Home CV Research People Teaching Blog

Schmidt - Statistical and Nonequilibrium Physics

[bare list] [illustrated] [by topic] Publons Google Scholar

    Original papers

    2024


    163. Hyper-density functional theory of soft matter
    Florian Sammüller, Silas Robitschko, Sophie Hermann, and Matthias Schmidt (submitted). arxiv, pdf.
    162. Noether invariance theory for the equilibrium force structure of soft matter
    Sophie Hermann, Florian Sammüller, and Matthias Schmidt, J. Phys. A: Math. Theor. 57, 175001 (2024). doi, arxiv, pdf.
    161. Why neural functionals suit statistical mechanics
    Florian Sammüller, Sophie Hermann, and Matthias Schmidt, J. Phys. Condens. Matter 36, 243002 (2024) (Invited Topical Review). doi, arxiv, tutorial, Press Release, pdf.
    160. Hyperforce balance via thermal Noether invariance of any observable
    Silas Robitschko, Florian Sammüller, Matthias Schmidt, and Sophie Hermann, Commun. Phys. 7, 103 (2024). doi, arxiv, pdf, Sophie's blog post.
    159. Active crystallization from power functional theory
    Sophie Hermann and Matthias Schmidt, Phys. Rev. E (Letter) 109, L022601 (2024). doi, arxiv, pdf.

    2023


    158. Neural functional theory for inhomogeneous fluids: Fundamentals and applications
    Florian Sammüller, Sophie Hermann, Daniel de las Heras, and Matthias Schmidt, Proc. Nat. Acad. Sci. 120, e2312484120 (2023). doi, arxiv, code, tutorial, Press Release, pdf.
    157. Local measures of fluctuations in inhomogeneous liquids: Statistical mechanics and illustrative applications
    Tobias Eckert, Nico C. X. Stuhlmüller, Florian Sammüller, and Matthias Schmidt, J. Phys.: Condens. Matter 35, 425102 (2023). doi, arxiv, pdf, Video,
    156. Effect of sample height and particle elongation in the sedimentation of colloidal rods
    Tobias Eckert, Matthias Schmidt, and Daniel de las Heras, Soft Matter 19, 2214 (2023). doi, arxiv, pdf.
    155. Perspective: How to overcome dynamical density functional theory
    Daniel de las Heras, Toni Zimmermann, Florian Sammüller, Sophie Hermann, and Matthias Schmidt,
    J. Phys.: Condens. Matter 35, 271501 (2023). (Invited Perspective) doi, arxiv, pdf. Video, Press Release.
    154. Noether-constrained correlations in equilibrium liquids
    Florian Sammüller, Sophie Hermann, Daniel de las Heras, and Matthias Schmidt, Phys. Rev. Lett. 130, 268203 (2023). doi, arxiv, pdf.
    153. Reduced-variance orientational distribution functions from torque sampling
    Johannes Renner, Matthias Schmidt, and Daniel de las Heras, J. Phys.: Condens. Matter 35, 235901 (2023). doi, arxiv, pdf.
    152. Comparative study of force-based classical density functional theory
    Florian Sammüller, Sophie Hermann, and Matthias Schmidt, Phys. Rev. E 107, 034109 (2023). doi, arxiv, pdf.
    151. Inhomogeneous steady shear dynamics of a three-body colloidal gel former
    Florian Sammüller, Daniel de las Heras, and Matthias Schmidt, J. Chem. Phys. 158, 054908 (2023). (Special Topic on Colloidal Gels). doi, movie, arxiv, pdf.

    2022


    150. Sedimentation path theory for mass-polydisperse colloidal systems
    Tobias Eckert, Matthias Schmidt, and Daniel de las Heras, J. Chem. Phys. 157, 234901 (2022). doi, arxiv, pdf.
    149. Force balance in thermal quantum many-body systems from Noether's theorem
    Sophie Hermann and Matthias Schmidt, J. Phys. A: Math. Theor. 55, 464003 (2022). (Physics of Michael Berry). doi, arxiv, pdf.
    148. Variance of fluctuations from Noether invariance
    Sophie Hermann and Matthias Schmidt, Commun. Phys. 5, 276 (2022). doi, pdf, arxiv, Sophie's blog post.
    147. Force density functional theory in- and out-of-equilibrium
    Salomée Tschopp, Florian Sammüller, Sophie Hermann, Matthias Schmidt, and Joseph M. Brader, Phys. Rev. E 106, 014115 (2022). doi, pdf, arxiv.
    146. Shear and bulk acceleration viscosities in simple fluids
    Johannes Renner, Matthias Schmidt, and Daniel de las Heras, Phys. Rev. Lett. 128, 094502 (2022). doi, arxiv, pdf.
    145. Sedimentation of colloidal plate-sphere mixtures and inference of particle characteristics from stacking sequences
    Tobias Eckert, Matthias Schmidt, and Daniel de las Heras, Phys. Rev. Res. 4, 013189 (2022). doi, arxiv, pdf.
    144. Dynamic decay and superadiabatic forces in the van Hove dynamics of bulk hard sphere fluids
    Lucas L. Treffenstädt, Thomas Schindler, Matthias Schmidt, SciPost Phys. 12, 133 (2022). doi, arxiv, pdf.
    143. Power functional theory for many-body dynamics
    Matthias Schmidt, Rev. Mod. Phys. 94, 015007 (2022). doi, pdf, arxiv, Nutshell, Press Release.
    142. Why Noether's Theorem applies to Statistical Mechanics
    Sophie Hermann and Matthias Schmidt, J. Phys.: Condens. Matter 34, 213001 (2022) (Invited Topical Review). doi, pdf, arxiv, Noether rules.

    2021


    141. Gravity-induced phase phenomena in plate-rod colloidal mixtures
    Tobias Eckert, Matthias Schmidt, and Daniel de las Heras, Commun. Phys. 4, 202 (2021). pdf, journal, doi, arxiv.
    140. Adaptive Brownian Dynamics
    Florian Sammüller and Matthias Schmidt, J. Chem. Phys. 155, 134107 (2021). doi, pdf, code, arxiv. Featured on the Cover of Issue 13.
    139. Custom Flow in Molecular Dynamics
    Johannes Renner, Matthias Schmidt, and Daniel de las Heras, Phys. Rev. Res. 3, 013281 (2021). pdf, doi, arxiv.
    138. Noether's Theorem in Statistical Mechanics
    Sophie Hermann and Matthias Schmidt, Commun. Phys. 4, 176 (2021). pdf, doi, arxiv, webpage, Press Release.
    137. Phase separation of active Brownian particles in two dimensions: Anything for a quiet life
    Sophie Hermann, Daniel de las Heras, and Matthias Schmidt, Mol. Phys. e1902585 (2021); Gerhard Findenegg Memorial Issue. pdf, doi, arxiv.
    136. Universality in driven and equilibrium hard sphere liquid dynamics
    Lucas L. Treffenstädt and Matthias Schmidt, Phys. Rev. Lett. 126, 058002 (2021). pdf, doi, arxiv.

    2020


    135. Fluctuation profiles in inhomogeneous fluids
    Tobias Eckert, Nico C. X. Stuhlmüller, Florian Sammüller, and Matthias Schmidt, Phys. Rev. Lett. 125, 268004 (2020). pdf, doi, arxiv.
    134. Flow and structure in nonequilibrium Brownian many-body systems
    Daniel de las Heras and Matthias Schmidt, Phys. Rev. Lett. 125, 018001 (2020). pdf, doi, arxiv, Supp. Mat.
    133. Active interface polarization as a state function
    Sophie Hermann and Matthias Schmidt, Phys. Rev. Research 2, 022003(R) (2020). pdf, doi, arxiv.
    132. Shear-induced deconfinement of hard disks
    Nikolai Jahreis and Matthias Schmidt, Col. Pol. Sci. 298, 895 (2020); Festschrift Matthias Ballauff. pdf, doi.
    131. Crystal structures in binary hard-sphere colloid-droplet mixtures with patchy cross interactions
    Hai Pham Van, Andrea Fortini, and Matthias Schmidt, Phys. Rev. E 101, 012608 (2020). pdf, doi.
    130. Superadiabatic demixing in nonequilibrium colloids
    Thomas Geigenfeind, Daniel de las Heras and Matthias Schmidt, Commun. Phys. 3, 23 (2020). pdf, doi.
    129. Memory-induced motion reversal in Brownian liquids
    Lucas L. Treffenstädt and Matthias Schmidt, Soft Matter 16, 1518 (2020). pdf, doi, arxiv.

    2019


    128. Non-negative interfacial tension in phase-separated active Brownian particles
    Sophie Hermann, Daniel de las Heras and Matthias Schmidt, Phys. Rev. Lett. 123, 268002 (2019). arxiv, pdf, doi.
    127. Phase coexistence of active Brownian particles
    Sophie Hermann, Philip Krinninger, Daniel de las Heras and Matthias Schmidt, Phys. Rev. E 100, 052604 (2019). arxiv, pdf, doi.
    126. Superadiabatic forces via the acceleration gradient in quantum many-body dynamics
    Moritz Brütting, Thomas Trepl, Daniel de las Heras and Matthias Schmidt, Molecules 24, 3660 (2019); doi, pdf.
    125. Power functional theory for active Brownian particles: general formulation and power sum rules
    Philip Krinninger and Matthias Schmidt, J. Chem. Phys. 150, 074112 (2019); doi, pdf.
    124. Custom flow in overdamped Brownian dynamics
    Daniel de las Heras, Johannes Renner, and Matthias Schmidt, Phys. Rev. E 99, 023306 (2019); arxiv, pdf, doi.

    2018


    123. Structural nonequilibrium forces in driven colloidal systems
    Nico C. X. Stuhlmüller, Tobias Eckert, Daniel de las Heras and Matthias Schmidt, Phys. Rev. Lett. 121, 098002 (2018). doi, journal, pdf.
    122. Better than counting: Density profiles from force sampling
    Daniel de las Heras and Matthias Schmidt, Phys. Rev. Lett. 120, 218001 (2018) (selected as PRL Editors' Suggestion); arxiv, pdf, doi.
    121. Active ideal sedimentation: Exact two-dimensional steady states
    Sophie Hermann and Matthias Schmidt, Soft Matter 14, 1614 (2018). arxiv, pdf, doi.
    120. Power functional theory for Newtonian many-body dynamics
    Matthias Schmidt, J. Chem. Phys. 148, 044502 (2018); pdf, doi.
    119. Velocity gradient power functional for Brownian dynamics
    Daniel de las Heras and Matthias Schmidt, Phys. Rev. Lett. 120, 028001 (2018); pdf, doi; arxiv.

    2017


    118. Assembly of One-Patch Colloids into Clusters via Emulsion Droplet Evaporation
    Hai Pham Van, Andrea Fortini and Matthias Schmidt, Materials 10, 361 (2017); pdf, doi.

    2016


    117. Nonequilibrium phase behaviour from minimization of free power dissipation
    Philip Krinninger, Matthias Schmidt, and Joseph M. Brader, Phys. Rev. Lett. 117, 208003 (2016); Erratum 119, 029902 (2017); pdf, doi, arxiv.
    116. Dynamic pair correlations and superadiabatic forces in a dense Brownian liquid
    Thomas Schindler, Matthias Schmidt, J. Chem. Phys. 145, 064506 (2016). pdf, doi, arxiv.
    115. Superadiabatic forces in the dynamics of the one-dimensional Gaussian core model
    Elias Bernreuther and Matthias Schmidt, Phys. Rev. E 94, 022105 (2016). pdf, doi, arxiv.
    114. Assembly of open clusters of colloidal dumbbells via droplet evaporation
    Hai Pham Van, Andrea Fortini, Matthias Schmidt, Phys. Rev. E 93, 052609 (2016). pdf, journal, doi.
    113. Particle conservation in dynamical density functional theory
    D. de las Heras, J. M. Brader, A. Fortini, M. Schmidt, J. Phys.: Condens. Matter 28, 244024 (2016). pdf, journal
    112. Minimal model for dynamic bonding in colloidal transient networks
    P. Krinninger, A. Fortini, and M. Schmidt, Phys. Rev. E 93, 042601 (2016). pdf, journal, doi.
    111. Reentrant network formation in patchy colloidal mixtures under gravity
    D. de las Heras, L. L. Treffenstädt, and M. Schmidt, Phys. Rev. E 93, 030601(R) (2016). pdf, journal, doi.

    2015


    110. Quantum power functional theory for many-body dynamics
    M. Schmidt, J. Chem. Phys. 143, 174108 (2015). pdf, doi.
    109. Confinement of two-dimensional rods in slit pores and square cavities
    T. Geigenfeind, S. Rosenzweig, M. Schmidt, and D. de las Heras, J. Chem. Phys. 142, 174701 (2015). pdf, journal
    108. Free power dissipation from functional line integration
    J. M. Brader, M. Schmidt, Mol. Phys. 113, 2873 (2015). (Special issue in honour of Jean-Pierre Hansen) journal.

    2014


    107. Power functional theory for the dynamic test particle limit
    J. M. Brader, M. Schmidt, J. Phys.: Condens. Matter 27, 194106 (2015). pdf, journal
    106. Full canonical information from grand potential density functional theory
    D. de las Heras, M. Schmidt, Phys. Rev. Lett. 113, 238304 (2014). pdf, journal.
    105. Sedimentation stacking diagram of binary colloidal mixtures and bulk phases in the plane of chemical potentials
    D. de las Heras, M. Schmidt, J. Phys.: Condensed Matt. 27, 194115 (2015). (Special Issue for Liquids 2014) pdf, arxiv.
    104. Superadiabatic forces in Brownian many-body dynamics
    A. Fortini, D. de las Heras, J. M. Brader, M. Schmidt, Phys. Rev. Lett. 113, 167801 (2014). pdf, journal, arxiv.
    103. Dynamic correlations in Brownian many-body systems
    J. M. Brader and M. Schmidt, J. Chem. Phys. 140, 034104 (2014). pdf, doi, arxiv.

    2013


    102. Phase stacking diagram of colloidal mixtures under gravity
    D. de las Heras and M. Schmidt, Soft Matter 9, 8636 (2013). pdf, doi, arxiv, cover page.
    101. Nonequilibrium Ornstein-Zernike relation for Brownian many-body Dynamics
    J. M. Brader and M. Schmidt, J. Chem. Phys. 139, 104108 (2013). pdf, doi, arxiv.
    100. Power functional theory for Brownian dynamics
    M. Schmidt and J. M. Brader, J. Chem. Phys. 138, 214101 (2013). pdf, doi, arxiv.
    99. Effect of controlled corrugation on capillary condensation of colloid-polymer mixtures
    A. Fortini and M. Schmidt, Soft Matter 9, 3994 (2013). doi, pdf, arxiv. journal.

    2012


    98. Recent developments in classical density functional theory: Internal energy functional and diagrammatic structure of fundamental measure theory
    M. Schmidt, M. Burgis, W. S. B. Dwandaru, G. Leithall, P. Hopkins, Cond. Matt. Phys. 15, 43603 (2012). doi, pdf, arxiv.
    97. Floating nematic phase in colloidal platelet-sphere mixtures
    D. de las Heras, N. Doshi, T. Cosgrove, J. Phipps, D. I. Gittins, J. S. van Duijneveldt, M. Schmidt, Sci. Rep. 2, 789 (2012). doi, pdf, journal.
    96. Bulk fluid phase behaviour of colloidal platelet-sphere and platelet-polymer mixtures
    D. de las Heras, M. Schmidt, Phil. Trans. R. Soc. A 371, 20120259 (2013). pdf, journal.
    95. Particle nanosomes with tailored silhouettes
    C. S. Wagner, A. Fortini, E. Hofmann, Th. Lunkenbein, M. Schmidt, and A. Wittemann, Soft Matter 8, 1928 (2012). doi, pdf, journal.

    2011


    94. Monte Carlo computer simulations and electron microscopy of colloidal cluster formation via emulsion droplet evaporation
    I. Schwarz, A. Fortini, C. S. Wagner, A. Wittemann and M. Schmidt, J. Chem. Phys. 135, 244501 (2011). pdf, doi, arxiv.
    93. Statics and dynamics of inhomogeneous liquids via the internal-energy functional
    M. Schmidt, Phys. Rev. E 84, 051203 (2011). pdf, doi, arxiv.
    92. Density functional for ternary non-additive hard sphere mixtures
    M. Schmidt, J. Phys.: Condens. Matt. 23, 415101 (2011). pdf, doi, arxiv, news.
    91. Radial distribution functions of non-additive hard sphere mixtures via Percus' test particle route
    P. Hopkins and M. Schmidt, J. Phys.: Condens. Matt. 23, 325104 (2011). pdf, doi.
    90. First-order layering and critical wetting transitions in nonadditive hard sphere mixtures
    P. Hopkins and M. Schmidt, Phys. Rev. E 83, 050602(R) (2011). pdf, doi, arxiv.
    89. Variational principle of classical density-functional theory via Levy's constrained search method
    W. S. B. Dwandaru and M. Schmidt, Phys. Rev. E 83, 061133 (2011). pdf, doi, arxiv.
    88. Computer simulations of colloidal transport on a patterned magnetic substrate
    A. Fortini and M. Schmidt, Phys. Rev. E. 83, 041411 (2011). pdf, doi, arxiv.
    87. Density functional for hard hyperspheres from a tensorial-diagrammatic series
    G. Leithall and M. Schmidt, Phys. Rev. E 83, 021201 (2011). pdf, url, arxiv.
    86. Isometric and metamorphic operations on the space of local fundamental measures
    M. Schmidt, Mol. Phys. 109, 1253 (2011). (Special Issue in honour of R. Evans). pdf, doi, arxiv.
    85. Phase behaviour of binary mixtures of diamagnetic colloidal platelets in an external magnetic field
    J. Phillips and M. Schmidt, J. Phys.: Condens. Matt. 23, 194111 (2011). (Special Issue in honour of Henk Lekkerkerker). pdf, doi, arxiv.

    2010


    84. The van Hove distribution function for Brownian hard spheres:
    Dynamical test particle theory and computer simulations for bulk dynamics

    P. Hopkins, A. Fortini, A.J. Archer, and M. Schmidt, J. Chem. Phys. 133, 224505 (2010). pdf, doi, arxiv.
    83. Nanoparticle assembly by confinement in wrinkles: Experiment and Simulations
    A. Schweikart, A. Fortini, A. Wittemann, M. Schmidt, and A. Fery, Soft Matter 6, 5860 (2010). Communication, pdf, doi.
    82. Laterally driven interfaces in the three-dimensional Ising lattice gas
    T. H. R. Smith, O. Vasilyev, A. Maciolek, M. Schmidt, Phys. Rev. E 82, 021126 (2010). pdf, journal
    81. Binary non-additive hard sphere mixtures: Fluid demixing, asymptotic decay of correlations and free fluid interfaces
    P. Hopkins and M. Schmidt, J. Phys.: Condens. Matt. 22, 325108 (2010). IOPSelect, pdf, doi, arxiv, news
    80. Bulk phase behavior of binary hard-platelet mixtures from density functional theory
    J. Phillips and M. Schmidt, Phys. Rev. E 81, 041401 (2010). pdf
    79. Sedimentation equilibrium of colloidal platelets in an aligning magnetic field
    H. Reich and M. Schmidt, J. Chem. Phys. 132, 144509 (2010). pdf
    78. Lateral transport of thermal capillary waves
    T. H. R. Smith, O. Vasilyev, A. Maciolek, and M. Schmidt, EPL 89, 10006 (2010). pdf

    2009


    77. Quenched-annealed density functional theory for interfacial behaviour of hard rods at a hard rod matrix
    D. L. Cheung and M. Schmidt, J. Chem. Phys. 131, 214705 (2009). pdf
    76. Test particle limit for the pair structure of quenched-annealed fluid mixtures
    M. Schmidt, Phys. Rev. E 79, 031405 (2009). pdf

    2008


    75. Structure and stability of isotropic states of hard platelet fluids
    D. L. Cheung, L. Anton, M. P. Allen, A. J. Masters, J. Phillips, and M. Schmidt, Phys. Rev. E 78, 041201 (2008). pdf
    74. Interfaces in confined Ising models: Kawasaki, Glauber and sheared dynamics
    T. H. R. Smith, O. Vasilyev, D. B. Abraham, A. Maciolek, and M. Schmidt, J. Phys.: Condens. Matter 20, 494237 (2008). pdf
    73. Non-equilibrium sedimentation of colloids: Confocal microscopy and Brownian dynamics simulations
    M. Schmidt, C. P. Royall, A. van Blaaderen, and J. Dzubiella, J. Phys.: Condens. Matter 20, 494222 (2008). pdf
    72. Interfaces in driven Ising models: Shear enhances confinement
    T. H. R. Smith, O. Vasilyev, D. B. Abraham, A. Maciolek, and M. Schmidt, Phys. Rev. Lett. 101, 067203 (2008). pdf

    2007


    71. Peel or Coat Spheres by Convolution, Repeatedly
    M. Schmidt and M. R. Jeffrey, J. Math. Phys. 48, 123507 (2007). pdf
    70. Fundamental measure density functional theory for non-additive hard core mixtures: The one-dimensional case
    M. Schmidt, Phys. Rev. E 76, 031202 (2007). pdf
    69. Capillary nematization of hard colloidal platelets confined between two parallel hard walls
    H. Reich and M. Schmidt, J. Phys.: Condens. Matt. 19, 326103 (2007). doi, pdf
    68. A relationship of mean-field theory for a driven lattice gas to an exact equilibrium density functional
    W. S. B. Dwandaru and M. Schmidt, J. Phys. A: Math. Theo. 40, 13209 (2007). pdf
    67. Non-equilibrium sedimentation of colloids on the particle scale
    C. P. Royall, J. Dzubiella, M. Schmidt, and A. van Blaaderen, Phys. Rev. Lett. 98, 188304 (2007);
    also in: Virt. J. Nanosc. Sci. & Tech. 15, Issue 19 (2007). pdf
    66. Dynamics in inhomogeneous liquids and glasses via the test particle limit
    A. J. Archer, P. Hopkins, and M. Schmidt, Phys. Rev. E 75, 040501(R) (2007). pdf
    65. Entropic wetting and the free isotropic-nematic interface of hard colloidal platelets
    H. Reich, M. Dijkstra, R. van Roij, and M. Schmidt, J. Phys. Chem. B 111, 7825 (2007). doi, pdf

    2006


    64. The isotropic-nematic interface and wetting in suspensions of colloidal platelets
    D. van der Beek, H. Reich, P. van der Schoot, M. Dijkstra, T. Schilling, R. Vink, M. Schmidt, R. van Roij, and H. N. W. Lekkerkerker,
    Phys. Rev. Lett. 97, 087801 (2006). pdf
    63. Phase behavior and structure of model colloid-polymer mixtures confined between two parallel planar walls
    A. Fortini, M. Schmidt, and M. Dijkstra, Phys. Rev. E. 73, 051502 (2006). pdf
    62. Soft core fluid in a quenched matrix of soft core particles: A mobile mixture in a model gel
    A. J. Archer, M. Schmidt, and R. Evans, Phys. Rev. E. 73, 011506 (2006). pdf
    61. Density functional theory for colloidal mixtures of hard platelets, rods, and spheres
    A. Esztermann, H. Reich, and M. Schmidt, Phys. Rev. E. 73, 011409 (2006). pdf

    2005


    60. Lattice density functional for colloid-polymer mixtures: Comparison of two fundamental measure theories
    J. A. Cuesta, L. Lafuente and M. Schmidt, Phys. Rev. E 72, 031405 (2005). pdf
    59. Mixtures of charged colloid and neutral polymer: influence of electrostatic interactions on demixing and interfacial tension
    A. R. Denton and M. Schmidt, J. Chem. Phys. 122, 244911 (2005). pdf
    58. Wall-Fluid and liquid-gas interfaces of model colloid-polymer mixtures by simulation and theory
    A. Fortini, M. Dijkstra, M. Schmidt, and P. P. F. Wessels, Phys. Rev. E. 71, 051403 (2005). pdf
    57. Simulation and theory of fluid demixing and interfacial tension of mixtures of colloids and non-ideal polymers
    R. L. C. Vink and M. Schmidt, Phys. Rev. E 71, 051406 (2005). pdf
    56. Wetting, drying, and layering of colloid-polymer mixtures at porous interfaces
    P. P. F. Wessels, M. Schmidt, and H. Löwen, Phys. Rev. Lett. 94, 078303 (2005).
    [more] [pdf]
    55. Entropic interfaces in hard-core model amphiphilic mixtures
    J. M. Brader and M. Schmidt, J. Coll. Interf. Sci. 281, 495 (2005).
    [more] [pdf]

    2004


    54. Isotropic-nematic transition of hard rods immersed in random sphere matrices
    M. Schmidt and M. Dijkstra, J. Chem. Phys. 121, 12067 (2004).
    [more] [pdf]
    53. Rosenfeld functional for non-additive hard spheres
    M. Schmidt, J. Phys.: Condens. Matt. 16, L351 (2004).
    [more] [pdf]
    52. Floating liquid phase in sedimenting colloid-polymer mixtures
    M. Schmidt, M. Dijkstra, and J.-P. Hansen, Phys. Rev. Lett. 93, 088303 (2004).
    [more] [pdf]
    51. Competition between sedimentation and phase coexistence of colloidal dispersions under gravity
    M. Schmidt, M. Dijkstra, and J.-P. Hansen, J. Phys.: Condens. Matt. 16, S4185 (2004).
    [more] [pdf]
    50. The contact angle of the colloidal liquid-gas interface and a hard wall
    P. P. F. Wessels, M. Schmidt, and H. Löwen, J. Phys.: Condens. Matt. 16, S4169 (2004).
    [more] [pdf]
    49. Density functional theory for sphere-needle mixtures: Toward finite rod thickness
    A. Esztermann and M. Schmidt, Phys. Rev. E 70, 022501 (2004).
    [more] [pdf]
    48. Capillary evaporation in colloid-polymer mixtures selectively confined to a planar slit
    M. Schmidt, A. Fortini, and M. Dijkstra, J. Phys.: Condens. Matt. 16, S4159 (2004).
    [more] [pdf]
    47. Direct visual observation of thermal capillary waves
    D. G. A. L. Aarts, M. Schmidt, and H. N. W. Lekkerkerker, Science 304, 847 (2004).
    [more] [pdf]
    46. Replica density functional study of one-dimensional hard core fluids in porous media
    H. Reich and M. Schmidt, J. Stat. Phys. 116, 1683 (2004).
    [more] [pdf]
    45. Wall tensions of model colloid-polymer mixtures
    P. P. F. Wessels, M. Schmidt, and H. Löwen, J. Phys.: Condens. Matt. 16, L1 (2004). (Selected for Top Papers 2004, pdf by IOP.)
    [more] [pdf]

    2003


    44. Statistical mechanics of inhomogeneous model colloid-polymer mixtures
    J. M. Brader, R. Evans, and M. Schmidt, Mol. Phys. 101, 3349 (2003). (Invited article)
    [more] [pdf]
    43. Capillary condensation of colloid-polymer mixtures confined between parallel plates
    M. Schmidt, A. Fortini, and M. Dijkstra, J. Phys.: Condens. Matt. 48, S3411 (2003).
    [more] [pdf]
    42. Simulation and theory of fluid-fluid interfaces in binary mixtures of hard spheres and hard rods
    P. G. Bolhuis, J. M. Brader, and M. Schmidt, J. Phys.: Condens. Matt. 48, S3421 (2003).
    [more] [pdf]
    41. Capillary condensation and interface structure of a model colloid-polymer mixture in a porous medium
    P. P. F. Wessels, M. Schmidt, and H. Löwen, Phys. Rev. E 68, 061404 (2003).
    [more] [pdf]
    40. Entropic wetting of a colloidal rod-sphere mixture
    R. Roth, J. M. Brader, and M. Schmidt, Europhys. Lett. 63, 549 (2003).
    [more] [pdf]
    39. Hard sphere fluids in random fiber networks
    M. Schmidt and J. M. Brader, J. Chem. Phys. 119, 3495 (2003).
    [more] [pdf]
    38. Freezing in the presence of disorder: A lattice study
    M. Schmidt, L. Lafuente, and J. A. Cuesta, J. Phys.: Condens. Matt. 15, 4695 (2003).
    [more] [pdf]
    37. Hard sphere fluids at surfaces of porous media
    M. Schmidt, Phys. Rev. E 68, 021106 (2003).
    [more] [pdf]
    36. Hard body amphiphiles at a hard wall
    J. M. Brader, C. von Ferber, and M. Schmidt, Mol. Phys. 101, 2225 (2003).
    [more] [pdf]
    35. Laser-induced condensation in colloid-polymer mixtures
    I. O. Götze, J. M. Brader, M. Schmidt, and H. Löwen, Mol. Phys. 101, 1651 (2003).
    [more] [pdf]

    2002


    34. Fluid demixing in colloid-polymer mixtures: Influence of polymer interactions
    M. Schmidt, A. R. Denton, and J. M. Brader, J. Chem. Phys. 118, 1541 (2003).
    [more] [pdf]
    33. Density functional theory for random sequential adsorption
    M. Schmidt, J. Phys.: Condens. Matt. 14, 12119 (2002).
    [more] [pdf]
    32. Model colloid-polymer mixtures in porous matrices: density functional versus integral equations
    M. Schmidt, E. Schöll-Paschinger, J. Köfinger, and G. Kahl, J. Phys.: Condens. Matt. 14, 12099 (2002).
    [more] [pdf]
    31. Colloid-induced polymer compression
    A. R. Denton and M. Schmidt, J. Phys.: Condens. Matt. 14, 12051 (2002).
    [more] [pdf]
    30. Colloidal rod-sphere mixtures: Fluid-fluid interfaces and Onsager limit
    J. M. Brader, A. Esztermann, and M. Schmidt, Phys. Rev. E 66, 031401 (2002).
    [more] [pdf]
    29. Density functional theory for a model colloid-polymer mixture: bulk fluid phases
    M. Schmidt, H. Löwen, J. M. Brader, and R. Evans, J. Phys.: Condens. Matter 14, 9353 (2002).
    [more] [pdf]
    28. Penetrability in model colloid-polymer mixtures
    M. Schmidt and M. Fuchs, J. Chem. Phys. 117, 6308 (2002).
    [more] [pdf]
    27. Demixing of colloid-polymer mixtures in poor solvents
    M. Schmidt and A. R. Denton, Phys. Rev. E 65, 061410 (2002).
    [more] [pdf]
    26. Decoration lattices of colloids adsorbed on stripe-patterned substrates
    H. M. Harreis, M. Schmidt, and H. Löwen, Phys. Rev. E 65, 041602 (2002).
    [more] [pdf]
    25. Colloids, polymers, and needles: Demixing phase behavior
    M. Schmidt and A. R. Denton, Phys. Rev. E 65, 021508 (2002).
    [more] [pdf]
    24. Density functional theory for fluids in porous media
    M. Schmidt, Phys. Rev. E 66, 041108 (2002).
    [more] [pdf]
    23. Freezing transition of hard hyperspheres
    R. Finken, M. Schmidt, and H. Löwen, Phys. Rev. E 65, 016108 (2002).
    [more] [pdf]
    22. Do effective interactions depend on the choice of coordinates?
    M. Schmidt, Phys. Rev. E 65, 022801 (2002); also in: Virt. J. Nanosc. Sci. & Tech. 5, Issue 6 (2002).
    [more] [pdf]
    21. Entropic wetting and the fluid-fluid interface of a model colloid-polymer mixture
    J. M. Brader, R. Evans, M. Schmidt, and H. Löwen, J. Phys. Condens. Matter 14, L1 (2002).
    [more] [pdf]

    2001


    20. Amphiphilic hard body mixtures
    M. Schmidt and C. von Ferber, Phys. Rev. E 64, 051115 (2001).
    [more] [pdf]
    19. Density functional theory for colloidal rod-sphere mixtures
    M. Schmidt, Phys. Rev. E 63, 050201(R) (2001).
    [more] [pdf]
    18. Colloids confined to a flexible container
    L. Maibaum, M. Schmidt, and H. Löwen, Phys. Rev. E 63, 051401 (2001).
    [more] [pdf]
    17. Density functional for the Widom-Rowlinson model
    M. Schmidt, Phys. Rev. E 63, 010101(R) (2001).
    [more] [pdf]
    16. Soft interaction between dissolved dendrimers: theory and experiment
    C. N. Likos, M. Schmidt, H. Löwen, M. Ballauff, D. Pötschke, and P. Lindner, Macromolecules 34, 2914 (2001).
    [more] [pdf]
    15. Density functional theory for structure and freezing of star polymer solutions
    B. Groh and M. Schmidt, J. Chem. Phys. 114, 5450 (2001).
    [more] [pdf]

    2000


    14. Fluid of penetrable spheres: Testing the universality of the bridge functional
    Y. Rosenfeld, M. Schmidt, M. Watzlawek, and H. Löwen, Phys. Rev. E 62, 5006 (2000).
    [more] [pdf]
    13. Fluid structure from density functional theory
    M. Schmidt, Phys. Rev. E 62, 4976 (2000).
    [more] [pdf]
    12. Topological defects in nematic droplets of hard spherocylinders
    J. Dzubiella, M. Schmidt, and H. Löwen, Phys. Rev. E 62, 5081 (2000).
    [more] [pdf]
    11. A density functional for a model colloid-polymer mixture
    M. Schmidt, H. Löwen, J. M. Brader, and R. Evans, Phys. Rev. Lett. 85, 1934 (2000).
    [more] [pdf]
    10. A density functional for additive mixtures
    M. Schmidt, Phys. Rev. E 62, 3799 (2000).
    [more] [pdf]
    9. Colloidal particles in emulsions
    F. L. Roman, M. Schmidt, and H. Löwen, Phys. Rev. E 61, 5445 (2000).
    [more] [pdf]

    stoneage


    8. Density-functional theory for soft potentials by dimensional crossover
    M. Schmidt, Phys. Rev. E 60, R6291 (1999).
    [more] [pdf]
    7. Ab-initio density-functional theory for penetrable spheres
    M. Schmidt, J. Phys.: Condens. Matt. 11, 10163 (1999).
    [more] [pdf]
    6. Fundamental-measure free energy density functional for hard spheres: Dimensional crossover and freezing
    Y. Rosenfeld, M. Schmidt, H. Löwen, and P. Tarazona, Phys. Rev. E 55, 4245 (1997).
    [more] [pdf]
    5. Dimensional crossover and the freezing transition in density functional theory
    Y. Rosenfeld, M. Schmidt, H. Löwen, and P. Tarazona, J. Phys.: Condens. Matt. 8, L577 (1996).
    [more] [pdf]
    4. Cell theory for the phase diagram of hard spherocylinders
    H. Graf, H. Löwen, and M. Schmidt, Prog. Coll. Poly. Sci. 104, 177 (1997).
    3. Phase diagram of hard spheres confined between parallel hard plates
    M. Schmidt and H. Löwen, Phys. Rev. E 55, 7228 (1997).
    [more] [pdf]
    2. Freezing between two and three dimensions
    M. Schmidt and H. Löwen, Phys. Rev. Lett. 76, 4552 (1996).
    [more] [pdf]
    1. Monte Carlo simulation of the three-dimensional q=3-states Potts model
    M. Schmidt, Z. Phys. B 95, 327 (1994).

    Reviews and Theses

    143. Power functional theory for many-body dynamics
    Matthias Schmidt, Rev. Mod. Phys. 94, 015007 (2022). doi, pdf, arxiv, Nutshell, Press Release.
    142. Why Noether's Theorem applies to Statistical Mechanics
    Sophie Hermann and Matthias Schmidt, J. Phys.: Condens. Matter 34, 213001 (2022) (Invited Topical Review). doi, pdf, arxiv, Noether rules.
    R5. Replica density functional theory: an overview
    M. Schmidt, J. Phys.: Condens. Matt. 17, S3481 (2005); (Proceedings of the 6th EPS Liquid Matter Conference). (Refereed)
    R4. Geometry-based density-functional theory: Construction and applications to soft matter
    M. Schmidt, Habilitation thesis, Heinrich-Heine-Universität Düsseldorf, Oct 2004 (475 pages).
    [pdf]
    R3. Geometry-based density-functional theory: An overview
    M. Schmidt, J. Phys.: Condens. Matt. 15, S101 (2003); (Proceedings of the 5th EPS Liquid Matter Conference). (Refereed)
    R2. Simulations of systems with colloidal particles
    M. Schmidt, in Computational Methods in Colloid and Interface Science, Ed. M. Borowko, M. Dekker; NewYork, Chap. 15, p. 745 (2000).
    R1. Freezing in confined geometry
    M. Schmidt, Dissertation, Shaker, Aachen (1997) ISBN 3-8265-2206-0.

    Conference and popular articles

    C8. Life at ultralow interfacial tension: wetting, waves and droplets in demixed colloid-polymer mixtures
    H. N. W. Lekkerkerker, V. W. A. de Villeneuve, J. de Folter, D. G. A. L. Aarts, M. Schmidt, Y. Hennequin, D. Bonn, and J. O. Indekeu, Proceedings of Statphys 23, Genova, Italy (2007).
    C7. Microscopy on thermal capillary waves in demixed colloid-polymer systems
    D. G. A. L. Aarts, M. Schmidt, H. N. W. Lekkerkerker, and K. R. Mecke, Advances in Solid State Physics (ed. B. Kramer) 45, 15 (2005).
    C6. Directe visuele waarneming van thermische capillaire golven
    D. G. A. L. Aarts, M. Schmidt, and H. N. W. Lekkerkerker, Nederlands Tijdschrift voor Natuurkunde 70, 216 (2004).
    C5. Interfacial properties of model colloid-polymer mixtures
    R. Evans, J. M. Brader, R. Roth, M. Dijkstra, M. Schmidt, and H. Löwen, Phil. Trans. Roy. Soc. Series A 359, 961 (2001). (Refereed)
    C4. The hard physics of soft matter
    H. Löwen, M. Watzlawek, C. N. Likos, M. Schmidt, A. Jusufi, J. Dzubiella, C. von Ferber, E. Allahyarov, A. Thünemann, and I. D'Amico, Advances in Solid State Physics 40, 809 (2000) (ed. by B. Kramer, Vieweg). (Refereed)
    C3. Phase transitions in colloidal suspensions and star polymer solutions
    H. Löwen, M. Watzlawek, C. N. Likos, M. Schmidt, A. Jusufi, and A. R. Denton, J. Phys.: Condens. Matt. 12, A465 (2000). (Refereed)
    C2. Phase transitions in soft matter systems
    H. Löwen, M. Watzlawek, C. N. Likos, M. Schmidt, A. Jusufi, C. von Ferber, and A. R. Denton, AIP Journal, Proceedings of the Third Tohwa University Conference on Statistical Physics, ed. by M. Tokuyama and H. E. Stanley, May 2000. (Refereed)
    C1. Freezing in confined suspensions
    H. Löwen and M. Schmidt, Prog. Coll. Poly. Sci. 104, 81 (1997). (Refereed)

    Web of Science

    A reasonably accurate database query for the Web of Science is the following.
    author: schmidt m
    address:
    (bayreuth same phys) or (bristol same wills) or (dusseldorf same phys) or (utrecht same debye) or (fargo same phys) or (erlangen same theoret phys 1)
    not address: univ wisconsin
    not year: 1998

    ResearcherID

    My ResearcherID is A-8697-2011.

Legal. The material on this website is intended as a scientific resource for the private use of individual scholars. None of it may be used commercially, or for financial gain. Some of the material is protected by copyright. Requests for permission to make public use of any of the papers, or material therein, should be sought from the original publisher, or from M. Schmidt, as appropriate.
MS, 16 Apr 2024.