Home CV Research People Teaching Blog

Schmidt - Browse papers with the paper browser

[bare list] [illustrated] [by topic]
    Reference [<] [>] [x] : Figure [<] [>] [x]

    50. The contact angle of the colloidal liquid-gas interface and a hard wall
    P. P. F. Wessels, M. Schmidt, and H. Löwen, J. Phys.: Condens. Matt. 16, S4169 (2004).
    Locate in [bare] [illustrated] list. Get [full paper] as pdf.

    Extract. We consider the Asakura-Oosawa-Vrij model in contact with a planar hard wall at liquid-gas coexistence. Using density functional theory, the liquid-gas, wall-liquid and wall-gas interfacial free energies are calculated and inserted into Young's equation to obtain the contact angle between the liquid-gas interface and the wall. The relations to previous work are discussed in detail. [more]



    Read the [full paper] as pdf.

    Colloid-polymer mixtures: Beyond the AOV model

    Extensions include taking into account an explicit solvent of point particles [27], penetrability of (small) colloids into polymers [28], colloid-induced polymer compression [31], the influence of polymer interactions on fluid-demixing [34] and on the contact angle of the colloidal liquid-gas interface and a hard wall [50], as well as the stability of the floating liquid phase in sedimenting colloid-polymer mixtures for non-ideal polymers [52].

    Fluid interfaces

    Colloid-polymer mixtures display fluid-fluid interfaces [21] [44], relevant for laser-induced condensation [35], capillary condensation [43] and evaporation [48], immersion in porous media [41], the appearance of the floating liquid phase [52], the competition between sedimentation and phase coexistence [51], tension at a substrate [45], the experimental observation of thermal capillary waves [47], and the contact angle of the liquid-gas interface and a wall [50]. In colloidal rod-sphere mixtures fluid-fluid interfaces were investigated with theory [30] and simulation [42]. Hard sphere fluids were considered at surfaces of porous media [37], in random fiber networks [39], and in one dimensional cases [46].

    [more]

Legal. The material on this website is intended as a scientific resource for the private use of individual scholars. None of it may be used commercially, or for financial gain. Some of the material is protected by copyright. Requests for permission to make public use of any of the papers, or material therein, should be sought from the original publisher, or from M. Schmidt, as appropriate.
MS, 20 Apr 2009.