generalization of the fundamental measure
theory for additive hard sphere mixtures [22–25], and is built
from a set of eight weighted densities, four for each species,
ni,γ (r), where γ = 0, 1, 2, 3, which are, in turn, formed from
a set of eight weight functions, wi,γ (r), convolved with the
density profiles,

ni,γ (x) =
∫

dr ρi(r)wi,γ (r − x), (4)

for i = 1, 2. The weighted densities are combined
into sixteen ansatz functions for the free energy density,
)αβ({n1,ν(x)}, {n2,τ (x′)}), α,β = 0, 1, 2, 3, which are then
convolved with a set of kernel functions, Kαβ(r), to take
account of the non-locality between species 1 and 2. Hence

Fex[ρ1,ρ2] =
∫ ∫

dx dx′
3∑

α,β=0

Kαβ(x − x′))αβ(x, x′). (5)

The details of the NAHS functional, including the form of
the weight functions, wi,γ (r), of the kernel functions, Kαβ(r),
and of the free energy density terms, )αβ(x, x′), can be found
elsewhere [15].

In order to calculate one-body density profiles, one takes
the functional derivative of the grand potential, &[ρ1,ρ2], with
respect to the density profiles, ρi(r). Setting the result to
zero [26, 27] yields two Euler–Lagrange equations,
δ&[ρ1,ρ2]

δρi(r)
= kBT ln('3ρi(r)) − kBT c(1)

i (r) − µi + Vi (r)

= 0, (6)

where

c(1)
i (r) = −(kBT )−1 δFex[ρ1,ρ2]

δρi(r)
(7)
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is the one-body direct correlation function (of species i ),
defined via the first functional derivative of the excess
Helmholtz free energy functional. The Euler–Lagrange
equations (6) for i = 1, 2 must be solved simultaneously
and self-consistently to obtain the equilibrium profiles, which
minimize (3).

Thus, in practice, the key quantity for calculating density
profiles is c(1)

i (r), cf (6) and (7). For the present functional
calculating this is facilitated by first obtaining a set of
intermediate basis functions of the form

Hi,γ (x) = (kBT )−1
3∑

α,β=0

∫
dx′ φi,αβγ (x, x′)Kαβ(|x − x′|),

(8)
where

φi,αβγ (x, x′) = ∂)αβ({n1,ν}, {n2,τ })
∂ni,γ

(9)

are derivatives of the free energy terms that depend on x and x′

via n1,ν(x) and n2,τ (x′), respectively, and depend on species i
via the derivative on the right-hand side. The intermediate basis
functions (8) are then convolved with the weight functions
to give four different contributions to the one-body direct
correlation functions,

c(1)
i,γ (r) =

∫
dx wi,γ (|x − r|) Hi,γ (x), (10)

which are then summed to give the one-body direct correlation
functions, i.e.

c(1)
i (r) =

3∑

γ=0

c(1)
i,γ (r). (11)

The intermediate basis functions (8) have no stand-alone
physical significance, at least as far as we can tell. However,
monitoring their behaviour can be a vital aspect in checking
the accuracy of the implementation of c(1)

i (r) and hence of the
Euler–Lagrange equations.

Summarizing, the calculation of c(1)
i (r) requires three

steps:

(1) calculating the weighted densities, (4);
(2) combining the weighted densities into the analytic

expressions φi,αβγ (x, x′) and convolving these with the
kernel weight functions, (8);

(3) convolving Hi,γ (x) with wi,γ (x) and summing over γ ,
(10) and (11).

Steps 1 and 3 are simple convolutions and can be performed
both in planar and in spherical geometry using fast Fourier
transforms. The convolutions in equation (8) reduce a function
of the two spatial arguments x, x′ to a function of a single
space point, and furthermore the kernels Kαβ(r) have a very
small range compared to the size of the density profiles (i.e. the
total length of the numerical grid). Therefore, we found it to
be more efficient to perform these convolutions via direct real
space integration, such that only the values of φi,αβγ (x, x′) that
are actually required are calculated.

In order to reduce potential sources of error when
performing and transcribing the derivatives ∂)αβ/∂ni,γ we
have obtained these analytic expressions via computational

symbolic differentiation and then converted the expressions
into source code for the numerics. However, one must still
correctly implement all kernel functions Kαβ(r).3

For planar geometry (see e.g. [15]) the kernel convolutions
are of the form

Hi,αβγ (z) =
∫

dz′ φi,αβγ (z ′)K̄αβ(z − z′), (12)

where Hi,αβγ (z) are the individual components of the
intermediate basis functions (8), z is the planar distance and

K̄αβ(z) = 2π

∫ ∞

0
dξ ξ Kαβ(

√
ξ 2 + z2) (13)

are the integrated (planar) kernel functions described in the
appendix of [15]; these have a range R12 = "(σ11 +
σ22)/2. For spherical geometry, provided that r > R12, the
convolutions are very similar:

Hi,αβγ (r) = 1
r

∫
dr ′ r ′φi,αβγ (r ′)K̄αβ(|r − r ′|), (14)

where r is the radial distance, and the integrated kernel
functions are identical to those in the planar case. Thus, the
form of the integrated kernel functions remains the same as in
the planar case and provided that r > R12 the only difference
is the inclusion of a term r ′/r in the spherical convolutions.

2.2. Two routes to radial distribution functions

Percus’ test particle approach [21] rests on calculating
inhomogeneous density profiles in the presence of a single
particle. The key is to set the external potential in (6) such
that it represents a single ‘test’ particle located at the origin,
i.e.

Vi (r) = vi j(r), j = 1, 2, (15)

where r = |r|, and vi j (r) are the pair potentials, here
defined by equation (1). It can be shown that the equilibrium
one-body profile in the presence of this external potential is
proportional to the two-body (partial) pair correlation function,
i.e. ρi (r)/ρb

i = gi j(r), where ρb
i is the bulk density of species

i and ρi (r) is the solution of (6). For a binary mixture the
calculation must be repeated twice, since a particle of either
species must be located at the origin. Using this method we
calculate gi j(r) for the NAHS model, and will refer to this as
the test particle route.

In [15] we used the alternative route for calculating gi j(r),
i.e. via the OZ equation,

hi j(r) = c(2)
i j (r) +

2∑

l=1

ρb
l

∫
dr′ hil(r ′)c(2)

l j (|r − r′|), (16)

where hi j(r) = gi j(r) − 1 is the total correlation function, and
c(2)

i j (r) is the two-body direct correlation function. In the DFT

3 Checking numerically their remarkable algebraic group structure [32, 33]
could be a further valuable test in developing and debugging numerical codes.

3



J. Phys.: Condens. Matter 23 (2011) 325104 P Hopkins

context this is defined by taking a second functional derivative
of Fex[ρ1,ρ2],

c(2)
i j (|r − r′|) = −(kBT )−1 δ2 Fex [ρ1,ρ2]

δρi(r)δρ j (r′)

∣∣∣∣
ρ1,ρ2=const

. (17)

For the present functional analytic expressions for the Fourier
representations of the direct and total correlation functions,
ĉ(2)

i j (k) and ĥi j(k), can be obtained via equation (16), where
k is the argument in Fourier space. By numerically Fourier
transforming one can then obtain hi j (r). We will henceforth
refer to this method as the OZ route. We use this method here to
calculate the radial distribution functions and also investigate
their different types of asymptotic decay.

3. Results

3.1. Radial distribution functions

We have calculated radial distribution functions for a range of
size ratios and both positive and negative values of the non-
additivity parameter ". As a representative example, we first
return to the case featured in both [14] and [16], where the
model parameters are q = 0.5 and " = 0.3, and statepoint
η2 = 0.1 and η1 = η2/8 [28]4. We refer to this set of
parameters as statepoint A. In figure 1(a) we show the gi j(r)
calculated using the OZ and test particle methods. Although
the OZ route fails to correctly reproduce the core condition
gi j(r < σi j) = 0, the correlation functions agree well both
at contact and for larger distances.

In order to test the accuracy of the NAHS functional we
have carried out MC simulations to obtain reference data for
gi j(r). We performed canonical simulations for a mixture of
1024 particles divided equally between the two species. We
used 105 MC moves per particle for equilibration, and 106

moves per particle for data collection. The MC results are
plotted in figure 1 and show that, as described in [14, 16],
there is good agreement between the OZ and the test particle
approach and the simulations.

However, we do not find evidence of the unphysical
jumps described in [16] for these parameters. To illustrate the
smoothness of our results and to also shed some light on the
internal workings of the functional, in figures 1(b) and (c) we
plot the intermediate, Hi,γ (r), and final contributions, c(1)

i,γ (r),
to the (inhomogeneous) one-body direct correlation function
for species 2, c(1)

2 (r), around a particle of species 1. The
intermediate functions, Hi,γ (r), are not necessarily smooth
functions, but rather exhibit features dictated by their order,
γ . Namely, Hi,0(r) is smooth, Hi,1(r) exhibits abrupt changes
in the gradient, Hi,2(r) exhibits steps (Heaviside functions),
and Hi,3(r) exhibits sharp spikes (Dirac delta functions).
However, we find that when these functions are convolved
with the corresponding weight functions, wi,γ (r), to produce
the c(1)

i,γ (r), which form the elements of the direct correlation
functions via (11), all discontinuities are smoothed out and
disappear.

4 The correct values used for figure 1 of [16] are those given in the text, not
η2 = 0.05 and η1 = η2/8, as indicated in [16].

Figure 1. (a) Radial distribution functions, gi j (r), as a function of the
scaled distance r/σ11 for q = 0.5, " = 0.3, at statepoint A, η2 = 0.1
and η1 = η2/8. Shown are results from the test particle route (TP,
solid line), inversion of the OZ equation (OZ, dashed line), and MC
simulations (MC, symbols). Curves are offset vertically by one unit
for clarity. (b) and (c) show the intermediate, Hi,γ (r), and final
contributions, c(1)

i,γ (r), to the one-body direct correlation function for
species i = 2, calculated around a test particle of species 1. The inset
to (b) shows the region at the test particle boundary, highlighting the
Heaviside-type features in H2,2(r), and the Dirac-function-like
features in H2,3(r). The numerical grid has spacing 0.01 σ11 and the
lines within the inset to (b) are a guide to the eye.

Hence the discontinuities within the intermediate terms
are smoothed by convolutions with the weight functions.
The structure of the functional implies that the order of the
discontinuities in the intermediate terms are smoothed by
weight functions, which themselves contain discontinuities.

4
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Figure 2. Same as figure 1(a), but for " = −0.2 and at statepoint D,
η2 = 0.25 and η1 = η2/8.

For example, Hi,3(r), which exhibits spikes, is convolved with
wi,3(r), which only has a step, while Hi,0(r), which is smooth,
is convolved with wi,0(r), which possesses (derivatives of)
spikes.

Therefore, we find that each final contribution to c(1)
i (r)

is continuous, as seen in figure 1(c). This is even true for the
test particle boundary, where the density profiles vary discon-
tinuously due to the hard sphere potential, equation (1). This
discontinuous external potential is the origin of the non-smooth
features in Hi,γ (r) that occur at various distances that can be
built from (additive) combinations of σii/2, and R12. Never-
theless, we find that c(1)

i (r) is continuous at all distances r .
We have used the virial theorem to calculate the bulk

pressure p via p/(ρkBT ) = 1 + (2πρ/3)
∑

i j xi x jσ
3
i j gi j(σ

+
i j ),

where ρ = ρ1 + ρ2 is the total density, xi = ρi/ρ is the
mole fraction of species i = 1, 2, and gi j(σ

+
i j ) is the contact

value of the partial pair correlation function between species
i and j . The case shown in figure 1 is characterized by
x1 = x2 = 0.5, ρσ 3

11 = 0.047 7465, σ12/σ11 = 1.95, and
σ22/σ11 = 2. We analyse the contact values from the test
particle calculation. When fixing a small (species 1) particle,
g11(σ

+
11) = 1.820 80 and g21(σ

+
12) = 1.2859. For a large

(species 2) particle fixed at the origin, g12(σ
+
12) = 1.3017

and g22(σ
+
22) = 1.6934. The virial theorem then yields for

the (scaled) pressure pσ 3
11/(kBT ) = 0.088 99. This is to be

compared to the result obtained from the derivative of the bulk
free energy F with respect to volume V , where we obtain
(σ 3

11/kBT )∂ F/∂V = 0.089 84. The agreement of both values
is within a relative error of 1%, which indicates the good
internal consistency of the theory. Note further that the contact
values given above satisfy the sum rule g12(σ

+
12) = g21(σ

+
12) to

within a relative error of 1.2%.
We have also calculated gi j(r) for negative values of "

using the OZ and the test particle approaches, and compared
to results from MC simulation. We find that the level of
agreement depends strongly on the degree of non-additivity;
for small negative values of ", we find that there is good
agreement between the three approaches. In figure 2 we
plot results for q = 0.5, and relatively small negative non-
additivity, " = −0.2, for partial bulk packing fractions
η2 = 0.25 and η1 = η2/8. We refer to this as statepoint D.
We find that there is very good agreement between the three

Figure 3. Same as figure 1(a), but for " = −0.5 and at statepoint F,
η2 = 0.25 and η1 = η2/8. Note that the curves are plotted in a
different order compared to figures 1(a) and 2.

approaches, with the only noticeable differences occurring
very close to contact.

However, as " is decreased, differences become apparent.
In figure 3 we plot results for a stronger negative case, q =
0.5, " = −0.5, at the same partial packing fraction η2 =
0.25 and η1 = η2/8 (statepoint F). We find that the three
approaches still agree well for the like–like pair correlation
functions, but for the unlike case there are clear differences.
The OZ route predicts a completely unphysical downturn
close to contact [29]. The direct correlation functions (not
shown) possess corresponding abnormal features, e.g. the cross
correlation function violates the Percus–Yevick approximation
c12(r > σ12) = 0, and develops a (small) tail outside of the
core. Furthermore, in the limit " → −1 (and hence σ12 → 0),
the functional does not correctly decouple the mixture into two
independent hard sphere fluids. On the other hand, as shown
in figure 3, the test particle result only slightly overestimates
the unlike correlation function close to contact, as compared to
the MC results. We explore the strongly negative case in more
detail below.

3.2. Asymptotic decay of correlations

It can be shown [17] for systems with short range interaction
potentials, that the OZ equations can be transformed so that the
radial distribution functions are given by a sum over the poles
(divergences) of the partial structure factors,

rhi j(r) =
∑

n

Ai j,n exp(iknr) (18)

where i is the imaginary unit, kn = α1 + iα0 is the complex
position of the nth pole, i.e. where the partial structure factors

Si j(k) = δi j +
√

ρb
i ρ

b
j ĥi j(k) satisfy

S−1
i j (kn) = 0, (19)

with α1 being the real part and α0 being the imaginary part,
and Ai j,n the residue of the pole. There is an infinite number
of poles, which either occur in conjugate complex pairs, kn =
±α1 + iα0, or as a single purely imaginary pole, k = iα0.

5
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The purely imaginary pole gives a monotonically decaying
contribution, exp(−α0r)/r , to hi j (r). The complex conjugate
pairs give rise to oscillatory contributions to hi j(r), cos(α1r −
θi j) exp(−α0r), where θi j is a phase. In both cases, the decay
length α−1

0 , and the oscillatory wavelength α−1
1 are the same for

all correlation functions, i.e. independent of the combination of
i, j .

The advantage of this method is that it is possible to
investigate individual contributions to the radial distribution
functions. However, it is usually impractical to investigate the
contribution from every pole. It is far more useful to identify
the contributions with the smallest imaginary parts, i.e. the
poles with the smallest α0. These have the largest decay length,
and determine the asymptotic (large r ) decay of the correlation
functions.

As the model parameters and statepoint change, the
asymptotic decay can change abruptly from monotonic to
oscillatory, or between two oscillatory types with differing
wavelengths. The line that divides the regions of monotonic
decay from the oscillatory region is known as the Fisher–
Widom line [17], and the line between two types of oscillatory
decay is known as a structural crossover line, following Grodon
et al [30].

In [15] we investigated the asymptotic, r → ∞, decay
of gi j(r) and showed that for mixtures with q = 0.5 with
positive non-additivity, depending on the statepoint, there are
three different types of asymptotic decay: two with damped
oscillatory decay with different wavelengths corresponding to
the diameters, σi i , of the particles, and a third type, where the
correlations decay monotonically. In the phase diagram the
regions of different decay in relation to the fluid–fluid demixed
region can be indicated (see e.g. figures 9 and 12 for " = 0.1
in [4]).

Here we investigate the asymptotic decay of the
correlation functions, gi j(r), from the test particle calculations
and compare to the analytical pole analysis. Therefore,
we have performed the pole analysis to deduce the type of
asymptotic correlations for the same parameters as shown in
figure 1, i.e. q = 0.5 and " = 0.3. Figure 4 shows the
corresponding fluid–fluid demixing phase diagram, including
the binodal, spinodal and bulk critical point. We indicate
the three regions with different types of asymptotic decay,
separated by the Fisher–Widom and structural crossover lines.
We find that the phase diagram is dominated by two of the
regions; one where the oscillatory wavelength is similar to the
diameter of the larger species, σ22, (labelled Osc2) and one
where the decay is monotonic (labelled Mono). The second
oscillatory region (Osc1), with a wavelength similar to the
smaller species, σ11, is very small and lies very close to the
η1-axis, see the inset to figure 4 for a zoom of the region close
to the η1-axis.

We find that the statepoint considered in figure 1, marked
in the phase diagram as statepoint A, lies within the Osc2

region. For comparison, we choose two further statepoints
that reside in the other regions of asymptotic decay, which are
marked statepoints B and C; these lie in the Osc1 and Mono
regions, respectively. We show the partial pair correlation
functions calculated for statepoints B and C in figure 5(a).

Figure 4. Fluid–fluid demixing phase diagram for q = 0.5, and
" = 0.3. The binodal (solid line) and spinodal (dash-dotted line) for
fluid–fluid demixing meet at the bulk critical point (+). The
asymptotic decay of the correlation functions, hi j (r), is either
monotonic (Mono), or exhibits oscillations with a wavelength similar
to the diameter σii of one of the species (Osc1 and Osc2). The labels
A, B and C indicate statepoints for which the correlation functions
are shown in figure 5.

Although there are some differences between these results
and those presented for statepoint A in figure 1, the type of
asymptotic decay is not apparent on a linear scale. To elucidate
the asymptotic decay in figure 5(b), we plot ln(|rhi j(r)|) for
the three statepoints marked in figure 4; recall that hi j(r) =
gi j(r) − 1 are the total correlation functions.

We observe that for statepoint A the decay is indeed
oscillatory, and that the wavelength is of the order of the
diameter of the bigger particles. The region to the right
of the figure, r % 10σ11, is where the departure of the
profiles from the bulk value approaches the accuracy of the
numerical representation. The correlations at statepoint B
are also oscillatory, but with a much smaller wavelength,
approximately half that found for statepoint A. Furthermore,
the oscillations decay very quickly, so that the results reach the
level of numerical accuracy at r % 6σ11. The correlations for
statepoint C decay monotonically and since this statepoint is
also close to the coexistence region, the decay is very slow.

We next investigate the asymptotic behaviour of the pair
correlation functions for negative ", which has not been
addressed before. Consistent with the fact that the NAHS
fluid with negative non-additivity does not show fluid–fluid
phase separation, we find that the asymptotic decay is always
oscillatory, but either with a wavelength corresponding to
the bigger or to the smaller particles. This scenario is the
same as that found within a DFT framework for additive hard
spheres [30]. In figure 6(a) we plot the phase diagram for
q = 0.5 and " = −0.2, again labelling these two regions
Osc1 and Osc2. We find that the statepoint corresponding to
the results shown in figure 2 lies in the Osc2 region and label
this statepoint D. We also choose a further statepoint which
is within the Osc1 region, labelled statepoint E. The profiles
calculated using the test particle method corresponding to this
statepoint are shown in figure 6(b). We find that the like–like
correlation function for the larger particles (which constitute
the minority species) does not exhibit a local maximum at
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Figure 5. (a) Radial distribution functions obtained from the test
particle route for parameters q = 0.5, and " = 0.3 at statepoints B
and C, as shown in figure 4. (b) Total correlation functions,
hi j (r) = gi j (r) − 1 plotted as ln |rhi j (r)|, for statepoints A, B and C.
The asymptotic decay for statepoints A and B is oscillatory. For
statepoint A the wavelength is similar to the diameter of the bigger
species σ22, and for statepoint B it is similar to the diameter of the
smaller species, σ11. For statepoint C all correlation functions decay
monotonically.

contact, and that the maximum in the correlation function
occurs at r % 2.5σ11. In order to test these results we
have carried out further MC simulations using a total of 5000
particles, 88 of which are species 2, and plotted these results
alongside the test particle curves. We find that g11(r) and
g12(r) from the two approaches agree very well. However, for
g22(r) the test particle method does underestimate the value at
contact, although because of the relatively small number of big
particles the MC statistics are poorer. In figure 6(b) we plot the
asymptotic decay of gi j(r) at statepoints D and E. We find that
both appear oscillatory, but that the oscillatory wavelength in
D is approximately twice that of statepoint E, as expected from
the pole analysis.

3.3. Symmetric mixtures with negative non-additivity

We return to mixtures with negative ". We previously showed,
in figure 3, that for negative " % −0.5 the OZ route predicts

Figure 6. (a) Regions of different asymptotic decay in the η1, η2

plane for q = 0.5 and " = −0.2. Since " is negative, the mixture
does not show fluid phase separation. There are only two types of
asymptotic decay, both oscillatory, but with different wavelengths.
(b) The partial pair distribution functions at statepoint E calculated
from the test particle (TP, line) and MC (symbols) approaches. For
g22(r) both approaches indicate stronger correlations at r % 2.5σ11
than at contact. (c) The asymptotic decay of the correlation functions
for statepoints D and E, showing oscillatory decay for both
statepoints but with different wavelengths.

an unphysical downturn of the unlike correlation functions near
contact [29]. We have found that this is also true for values of
" below −0.5 and therefore we conclude that the OZ route
is not well suited to study such conditions. However, it is
still interesting to investigate the agreement between results
from the test particle route and from MC. For simplicity we
restrict ourselves to the symmetric size ratio, q = 1, and slowly
decrease " from 0. We do this at a high overall density with
an equal packing fraction of both species, η1 = η2 = 0.25. In
figure 7 we plot gi j(r) from the test particle route, and the MC
results for " = −0.1,−0.2,−0.3,−0.4, and −0.5.

We find that at this considerably high density there is
reasonably good agreement between the simulation and test
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Figure 7. Series of g11(r) (left) and g12(r) (right) for q = 1,
η1 = η2 = 0.25, and varying " = −0.1,−0.2,−0.3,−0.4,−0.5 (as
indicated). The two top panels show the results from the DFT, and
the two bottom panels those from simulations. For " = −0.1 the
simulation results (symbols) are also directly compared to the DFT
results in the top panels. The simulation results show that for
" # −0.3 the like–like correlation function, g11(r), almost does not
vary with " but becomes essentially that of a pure hard sphere fluid.

particle results only for " = −0.1. For lower values of ",
although the general behaviour of the partial pair correlation
functions is correctly predicted by the test particle route, there
are, however, significant quantitative deviations from the MC
data. Within the simulations we find that for " # 0.3 results
for g11(r) change very little with " and become essentially
equal to the pair correlation function of a pure hard sphere fluid
at packing fraction η = 0.25. Meanwhile, g12(r) continues
to change with decreasing ", losing all structure as the two
species cease to interact. Note that in the extreme case " =
−1, the two species decouple and strictly g12(r) = 1.

4. Conclusions

In conclusion, we have investigated the partial radial
distribution functions of non-additive hard sphere mixtures
with positive or negative non-additivity using MC simulations,
as well as two different DFT approaches, one based on the
OZ and the other on Percus’ test particle method. We have
shown that for positive values of " there is good agreement
between the results from simulations and both DFT methods.
Depending on the density, for small negative values of " %
−0.1 or 0.2, we find that there is again good agreement
between the three approaches. However, for more negative
values of " the OZ route exhibits unphysical features, whilst
the test particle result still gives a reasonably good account of
the bulk structure of the NAHS mixture. For very low negative
values of " the test particle results are only qualitatively

correct, and show very poor numerical agreement with the MC
data. For " &= 0 the OZ route does not reproduce the core
condition. Whether the functional can be modified in order to
improve the situation is an interesting question for future work.
We have also investigated the asymptotic (large distance) decay
of the correlation functions and shown that the asymptotic
decay of the test particle results agrees with the prediction of
the analytical pole analysis.

In all cases we find that the test particle results for the
density profiles do not exhibit any unphysical jumps. From our
own experience artefacts such as those reported in an earlier
study [16] can easily occur due to incorrect implementation of
the functional. The present density functional includes a large
number of terms that contribute and of convolutions that need
to be carried out. Hence small errors in the implementation can
cause subtle errors in otherwise correct profiles. We conclude
that the NAHS functional is free of artefacts in both planar
and spherical implementations and that the functional does not
require fundamental modifications as suggested in [16]. In the
present paper we have described some of the computational
methods that we used, in particular using symbolic algebra to
correctly implement the free energy derivative terms.

We have therefore shown that the NAHS functional is very
reliable for the prediction of the pair structure of the bulk
fluid for both positive and small negative values of ". This
suggests that in future work the binary NAHS functional could
be used as a reference to be augmented by more complicated
interactions including attractive and repulsive short range
tails [31], long ranged electro-static interactions treated with a
Poisson–Boltzmann approach [10, 11], or modelling polymeric
systems [12, 13]. Furthermore, the DFT could be used in
Oettel’s general reference functional approach [34].

After completion of this work we learnt that the
authors of [16] detected the origin of the subtle numerical
artefacts [28].
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